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Abstract: Ginseng berry pomace (GBP) is a byproduct of ginseng berry processing and is rich in
numerous bioactive components, including ginsenosides and their derivatives. The application
of GBP as a beneficial biomaterial is currently limited. In this study, we aimed to evaluate their
potential as a promising source of bioactive compounds using metabolite profiling. The GBP obtained
after different ultra-high-pressure (UHP) treatments was analyzed by GC-TOF-MS and UHPLC-
LTQ-Orbitrap-MS/MS. In multivariate analyses, we observed a clear demarcation between the
control and UHP-treated groups. The results demonstrated that the relative abundance of primary
metabolites and a few ginsenosides was higher in the control, whereas UHP treatment contained
higher levels of fatty acids and sugars. Furthermore, GBPs were fractionated using different solvents,
followed by UHPLC-LTQ-Orbitrap-MS/MS analyses. The heatmap revealed that phenolics (e.g.,
quercetin, kaempferol) and fewer polar ginsenosides (e.g., F4, Rh2) were abundant in the ethyl acetate
fraction, whereas the levels of lignans (e.g., 7-hydroxysecoisolariciresinol, syringaresinol) and fatty
acids (e.g., trihydroxy-octadecenoic acid, oxo-dihydroxy-octadecenoic acid) were high in chloroform.
Correlation analysis showed that phenolics, less polar ginsenosides, and fatty acids were positively
correlated with the antioxidant activity of GBP. Our study highlights GBP as a functional ingredient
for the development of high-quality ginseng berry products.

Keywords: ginseng berry pomace; metabolite profiling; ultrahigh-pressure treatment; solvent-solvent
extraction; antioxidant activity

1. Introduction

Ginseng (Panax ginseng C.A. Meyer) is a perennial herb belonging to the Araliaceae
family that is widely used as a traditional herbal medicine worldwide. Ginseng contains
abundant bioactive compounds, including ginsenosides, polysaccharides, fatty acids, and
mineral oils [1]. Ginseng roots are rich in ginsenosides and saponins, which contribute
to its numerous biological activities, including anti-diabetic, anti-carcinogenic, anti-stress,
and anti-aging [2,3]. Several of these bioactivities are associated with ginsenosides and
their derivatives. In ginseng, the compound ginsenosides are distributed in different
plant parts, including the roots, leaves, and berries. However, most ginseng studies have
primarily focused on ginsenosides extracted from ginseng roots [4,5]. In recent years,
several studies have reported that the ginseng berry (GB) has several health benefits,
such as antioxidant, anti-cancer, and anti-aging effects [2,3]. Additionally, GBs contain
higher levels of total ginsenosides compared to those in ginseng roots and exhibit different
profiles of ginsenosides [6]. Furthermore, syringaresinol, the lignan compound, which
is the key factor in melanogenesis inhibition, was only found in GBs [7]. Although GBs
have numerous health benefits, they are not commercially used and are often discarded as
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a “useless by-product” [8]. Recently, for the development of new cosmetic products and
beverages fortified with functional food ingredients, the food and pharmaceutical/cosmetic
industries have focused on the potential of GBs as a beneficial biomaterial.

Usually, in food industries, the ultra-high-pressure (UHP) process is used to enhance
the levels of crude saponins and ginsenosides in ginseng extracts [9]. UHP processing is
a food preservation technique in which high pressure (50–1000 MPa) is applied to foods,
including milk, fruit, and vegetables, without heating [4]. It is useful for increasing the
shelf life of products and for enhancing the safety, quality, and extraction yields of food
products [10]. However, after UHP treatment, a considerable amount of waste, also known
as pomace, is generated and disposed of, which causes environmental issues. To overcome
these drawbacks, some industries re-use it as a functional ingredient, but in limited areas,
such as fertilizer and livestock feed [11].

Pomace is a byproduct produced by the fruit- and vegetable-processing industries
that contains pulp, peel, and seeds. Fruit pomace contains numerous bioactive compounds
and is used as a natural food additive. Recently, efforts have been made to utilize fruit
industrial waste, and studies have already reported the utilization of pomace from mango,
watermelon, grapes, tomatoes, and carrots, among others, for the production of bioactive
compounds [12–15]. However, there have been no reports on the utilization of pomace
from GBs (GBP) for its bioactive compounds’ potential as functional ingredients. Therefore,
it would be beneficial to investigate its potential and alternative uses to reuse waste for
mitigation of environmental issues. Moreover, to overcome these drawbacks and to reduce
environmental issues, many researchers have explored optimal extraction techniques for
isolation of functional metabolites of fruit pomace [16,17].

Metabolomics has been used in recent years as an effective technique in a variety of
research areas, including food science, agriculture, and microbiology [18]. Plant metabolites
play an essential role in growth and development under stress through maintenance of
cell integrity and the induction of signaling, energy storage, membrane formation and
scaffolding, and through whole-plant resource allocation [19]. Since the various metabolites
render plant-based foods and food additives highly amenable in the search for metabolic
markers of food authenticity or nutritional quality, metabolomic approaches have become
vital for food authentication and the analysis of food adulteration [20]. Recently, several
studies have been performed to analyze the functional metabolites of fruit pomace by
mass spectrometry (MS)-based metabolite profiling [21–23]. However, there have been
limited reports on the metabolic profile of GBP, the solid remains that are extracted from
GB industries after UHP treatment. Therefore, we used metabolite profiling based on MS
to investigate the potential of GBP.

The present study aimed (1) to investigate the relative contents of significantly different
metabolites obtained after different processing treatments of GBP, and (2) to explore the
antioxidant activity and contents of functional metabolites in solvent fractions of GBP.
Based on findings of the present study, we believe that GBP can be used as a source of
bioactive compounds and we suggest an alternative method of replacing artificial food
additives with natural compounds present in GBP.

2. Results
2.1. Comparative Evaluation of Different UHP-Treated GBP Samples Based on Metabolite Profiles

In this study, to determine the metabolite variance associated with different UHP-
treatments for GBP, comparative metabolite profiling was performed for the different
pomace samples (CON, U500, U600) using GC-TOF-MS and UHPLC-LTQ-orbitrap-MS
combined with multivariate analysis. The PCA score plot based on GC-TOF-MS and
UHPLC-LTQ-orbitrap-MS datasets showed that the different types of UHP-treatments led
to changes in metabolite distributions of GBP. Based on PCA analysis (Figure 1a), data
for CON were found to be distinct from those of the UHP-treated pomace samples (U500
and U600) along PC1 (23.30%) and PC2 (14.19%). Similarly, the PCA plot derived from
the UHPLC-LTQ-Orbitrap-MS/MS dataset showed that the metabolite profiles based on
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different UHP-treatments were separated by PC1 (18.13%) (Figure 1b). This stark separation
within the datasets between the non-treated and treated pomace samples indicated their
distinct metabolite profiles.
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Figure 1. PCA score plots of Ginseng berry pomace (GBP) obtained after different ultra-high-pressure
(UHP) processing treatments and analysis by (a) GC-TOF-MS; (b) UHPLC-LTQ-Orbitrap-MS/MS.
•: Non-UHP-treated GBP (CON), •: UHP-treated GBP at 500 MPa (U500), •: UHP-treated GBP at
600 MPa (U600).

To explore the primary metabolite profiles of the different pomace samples, all deriva-
tized sample extracts were analyzed using GC-TOF-MS. To reveal metabolites that were
discriminated according to the each of the UHP treatments, a PLS-DA model was applied
(Figure S3a). The PLS-DA model of GC-TOF-MS analysis showed similar patterns to those
obtained by the PCA score plot. The separation of each sample with R2X(cum) = 0.462,
R2Y(cum) = 0.995, and Q2

(cum) = 0.945. Each sample was separated by PLS1 (22.13%) and
PLS2(12.42%). The cross-validation results were R2Y intercept = 0.939, Q2Y intercept =
0.275, p-value = 2.0 × 10−9 (Figure S3b). A total of 35 significantly discriminant metabo-
lites, including three alcohols, five organic acids, five fatty acids, ten amino acids, and
twelve sugars and sugar alcohols, were selected for GBP based on the PLS-DA models
with variable importance in projection values (VIP value > 0.7 and p < 0.05) derived from
GC-TOF-MS (Table S3). Moreover, the relative abundance of the significantly discrimi-
nant metabolites under different UHP treatments was illustrated using box and whisker
plots (Figure 2). Among them, 12 of the primary metabolites (alanine, L-proline, GABA,
lactic acid, malonic acid, succinic acid, quinic acid, xylitol, D-sorbitol, myo-inositol, D-(+)-
turanose, glycerol) exhibited a higher relative abundance in untreated pomace samples
(CON). L-Isoleucine, phenylalanine, L-(−)-fucose, L-tyrosine, L-tryptophan, citric acid, D-
(+)-xylose, D-psicose, D-(−)-fructose, D-galactose, D-glucose, D-glucopyranose, D-maltose
monohydrate, 4-hydorxybenzoic acid, palmitic acid, linoleic acid, oleamide, stearic acid,
2-methyl-1,3-propanediol, and 1-3-propanediol were major components in both U500
and U600.
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To explore the secondary metabolites of the different pomace samples, all dried
sample extracts were characterized by UHPLC-LTQ-Orbitrap-MS/MS. To reveal different
secondary metabolites within GBP at different UHP treatments, both the VIP value above
0.7 and p-value below 0.05 of the variables were obtained from PLS-DA model (Figure S3c).
The PLS-DA score plot showed similar pattern to the PCA score plot and the separation
of each sample with R2X(cum) = 0.309, R2Y(cum) = 0.995, and Q2

(cum) = 0.918 in the GBP
samples. Each pressure treatment was separated by PLS1 (18.09%) and PLS2 (8.16%). The
results of cross-validation were represented with R2Y intercept = 0.942, Q2Y intercept =
0.106, p-value = 8.68× 10−13 (Figure S3d). A total of twenty-three significantly discriminant
secondary metabolites, including seven phenolic compounds and sixteen ginsenosides,
were selected for different GBP samples (Table S4). Among the pomace samples, most of
the secondary metabolites had a higher relative abundance in CON, except chlorogenic
acid, quercetin, ginsenoside Re, malonyl-ginsenoside Re, malonyl-ginsenoside Rb1, and
malonyl-ginsenoside Rd (Figure 3).



Molecules 2021, 26, 284 5 of 16
Molecules 2021, 26, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 3. Box and whisker plots of significantly different metabolites among GBPs obtained after different UHP processing 
treatments. (a) Phenolic compounds; (b) polar ginsenosides; (c) less polar ginsenosides. Relative contents of metabolites 
of GBPs were calculated as a relative peak area in UHPLC-LTQ-Orbitrap-MS/MS analysis. The metabolite content corre-
sponds to the relative peak area plotted in the Y-axis. (Line, mean; box, Standard error; whisker, standard deviation) The 
GBP obtained after different UHP processing treatments plotted in the X-axis. (CON, control; U500, 500MPa; U600, 
600MPa) * p-value < 0.05. 

2.2. Antioxidant Activity Assays of Different Pomace Samples 
We evaluated the antioxidant activities (ABTS, DPPH, and FRAP) and TPC of the 

extracts representing the different UHP-processing treatments. As shown in Figure S4, 
there was no significant difference between the antioxidant activities of the extracts in the 
different UHP treatments. Furthermore, the TPC showed a similar tendency to that of an-
tioxidative activities. Based on these results, we established three groups that were ob-
tained after different UHP treatments using five solvents with different polarities (Figure 4) 
to determine the functional metabolites of pomace. 

Figure 3. Box and whisker plots of significantly different metabolites among GBPs obtained after different UHP processing
treatments. (a) Phenolic compounds; (b) polar ginsenosides; (c) less polar ginsenosides. Relative contents of metabolites of
GBPs were calculated as a relative peak area in UHPLC-LTQ-Orbitrap-MS/MS analysis. The metabolite content corresponds
to the relative peak area plotted in the Y-axis. (Line, mean; box, Standard error; whisker, standard deviation) The GBP
obtained after different UHP processing treatments plotted in the X-axis. (CON, control; U500, 500 MPa; U600, 600 MPa) *
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2.2. Antioxidant Activity Assays of Different Pomace Samples

We evaluated the antioxidant activities (ABTS, DPPH, and FRAP) and TPC of the
extracts representing the different UHP-processing treatments. As shown in Figure S4,
there was no significant difference between the antioxidant activities of the extracts in the
different UHP treatments. Furthermore, the TPC showed a similar tendency to that of
antioxidative activities. Based on these results, we established three groups that were ob-
tained after different UHP treatments using five solvents with different polarities (Figure 4)
to determine the functional metabolites of pomace.

2.3. Relative Contents of Metabolites among the Solvent Fractions of GBPs

To explore the differences in the secondary metabolite profiles of the different solvent
fractions, all dried sample extracts were characterized by UHPLC-LTQ-Orbitrap-MS/MS.
Multivariate statistical analyses of the aligned datasets showed a distinct metabolomic
pattern in the PCA (Figure 5a) and PLS-DA (Figure 5b) models. Based on PCA analysis,
the patterns of the secondary metabolite profiles of the different solvent extracts were
clustered into five groups (hexane, chloroform, ethyl acetate, butanol, and water) according
to the polarity of PC1 (22.26%) and PC2 (20.71%) (Figure 5a). To reveal different secondary
metabolites within GBP at different solvent fractions, both the VIP value above 0.7 and
p-value below 0.05 of the variables obtained from PLS-DA model. Similar to the PCA
results, the PLS-DA score plot (Figure 5b) could also be readily divided into five groups
corresponding to the solvent polarity of the samples, along PLS1 (22.25%) and PLS2
(22.25%) and the separation of each samples with R2X(cum) = 0.631, R2Y(cum) = 0.991, and
Q2

(cum) = 0.981 in the GBP samples. The results of cross-validation were represented with
R2Y intercept = 0.228, Q2Y intercept = − 0.319, p-value = 2.90 × 10−29 (Figure S5).
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A total of 40 significantly discriminant metabolites, including phenolic acids, flavonoids,
lignans, fatty acids, and ginsenosides, were affected by solvent–solvent extraction (Table S5).
Among the GBP samples, the differences with respect to solvent fractions in the relative con-
tent of significantly discriminant secondary metabolites were visualized using a heatmap
(Figure 6). As shown in Figure 6, the GBP samples exhibited similarity in metabolite
contents according to each sample, including CON, U500, and U600, but there was a
difference in metabolites for each solvent fraction. Furthermore, seven phenolic acids and
three flavonoids exhibited a higher relative abundance under the ethyl acetate fraction.
The levels of two lignans and two fatty acids were higher in the chloroform fraction than
in the other solvent fractions. Additionally, among the twenty-five ginsenosides, sixteen
polar ginsenosides had a higher abundance under the ethyl acetate and butanol fractions,
whereas the levels of nine less polar ginsenosides were higher in the chloroform and ethyl
acetate fractions.
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Figure 6. Heatmap analysis in five different solvent fractions of GBP samples derived from UHPLC-LTQ-Orbitrap-MS/MS
data. The heatmap indicates the relative contents in secondary metabolites among different fractions. In this analysis,
significantly discriminant metabolites were determined (VIP > 0.7 and p < 0.05).

2.4. Analysis of Correlation between Metabolites in Solvent Fractions of GBP Extracts and Related
Biochemical Phenotypes

To compare the bioactivities of the five solvent fractions, antioxidant activity (ABTS,
DPPH, and FRAP) and TPC assays were performed. The antioxidant of five solvent frac-
tions was represented as the standard of Trolox equivalent antioxidant activity (Figure 7).
The differences among the groups obtained after the three different UHP treatments were
not significantly different, and the antioxidant activities of chloroform and ethyl acetate
were higher than those of the other fractions.
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Additionally, we performed a correlation analysis to evaluate the statistical rela-
tionship between 40 significantly discriminant metabolites and the observed tendencies
of the related phenotypes, namely, ABTS, DPPH, FRAP, and TPC (Figure 8). Pearson’s
correlation coefficients were calculated for the relative contents of the 40 significantly
discriminant metabolites (Table S5) and their antioxidant activities. As shown in Figure 8,
30 metabolites exhibited positive correlations with the corresponding phenotypes, whereas
the remaining 10 showed negative correlations. Interestingly, phenolic compounds (pheno-
lic acid, flavonoid, lignan), fatty acids, less polar ginsenosides, and some polar ginsenosides
showed significantly positive correlations with antioxidant activity. However, some polar
ginsenosides showed significantly negative correlations with antioxidant activity.
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3. Discussion

In this study, we demonstrated the relative contents of significantly different metabo-
lites in GBP obtained after different UHP treatments. Additionally, we proved that the
relative levels of metabolites in each solvent fraction of GBP were different and showed the
correlation between significantly different metabolites and antioxidant activities. These
findings suggest the potential of GBP for utilization in various industries.

Figures 2 and 3 show the relative contents of metabolites in different GBPs, which
are produced after UHP treatment and water extraction. The results revealed that UHP
treatment altered the contents of some metabolites in GBPs [24,25]. Previously, Lee et al. [4]
reported that the relative contents of the metabolites in GB were elevated by UHP treatment.
Intriguingly, our results showed that CON contained higher levels of metabolites, especially
phenolic compounds. After UHP treatment, prior to water extraction, levels of phenolic
compounds were significantly improved compared with CON. One possible reason for
this improvement is that UHP processing alters membrane permeability and disrupts cell
walls, which, in turn, improves their extractability [26]. Furthermore, Zuorro et al. [27]
reported that phenolic compounds were more soluble in organic solvents than deionized
water. Therefore, when we extracted GBP using methanol, phenolic compounds that were
less dissolved in water were extracted abundantly in the methanol extract.

Figure S4 shows the antioxidant activities of the different GBPs. The results revealed
that the antioxidant activity of CON, which has high phenolic compound levels, did not
show any significant difference compared to UHP-treated pomace samples. These results
imply that the antioxidant activities of GBPs are influenced by various factors, including
the level of phenolic compounds. Phenolic compounds are one of the most popular groups
of phytochemicals, including phenolic acids, flavonoids, and lignans [28]. Previous studies
have reported that the antioxidant activities of phenolic compounds are controlled by the
quantity and position of their hydroxyl groups [29]. In addition to phenolics, ginsenosides,
the major bioactive compounds of GB, also exhibit antioxidant activities [30]. Based on
these findings, we suggest that the antioxidant activities of GBP are controlled by their
phenolic compounds and ginsenosides. To determine the additional metabolites that
affected the biological activities of GBP, we performed solvent–solvent extraction using
various solvents, including hexane, chloroform, ethyl acetate, and butanol.

The solvent extraction method is commonly used for the extraction of metabolites
from different medicinal plants and herbs. Both extraction yield and the biological activity
of extracts are remarkably dependent on the type of solvent [31]. Therefore, a comparative
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study was performed for assessment of the ability of solvents to increase the utility of GBP
as a biomaterial. For this purpose, solvent–solvent extraction was performed using various
solvents (hexane, chloroform, ethyl acetate, and butanol) with different polarities. This
process splits the higher quantities of bioactive compounds from the complex mixtures,
which could be applied to separate the target compounds. This is an important step in
bio-guided assays of new phytochemical ingredients [32]. Chua et al. [33] reported that
highly polar substances, such as organic acids, polysaccharides, and proteins, might remain
in the aqueous phase, while the other less polar compounds, including terpenoids, could
be segregated into the organic phase. More specifically, the ethyl acetate fraction had the
highest levels of saponins, which include ginsenosides. Additionally, few studies have
reported that polyphenols and flavonoids, which are correlated with antioxidant and anti-
inflammatory activities, are usually detected in ethyl acetate fractions [34]. Furthermore,
Theodoridies et al. [35] reported that fatty acids and their esters were mostly observed in
the chloroform fraction of grapes.

Interestingly, in GBP, we observed a positive correlation between antioxidant activity
and ginsenosides, specifically less polar ginsenosides. Normally, ginsenosides are amphi-
pathic, with four hydrophobic steroid-like ring structures and hydrophilic sugar moieties.
The difference in the structure of ginsenosides is due to the position and type of sugar
moieties. Furthermore, ginsenoside antioxidant activity is primarily affected by the type,
linkage, and position of sugar moieties in ginsenosides [36]. Hydroxyl groups on sugar
moieties can contribute to the scavenging activities of ginsenosides [37]. Based on polarity,
ginsenosides are categorized into two groups, namely high- and low-polarity ginsenosides.
Low-polarity ginsenosides are formed by the deglycosylation of major ginsenosides, such
as ginsenoside Rb1, Rb2, Rc, Rd, and Re [38]. Since the sugar moieties in ginsenosides
are responsible for their antioxidant activity, deglycosylation, which transforms major gin-
senosides into low-polarity ginsenosides, leads to the elevation of ginsenoside antioxidant
activity. Previously, several studies have reported that less polar ginsenosides have better
bioactivity than the major ginsenosides [39]. In agreement with the findings illustrated in
Figure 8, Yao et al. [40] have stated that less polar ginsenosides demonstrate a significant
positive correlation with antioxidant activity.

In this study, both ethyl acetate and chloroform fractions were useful for the extraction
of functional metabolites that could influence antioxidant activity. Furthermore, due
to its low boiling point and toxicity, the ethyl acetate fraction can safely be used in the
food and cosmetic industry for the extraction of metabolites. Moreover, ethyl acetate
is inexpensive, which is good from an economical viewpoint [41]. Chloroform is non-
inflammable and is used for extraction of the active constituents from shrubs and other
related plant species [42].

In this study, we provide the in vitro antioxidant activity and a correlation with
the metabolites of GBP. However, the in vitro antioxidant capacity of GBP is only an
approximate reflection of their in vivo effect due to the differences in bioavailability within
the digestive tract and the metabolism of compounds [43]. Further, a limited number of
studies demonstrated the in vivo antioxidant activity of metabolites extracted from ginseng
berry. Martins et al. [44] analyzed the in vivo antioxidant activity of phenolic compounds
(p-coumaric acid, gentisic acid, protocatechuic acid, caffeic acid, kaempferol) and these
results proved that the ginseng berry metabolites have a positive correlation with different
antioxidant activities. Additional, syringaresinol, which is only found in GBs [7], was
reported the in vivo antioxidant activity in agreement with our findings [45]. Further, some
studies reported that the in vivo antioxidant activity of ginsenoside. As shown in Figure 8,
ginsenosides Rg1, which are positively correlated with bioactivity, protect cardiomyocyte
from hypoxia/reoxygenation oxidative injury [46]. Ginsenoside Rh2 also has a positive
correlation with bioactivity (Figure 8). Zeng et al. [47] reported that the ginsenoside Rh2
has an antioxidant effect in vivo and restores the balance of the antioxidant defense system
by suppressing oxidative stress. Through this, we prove that some metabolites still have
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an antioxidant activity in vivo. This research supports the potential of GBP as a beneficial
biomaterial for human.

4. Materials and Methods
4.1. Chemicals and Reagents

HPLC-grade solvents, including water, methanol, hexane, chloroform, ethyl acetate,
and butanol, were purchased from Fisher Scientific (Pittsburgh, PA, USA). All standard
compounds and analytical grade reagents used in this study were obtained from Sigma
Chemical Co. (St. Louis, MO, USA).

4.2. Materials

Raw samples of GB belong to the Araliaceae family and consist of the berry skin and
pulp without seeds. GBP was obtained as a by-product after the water extraction process of
the GB raw material. Prior to water extraction, dispersion was subjected to UHP treatment
at different pressure levels using pilot-scale HHP (BaoTou Kefa Co., Ltd., BaoTou, China).
Following UHP treatment, the dispersion was mixed with distilled water, filtered, and the
precipitate was collected. The resultant precipitate (pomace) was freeze-dried, powdered
using a mortar and pestle, and stored at −20 ◦C for further analysis. The UHP-untreated
pomace sample was obtained only after the water extraction process and was used as a
control (CON). According to the pressure levels, the GBP samples were labeled U500 and
U600, respectively. U500 was the first sample that was subjected to two repeated treatments
of UHP at 500 MPa/5 L, and subsequently, the applied pressure was increased at a rate of
2 MPa/s to 500 MPa, and the decompression time was approximately 10 s. Tap water was
used as a pressure transmission fluid. The second sample, U600, was obtained after using
a single UHP treatment at 600 MPa/5 L.

4.3. Sample Preparation

Each sample (100 mg) was extracted with methanol (1 mL) using the MM400 mixer
mill (Retsch GmbH, Haan, Germany) at a frequency of 30 s−1 for 10 min, followed by
sonication for 5 min (Hettich Zentrifugen Universal 320, Tuttlingen, Germany). After
sonication, the sample dispersion was centrifuged at 17,000 rpm for 10 min at 4 ◦C, and
the resultant supernatants were filtered through a 0.2-µm PTFE filter (Chromdisc, Daegu,
Korea). Then, the soluble filtrates were dried using a speed-vacuum concentrator (Biotron,
Seoul, Korea) and stored at −20 ◦C for further analysis. The samples were analyzed using
three biological replicates for each sample. The quality control (QC) samples were made by
using the pooled mixture from 10 µL of each sample (biological replicate). The analytical
samples were analyzed in blocks of 10 runs for followed by an intermittent QC analysis to
ensure the data quality and robustness of the method.

4.4. GC-TOF-MS Analysis

Prior to GC-TOF-MS analysis, each GBP sample extract was subjected to two deriva-
tization reactions, following a method described by Lee et al. [4]. First, oximation was
performed by adding 50 µL of methoxyamine hydrochloride in pyridine (20 mg/mL) to
each dried sample and by incubating the reaction at 30 ◦C for 90 min. Next, silylation
was performed by adding 50 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide and by
incubating the reaction at 37 ◦C for 30 min. The derivatized samples were filtered using
the Milex GP 0.22-µm filter before analysis, and the final concentration of the derivatized
sample was 20 mg/mL.

GC-TOF-MS analysis was performed using the Agilent 7890A GC system (Agilent
Technologies, Palo Alto, CA, USA) equipped with the Agilent 7693 autosampler and
Pegasus high-throughput (HT)_TOF-MS program (Leco Corp., St. Joseph, MI, USA). The
metabolites were separated using an Rtx-5MS column (30 m × 0.25 mm; 0.25 µm; Restek
Corp. Bellefonte, PA, USA) and the operational parameters were adapted from a study
reported by Lee et al. [48]. The chromatograms of samples are shown in Figure S1.
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4.5. UHPLC-LTQ-Orbitrap-MS/MS Analysis

For UHPLC-LTQ-Orbitrap-MS/MS analysis, each dried sample (10 mg/mL) was
dissolved in 100% methanol and used. UHPLC-LTQ-Orbitrap-MS/MS analysis was per-
formed using a UHPLC system equipped with the Vanquish binary pump H system
(Thermo Fisher Scientific, Waltham, MA, USA) coupled with an auto-sampler and col-
umn compartment. The chromatographic separation was performed on the Phenomenex
KINETEX® C18 Column (100 × 2.1 mm, 1.7 µm; Torrance, CA, USA) and the operational
parameters were adapted from a study reported by Lee et al. [48]. The chromatograms of
samples are shown in Figure S2.

4.6. Solvent–Solvent Extraction

The solvent–solvent extraction process was performed following the method described
by Lim et al. [49] with minor modifications. Initially, the dried methanolic extract (200 mg)
of pomace was redissolved in 8 mL of deionized water. For the aqueous extract, 16 mL
of organic solvents, including hexane, chloroform, ethyl acetate, butanol, and deionized
water, were added serially (Figure 4). After the addition of organic solvents, dispersion was
filtered, and the supernatant in different solvents was recovered. Finally, the supernatant
in different solvents was evaporated using a speed-vacuum concentrator (Biotron, Seoul,
Korea). The extract yield of the solvent fractions is shown in Table S1. After this process, we
used the same LC-MS method for analysis as described above (2.5 mg/mL) and compared
the significantly different metabolites with solvent fractions.

4.7. Data Processing and Multivariate Statistical Analysis

The raw data files from GC-TOF-MS and UHPLC-LTQ-Orbitrap-MS/MS were con-
verted into a computable document form (.cdf) format using the LECO Chroma TOF soft-
ware v.4.44 (Leco Co., USA) and Thermo Xcalibur v.2.2 (Thermo Fisher Scientific, San Jose,
CA, USA), respectively. After conversion, the software MetAlign (http://www.metalign.nl)
was used to preprocess the netCDF data to obtain baseline correction, peak alignment,
peak detection, accurate masses, and normalized peak intensities [50]. The parameters of
MetAlign were set according to the specific scaling requirements and chromatographic and
mass spectrometric conditions used in the experiments (Table S2). Subsequent data, which
contained the sample name and peak area information as variables, were transferred to an
Excel spreadsheet, and multivariate statistical analyses were executed using the SIMCA-P+
12.0 software (Umetrics, Umea, Sweden). Furthermore, both unsupervised principal com-
ponent analysis (PCA) and supervised partial least-square discriminant analysis (PLS-DA)
were performed to compare the different metabolites of the samples. To decrease the
sample size and improve data interpretability by selecting influential variables, PLS-DA
was used. Based on this, the significant discriminant metabolites were selected uniformly
at VIP > 0.7 and p-value < 0.05. In PLS-DA model, the R2X and R2Y represent a fraction of
the variance of the X and Y matrix variables explained by the model. Q2 represented the
predictive capacity of the model. R2X(cum) and R2Y(cum) is the cumulative fraction of the
sum of squares of X and Y, explained including the selected component. Q2

(cum) represent
cumulative predicted variation in the Y matrix. Cross-validation analysis of PLS-DA results
derived from GC-TOF-MS and UHPLC-LTQ-Orbitrap-MS/MS analyses were summarized
in Figure S3 and S5 [51]. This analysis indicates the prediction accuracy, fitness, and the
quality of the model. The values of R2Y and Q2 close to 1.0 were indicative of a valid
model with a high robustness. The selected metabolites were identified by comparing their
retention times and mass fragment patterns with standard compounds, in-house library
data, references, and various databases, such as the National Institutes of Standard and
Technology (NIST) Library (v.2.0, 2011, FairCom, Gaithersburg, MD, USA), the Dictionary
of Natural Products (v.16:2, 2007, Chapman and Hall, USA), Wiley 8, and the Human
Metabolome Database (HMDB; http://www.hmdb.ca/).

Box-whisker plots were performed using the relative peak area of metabolites by
STATISTICA (version 7.0, StatSoft Inc., Tulsa, OK, USA). For the bioactivity assays, differ-

http://www.metalign.nl
http://www.hmdb.ca/
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ences were tested by analysis of variance and Duncan’s multiple range tests using PASW
Statistics 18 (SPSS Inc, Chicago, IL, USA). Correlations between metabolites and bioactivity
assays were calculated by Pearson’s correlation coefficient test using PASW Statistics 18.
The p-values for different metabolite-based clusters were determined by one-way ANOVA
using STATISTICA.

4.8. Antioxidant Activity Analysis

ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ferric reducing antioxi-
dant power (FRAP), and DPPH (2,2-diphenyl-1-picryl-hydrazyl) radical scavenging assays
were performed to measure the in vitro antioxidant activities of the different GBP samples
(2.5 mg mL−1 methanol), following the procedure reported by Lee et al. [4].

4.9. Total Phenolic Content Assay

The total phenolic content (TPC) assay of different GBP samples was performed in
two steps. First, 20 µL of the GBP sample was added to 100 µL of 0.2 N Folin–Ciocalteu’s
phenol reagent, followed by incubation for 5 min at room temperature in the dark. Next,
80 µL of 7.5% Na2CO3 was added to the samples, and the resulting reaction mixtures were
incubated for 60 min. Finally, the absorbance of the samples was measured at 750 nm
using a microplate reader (Spectronic Genesys 6). The assay results were expressed in
terms of the gallic acid equivalent of the activity (µg mL−1), and as the mean value of three
analytical replicates.

5. Conclusions

In the present study, we used metabolomic approaches to compare the remaining
metabolites in GBP after UHP treatment. Additionally, we performed solvent–solvent
extractions to determine the antioxidant activities and diverse metabolites of GBP using
further fractionation by various solvents. From these results, we provide the potential
of GBP as a beneficial antioxidant. Instead of ginseng berry, pomace can replace it in
cosmetic or food industries, and then it is good from an economical viewpoint compared
with GB. Additionally, these results demonstrate that UHP treatment, followed by solvent
extraction, is useful for the isolation of desired metabolites and advantageous for industrial
applications. Through this, we believe that GBP is not a “useless by-product” anymore
but can be used as a beneficial biomaterial. If the industry re-uses it as a functional
ingredient, they can also reduce the environmental issues which are caused by discarded by-
product. However, a limitation of the present study is that the quantification of functional
metabolites in GBP has not been performed to date. Therefore, it is necessary to evaluate
the contents of functional components for further applications.

Supplementary Materials: The following are available online, Table S1: The yield of fractions
obtained using various solvents for GBP. Figure S1: The GC-TOF-MS chromatogram of GBP obtained
after different UHP processing treatments (a) CON, control; (b) U500, 500 MPa; (c) U600, 600 MPa
is shown. Figure S2: The UHPLC-LTQ-Orbitrap-MS/MS chromatogram of GBP obtained after
different UHP processing treatments (a) CON, control; (b) U500, 500 MPa; (c) U600, 600 MPa
is shown. Table S2: MetAlign settings used to automatically process the experimental dataset.
Figure S3: PLS-DA score plots and validation plots for GBP obtained after different UHP processing
treatments. (a) PLS-DA score plots (GC-TOF-MS); (b) validation plot (GC-TOF-MS); (c) PLS-DA
score plot (UHPLC-LTQ-Orbitrap-MS/MS); (d) validation plot (UHPLC-LTQ-Orbitrap-MS/MS).
Table S3: Differential metabolites in the GBP obtained after different UHP processing treatments and
GC-TOF MS analyses. Table S4: Differential metabolites in the GBP obtained after different UHP
processing treatments and UHPLC-LTQ-Orbitrap-MS/MS analyses. Figure S4: Antioxidant activity
assay (a) ABTS; (b) FRAP; (c) DPPH; (d) total phenolic content (TPC) of GBP obtained after different
UHP processing treatments. Figure S5: Validation plots of different solvent fractions of GBP analyzed
by UHPLC-LTQ-Orbitrap-MS/MS. Table S5: Differential metabolites in different solvent fractions of
GBP obtained after UHPLC-LTQ-Orbitrap-MS/MS analyses.
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