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Objectives: To develop a radiomics algorithm, improving the performance of detecting recurrence, based on posttreat-
ment CT images within one month and at suspicious time during follow-up.
Materials and methods: A total of 114 patients with 228 images were randomly split (7:3) into training and validation
cohort. Radiomics algorithm was trained using machine learning, based on difference-in-difference (DD) features ex-
tracted from tumor and liver regions of interest on posttreatment CTs within onemonth after resection or ablation and
when suspected recurrent lesion was observed but cannot be confirmed as HCC during follow-up. The performance
was evaluated by area under the receiver operating characteristic curve (AUC) and was compared among radiomics
algorithm, change of alpha-fetoprotein (AFP) and combined model of both. Five-folded cross validation (CV) was
used to present the training error.
Results: A radiomics algorithm was established by 34 DD features selected by random forest and multivariable logistic
models and showed a better AUC than that of change of AFP (0.89 [95% CI: 0.78, 1.00] vs 0.63 [95% CI: 0.42, 0.84],
P= .04) and similar with the combined model in detecting recurrence in the validation set. Five-folded CV error in the
validation cohort was 21% for the algorithm and 26% for the changes of AFP.
Conclusions: The algorithm integrated radiomic features of posttreatment CT showed superior performance to that of con-
ventional AFP and may act as a potential marker in the early detecting recurrence of HCC.
Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancers
and the third leading cause of cancer-related mortality worldwide [1]. Sur-
gical resection and ablation arewidely considered as the important curative
treatments for HCC [1]. However, over 70%of patients suffered from recur-
rencewithin 5 years after curative resection or ablation [2]. Early detection
of recurrent HCC could make curative treatment available due to early
stage of the recurrent carcinoma [3].
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Currently, the surveillance after resection or ablation mainly depended
on serological test and imaging examination. Serum alpha-fetoprotein
(AFP) was one of the most commonmethod for surveillance. However, var-
iation of its cut-off value and low accuracy restricted the application of AFP
in the follow-up examination [4,5]. Although regular imaging examination
includes ultrasound, computed tomography (CT) and magnetic resonance
imaging (MRI), CTwas still the most commonly used in the detection of re-
current HCC due to its high sensitivity, worldwide availability and easy in-
terpretability for clinicians [6–9]. However, diagnostic performance of CT
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for suspicious recurrence with small size or atypical image pattern was
poor, leading tomore frequent follow-up or invasive biopsy. It was difficult
to confirm suspicious recurrence by eyes even for experienced radiologists.
A prospective study showed that the accuracy of diagnosing recurrent HCC
less than 1 cm after ablation only reached 72% [8].

Invisible changes existed in CT images of suspicious recurrence, which
had potential to becomemarkers of recurrence. Radiomics has been a rapidly
growing discipline based on quantitative image analysis through computer al-
gorithm, which can objectively extract far more features than manual extrac-
tion [10]. It has been used in the prediction of therapeutic response, survival
and genetic features of tumors [11–13]. In addition, Segal et al. found that im-
aging features were associated with genetic features [14]. Thus, we hypothe-
sized that radiomics features on CT images after resection or ablation could
reflect biological behavior of tumor and might improve the performance of
detection of recurrent HCC by detecting subtle imaging changes not visible
for a radiologist. In this study, we aimed to identify potential radiomics fea-
tures associated with recurrence of HCC patients after surgical resection or
ablation by collecting a series of follow-up CT images to improve perfor-
mance of detecting recurrence, therebymaking earlier intervention available.

Materials and methods

Study design

This retrospective cohort study was approved by the institutional ethic
review board of Sun Yat-sen University Cancer Center (Approval Number:
GZR2019–153) in accordance with the Declaration of Helsinki. The re-
quirement for informed consent was waived because of the retrospective
nature of this study.
Fig. 1. Flow diagram of patient selection. CT1, CT images at time point 1 which was with
suspected recurrence lesion was found during regular follow-up.
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Study population

We reviewed all patientswithHCCwho underwent surgical resection or
ablation in a single center from January 2009 to April 2018. The inclusion
criteria were as follows: (1) underwent resection or ablation; (2) pathologic
diagnosis as primary HCC; (3) underwent CT examination within one
month after resection or ablation and suspected recurrent lesion detected
by an experienced radiologist could be observed on CT images before con-
firmed recurrence. Suspected recurrent lesion was categorized as LR-2 or
LR-3 according to the Liver Imaging Reporting and Data System (LI-
RADS) [15]. Fig. 1 showed the flow diagram of patient selection. CT images
included in the study were collected on two time points: (1) time point 1:
within one month after resection or ablation (CT1); (2) time point 2:
when suspected recurrent lesion was observed but cannot be confirmed
asHCC during follow-up (CT2). Suspected lesionswere found and reviewed
retrospectively by a radiologist (JXS., with more than 20 years of experi-
ence in abdominal radiology), and confirmed by another radiologist (STF,
withmore than 20 years of experience in abdominal radiology). The radiol-
ogists were blinded when evaluating the images. Recurrence was finally
confirmed by MRI (LR4/5) and a continuous follow-up imaging examina-
tion. Patients included were randomly split (7:3) into training and valida-
tion cohort. The clinical data were collected prospectively from the
database of HCC.

CT image acquisition

Hepatic CT was performed with a 64-, 80- or 320-detector row scanner
CT machine (Aquilion TSX-101A, Toshiba; iCT256, Philips; Discovery
HD750, GE Healthcare). The scanning parameters were routinely set
in one month after surgery. CT2, CT images at time point 2 which was the time that
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regardless of the type of devices as follows: tube voltage, 120 kV; tube cur-
rent, 240 mA; pitch factor, 1.0; slice thickness, 1 mm; and slice interval,
1 mm. Contrast-enhanced CT images were acquired after the injection of
1.0 ml/kg contrast agent (Ultravist, Bayer, Germany) into the antecubital
vein at a rate of 2.0–3.0 ml/s followed by an immediate 20 ml saline
flush delivered using a power injector (P3T abdomen module, Medrad
Inc.). Hepatic arterial and portal venous phases were acquired at 27 s and
57 s after contrast agent injection, respectively. The slice thickness of the re-
constructed arterial and portal venous phase images was 2 mm.

Region of interest identification, segmentation and radiomics features extraction

Portal vein phase of CT images were used. All regions of interest (ROIs)
were delineated manually by two clinicians (Q.F.C. and Z.H.C., with more
than 5 years of experience in abdominal radiology) under the guidance of
J.X.S. using ITK-Snap software (open source software; www.itk-snap.org),
and in the event of a disagreement, a consensus was reached by discussion.
First, ROI was delineated around the liver lesion on the largest cross-
sectional layer as indicated in the portal vein phase of CT2. Then, ROI delin-
eated on CT2 was transferred to CT1 at the same location (Fig. 2a and Sup-
plementary Fig. 1). To ensure that the area covered in CT1 was really the
same area, we not only ensured that the tumor ROI in CT1 have the same
number of pixels and make the shape as identical as possible but also eval-
uated the lesion position in CT2 through the blood vessels in the liver and
delineated the tumor ROI in CT1 as far as possible. The CT image features
of all ROIs were extracted and analyzed by the A.K. software (Analysis-
Kit, GE healthcare) [16]. A total of 1044 radiomics features were extracted
(Fig. 2b), including the following six categories (Supplementary Table 1):
Histogram parameters, Texture parameters, Form factor parameters, Gray
level co-occurrence matrix, Gray level run-length matrix, Gray level size
zone matrix.

Difference-in-difference radiomics feature definition

Radiomics features extracted from tumor ROIs and liver ROIs on CT1
were defined tumor radiomics features at time point 1 and normal liver
radiomics features at time point 1, respectively. Similarly, radiomics fea-
tures extracted from tumor ROIs and liver ROIs on CT2 were defined
tumor radiomics features at time point 2 and liver radiomics features at
time point 2, respectively. The change of radiomics feature was defined
as tumor radiomics feature at time point 2 minus tumor radiomics feature
Fig. 2.Workflow of radiomics analysis in the study. (a) CT images acquisition and segm
delineated around the liver lesion on the largest cross-sectional layer as indicated in the
Radiomic featureswere extracted by an in-house software. (c) Features selection by rando
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at time point 1. Considering the influence of background liver on tumori-
genesis, we included normal liver radiomics features for analysis.

Difference-in-difference (DD) features were defined as difference for
tumor minus difference for liver. The method of difference in difference
was used to decrease the impact of different time points and locations of
ROI on features [17]. Difference for tumor was tumor radiomics feature
at time point 2 when suspected recurrent lesion was observed but cannot
be confirmed as HCCminus tumor radiomics feature at time point 1 within
onemonth after surgery, and difference for liverwas liver radiomics feature
at time point 2 minus liver radiomics feature at time point 1.

Statistical analysis

Continuous variables were presented as the mean± standard deviation
(SD) or median and interquartile change (IQR). Continuous variables be-
tween training and validation cohort, recurrence and no recurrence group
were compared using Student's t-test orWilcoxon rank sum test. Categorical
variableswere described as frequency (percentage) andwere analyzedwith
chi-square test or Fisher exact test as appropriate. The inter-observer and
intra-observer agreement for extracting radiomics features was evaluated
by the intraclass correlation coefficient (ICC), and was graded as high con-
sistency (ICC≥ 0.8), middle (0.5–0.79), or low (<0.5).

Random forest algorithmwas used to select important DD features asso-
ciated with recurrence in the training cohort. Variable selection was not
based on one random forest training but 100 iterations of random forest
using the bootstrap method. Frequencies of top 100 important features
per iteration were counted and ranked decreasingly. Subsequently, the
top 40 DD features were selected initially, and six features were excluded
to avoid overfitting according to model performance and 34 features
were finally selected and combined into a radiomics algorithm (Fig. 2c
and Supplementary Table 2). Logistic regression analysis was used to per-
form as binary outcome classifier for recurrence status instead of estimating
the probability of recurrence in 1-, 3-, or 5-year follow-up time. The perfor-
mance of the prediction model was evaluated with the area under the re-
ceiver operating characteristic curve (AUC) and its 95% confidence
interval (CI) basing on the Youden index, and the accuracy, sensitivity,
specificity, negative predictive value (NPV) and positive predictive value
(PPV) of the optimal cutoff value were also calculated.

Internal evaluation in the training cohort was completed by 5-fold cross
validation (CV) to determine the impact of different “training” and “valida-
tion” set sizes on prediction performance. External evaluationwas performed
entation. The images of CT2 presented before that of CT1 was because ROI was first
portal vein phase of CT2 and was then transferred to CT1 at the same location. (b)
m forest algorithm and logistic regressionmodel. (d) Predictivemodel construction.

http://www.itk-snap.org
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in the validation cohort. DeLong's test for two correlated ROC curveswas per-
formed to compare AUC of two logistic models (Fig. 2d). A two-sided P-value
less than 0.05 was considered statistically significant. All analyses were per-
formed by using R version 3.5.0.

Results

Baseline characteristics

In total, 250 patients fulfilling the inclusion criteria were considered,
whereas the following patients were excluded from the study: receiving
other anti-tumor therapies before resection or ablation (n=9), undergoing
other anti-tumor therapies during the follow-up (n=39),withmarginal re-
currence (n=24), with residual lesions after resection or ablation (n=52)
or incomplete imaging information (n=12). Finally, 114 patients (228 im-
ages; mean age, 51 years ±12; 103 men vs 11 women) with 70.2% recur-
rence were enrolled for the analysis, including 79 patients in the training
cohort and 35 patients in the validation cohort (Fig. 1). The median time
to recurrence of all the patients is 7.7months. The negative lesions included
transient hepatic perfusion disorder (13/34), regenerative nodule (4/34)
and focal fatty liver (6/34). Other lesions (11/34) are unclassified in CT
scans but confirmed by MRI or continuous follow-up. The baseline clinical
characteristics of both cohorts were shown in Table 1. Baseline characteris-
tics, except for higher serum AFP level in the training cohort at two time
points, were not significantly different between the two cohorts. In the
training cohort, higher serum AFP level at time point 2 (P < .001) were
found in recurrent patients than those in non-recurrence group (Supple-
mentary Table 3). In the validation cohort, all clinical characteristics were
Table 1
Baseline clinical characteristics of patients in the training and validation cohort.

Variables Total Training
cohort

Validation
cohort

P
value

Age (years), mean ± SD 51 ± 12 50 ± 12 53 ± 12 0.23
Sex (man/women) 103/11 73/6 30/5 0.31
BMI 23.3 ± 3.4 23.4 ± 3.5 23.2 ± 3.2 0.98
HCV 2 (1.8) 1(1.3) 1(2.9) 0.52
Fatty liver 0(0%) 0(0%) 0(0%) –
Drinking 19(16.7%) 12(15.2%) 7(20.0%) 0.53
Tumor size (cm)a 1.3 (1.1, 1.5) 1.3 (1.1, 1.5) 1.3 (1.0, 1.4) 0.30
HBsAg, n (%) 0.06

Unknown 2 (1.8) 0 (0.0) 2 (5.7)
Negative 11 (9.6) 6 (7.6) 5 (14.3)
Positive 101 (88.6) 73 (92.4) 28 (80.0)

Primary treatment, n (%) 1.00
Surgical resection 102 (89.5) 71 (89.9) 31 (88.6)
Ablation 12 (10.5) 8 (10.1) 4 (11.4)

Child-Pugh class, n (%) 0.55
A 111 (97.4) 76 (96.2) 35 (100.0)
B 3 (2.6) 3 (3.8) 0 (0.0)

BCLC stage, n (%) 0.051
0 11 (9.6) 4 (5.1) 7 (20.0)
A 89 (78.1) 63 (79.7) 26 (74.3)
B 4 (3.5) 3 (3.8) 1 (2.9)
C 10 (8.8) 9 (11.4) 1 (2.9)

Baseline AFP (ug/L) 49.7 (6.0,666.1) 92.4 (8.22598) 6.7 (2.6287.5) 0.002
≤20 49(43.0%) 28(35.4%) 21(60.0%) 0.015
>20 65(57.0%) 51(64.6%) 14(40.0%)

AFP 1 (ug/L)a 7.2 (3.6, 18.3) 9.2 (4.6, 21.7) 4.4 (2.5, 10.0) 0.001
AFP 2 (ug/L)a 5.1 (2.8, 16.0) 6.6 (2.9, 43.4) 3.7 (2.1, 7.5) 0.01
Change of AFPa,b 0.0 (−0.0, 0.0) 0.0 (−0.1, 0.1) −0.0 (−0.0, 0.0) 0.45
Time to recurrence
(months)

7.7 (3.8,20.8) 8.8 (3.4,22.1) 7.2 (4.4,17.6) 0.89

Recurrence, n (%) 0.49
Yes 80 (70.2) 57 (72.2) 23 (65.7)
No 34 (29.8) 22 (27.8) 12 (34.3)

Abbreviations: AFP 1, alpha-fetoprotein at time point 1. AFP 2, alpha-fetoprotein at
time point 2. BCLC, Barcelona Clinic Liver Cancer. HBsAg, hepatitis B surface
antigen.

a Date are presented as median (inter-quartile range, IQR).
b Change of AFP was defined as AFP 2 minus AFP 1.
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found no significant differences between the two groups in terms of recur-
rence status (Supplementary Table 4).

Inter-observer and intra-observer agreement of feature extraction

The inter-observer ICC was ≥0.8, 0.5–0.79, <0.5 for 88.1%, 10.5%
and 1.3% of the features, respectively. The intra-observer ICC was ≥0.8,
0.5–0.79, <0.5 for 82.9%, 15.8% and 1.2% of the features, respectively.

Development of radiomics model

A total of 1044 DD radiomics features were decreased to 34 potential
risk predictors associated with recurrence by random forest in the training
cohort (Fig. 3a). The heatmap which depicted correlation coefficients ma-
trix of 34 selected DD radiomics features was shown in Fig. 3b. Correlation
coefficient matrix showed these 34 features could be mainly clustered into
three categories with positive correlation, indicating suitable for establish-
ing a radiomics model.

Validation of radiomics model

The radiomics model which constructed by linearly combining the 34 DD
features using multivariable logistic regression analysis, and yielded an AUC
of 0.97 (95%CI: 0.94, 1.00) in the training cohort with a five-folded CV error
of 21% and 0.89 (95%CI: 0.79, 1.00) in the validation cohort, demonstrating
the good predictive performance of themodel. In addition, the accuracy, sen-
sitivity, specificity, NPV and PPV of the model in detecting recurrence were
0.86, 0.91, 0.75, 0.82and 0.88 in the validation cohort (Table 2).

Association of Radiomics Features and Change of AFP Level with
Recurrence.

In the training cohort, the radiomics algorithm obtained from amultivar-
iable logistic regression model was significantly associated with HCC recur-
rence (OR = 2.7; 95% CI: 1.5, 6.3; P= .02), suggesting that this radiomics
algorithm had great potential to detect recurrence. However, no significant
association was found between the changes of serum AFP level with recur-
rence (OR = 1.00; 95% CI: 0.97, 1.04; P = .88). In the combined model,
the radiomics algorithm showed significant association with recurrence
with an OR of 2.7 (95% CI: 1.5, 6.4; P= .01) and the changes of AFP level
was still not statistically significant (OR=0.99; 95%CI: 0.93, 1.03; P=.72).

Comparison of Predictive Performance of Radiomics, AFP and Com-
bined Model.

The AUC, accuracy, sensitivity, specificity, NPV and PPV of the changes
of serum AFP level in predicting recurrence were also calculated in the
training and validation cohort, as shown in Table 2. Subsequently, a com-
bined model which integrated the 34 DD radiomics features with the
changes of serum AFP level was developed to predict recurrence in the
two cohorts, and found that it yielded an AUC, accuracy, sensitivity, speci-
ficity, NPV and PPV of 0.97 (95%CI: 0.94, 1.00), 94%, 93%, 95%, 84% and
98% in the training cohort and 0.89 (95% CI: 0.78, 1.00), 86%, 91%, 75%,
82% and 88% in the validation cohort with a five-folded CV error of 14%
(Table 2). As shown in Table 2, the predictive performance of the radiomics
algorithm, the changes of AFP level and combined model for HCC recur-
rence were compared in the training and validation cohort. DeLong's test
for two correlated ROC curves showed that the AUCs of the radiomics algo-
rithmwere both significantly larger than that of the changes of AFP level in
the training cohort (0.97 vs 0.77, Fig. 4a) and the validation cohort (0.89 vs
0.63, P= .04, Fig. 4b), and demonstrated a higher predicting performance
in detecting recurrence over the changes of AFP level alone. Furthermore,
when combining the change of AFP and radiomics algorithm, the AUCs
had no significant increase compared with the radiomics algorithm alone
in both cohorts (Fig. 4).

Discussion

In the present study, we established a radiomics algorithm based on the
change of radiomic features to detect recurrence, and yielded an area under



Fig. 3. Radiomics feature selection and radiomics heatmap. (a) Random forest algorithm was used to find the most important variables using 100 iteration. The number of
trees used for the random forest were 100 and the number of variables tested at each node were five. The top 40 difference-in-difference features were selected, and six
features were excluded to avoid overfitting according to model performance and 34 features were finally selected and combined into a radiomics signature. (b) The
heatmap depicted correlation coefficients matrix of 34 selected difference-in-difference radiomics features in the training cohort. Unsupervised clustering analysis was
used. Red color was proportional to the positive correlation, blue was negative correlation, and yellow was not correlated with each other. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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the receiver operating characteristic curve of 0.97 and 0.89 in the training
and validation cohort respectively. We concluded that longitudinal CT
radiomic features with suspected recurrent lesion after treatment, inte-
grated into a radiomic algorithm, could assist clinicians in diagnosis of
HCC recurrence. Additionally, the radiomic algorithm was independently
associated with hepatocellular carcinoma recurrence, suggesting that our
finding play a critical role in the early detection and treatment of recurrent
hepatocellular carcinoma.

Radiomics has been recognized as an important method in oncology.
However, there were few studies based on radiomics to explore a feasible
approach for surveillance of HCC patients after resection or ablation. Previ-
ous studies tried to use CT radiomics to predict the recurrence of HCC with
preoperative images, for example, they combined the radiomics algorithm
with clinical variables or used a single texture analysis parameter to predict
early recurrence with an AUC or C-index less than 0.85 [18–22]. However,
these studies shared the common flaws that the localization of lesions and
specific time point of tumor recurrence remained unpredicted, thus making
the precise intervention of recurrence impossible. Instead, our finding used
a simple radiomics algorithm to analyze posttreatment images, and the
results demonstrated not only early detection and intervention but also sur-
veillance of recurrence could be achieved. In addition, we chose CT images
to construct our model though MRI imaging can find more image features
Table 2
Comparison of diagnostic performance in detecting recurrence of hepatocellular carcino

Item Training cohort

Radiomics algorithm Change of AFP Combined m

AUCc 0.97 (0.94, 1.00) 0.77 (0.67, 0.88)a 0.97 (0.94, 1
Accuracy (%)c 94 (86, 98) 68 (57, 78) 94 (86, 98)
Sensitivity (%)c 93 (83, 98) 61 (48, 74) 93 (83, 98)
Specificity (%)c 95 (77, 100) 86 (65, 97) 95 (77, 100)
NPV (%)c 84 (64, 95) 46 (31, 63) 84 (64, 95)
PPV (%)c 98 (90, 100) 92 (79, 98) 98 (90, 100)
5-fold CV error 21% 26% 14%

Abbreviations: AUC, area under the operating characteristic curve; AFP, alpha-fetoprote
negative predictive value; PPV, positive predictive value.

a AUC of Radiomics algorithm vs Change of AFP level: P < .05.
b AUC of Combined model vs Radiomics algorithm: P > .05.
c Data in parentheses are 95% confidence interval.
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and make smaller lesions obvious compared with CT. Because our method
considered background liver information, MRI imaging might perform bet-
ter than CT scan in our model. However, it is difficult for us to obtain a se-
ries of follow-up MRI images because MRI imaging is usually used as an
assistant tool for the undermined in CT imaging. Due to easy access to
follow-up CT images, we preferentially chose CT images to construct our
model.

Previous study showed poor diagnostic performance for recurrent HCC
less than 1 cm after ablation based on CT images with an AUC of 0.72 [8].
During follow-up period after resection or ablation, a suspected recurrent
lesion was usually observed on CT images but could not clarify its charac-
teristics, resulting in a wait of 1–2 months or further MRI examination if
available. In our study, 79 suspected recurrent lesions less than 2 cm in
size lacked typical CT dynamic features in the training cohort, and then ap-
plied to training our radiomics algorithm for the purpose of improving diag-
nostic performance of CT in detecting recurrent HCC less than 2 cm, which
yielded an AUC of 0.89 in the validation cohort. This may imply that, we
cannot observe recurrence status directly from these small lesions either
through vision or radiomic features in CT imaging of one time point, but
recurrence status could be detected by analyzing substantial change of
radiomic features between CT images performed two time points, just as
monitor changes in serum AFP level for predicting recurrence [23].
ma.

Validation cohort

odel Radiomics algorithm Change of AFP Combined model

.00)b 0.89 (0.78, 1.00) 0.63 (0.42, 0.84)a 0.89 (0.78, 1.00)b

86 (70, 95) 71 (54, 85) 86 (70, 95)
91 (72, 99) 87 (66, 97) 91 (72, 99)
75 (43, 95) 42 (15, 72) 75 (43, 95)
82 (48, 98) 62 (24, 91) 82 (48, 98)
88 (68, 97) 74 (54, 89) 88 (68, 97)
– – –

in; CI, confidence interval; CV, cross-validation; DD, difference-in-difference; NPV,



Fig. 4.Receiver operating characteristics curve (ROC) of the training and validation cohort. (a) Performance of radiomics signature, change of AFP level and combinedmodel
in the training cohort. (b) Performance of radiomics signature, change of AFP level and combinedmodel in the validation cohort. AFP, alpha-fetoprotein. AUC, area under the
receiver operating characteristic curve.
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Mattonen et al. [24] showed that radiomics based on follow-up images
could detect early changes associated with local recurrence after stereotac-
tic ablative radiation therapy for lung cancer. In agreement with the previ-
ous study, our finding reported that radiomics algorithm based on the
change of radiomic features could detect early changes associated with re-
currence after resection or ablation.

Previous studies have found that radiomic features were closely related to
tumor biological behavior and microscopic structure [25–27]. Our study dis-
covered 34 DD radiomic features significantly associated with recurrence of
HCC. These features could be categorized into two types, including GLCM
and GLRLM. Among texture features, GLCM and GLRLM reflect signal mixing
degree of the lesions bymeans of relative relationshipbetweendistribution and
site of the gray level, and thus are importantmarkers of intra-tumor homogene-
ity. DD radiomic features could detect the change of homogeneity of tumor re-
gion by eliminating the interference of background liver, and thus produced
great performance of detecting recurrence with an AUC of 0.97. Previous stud-
ies have also demonstrated the ability of CT radiomics analysis for assessing
nonalcoholic steatohepatitis [28] and microvascular invasion [29,30].

In addition, previous studies proposed that persistent changes of AFP
level maybe a prognostic factor for HCC development, and AFP was the
most frequently tested indicators in the detection of HCC [31]. For exam-
ple, elevated AFP increases risk of tumor recurrence posttreatment [32].
However, AFP levels did not improve the detection rate of HCC though
combining with ultrasound during follow-up, moreover, appropriate cut-
off values may limit its sensitivity and specificity in clinical application
[33]. By contrast, radiomic methods used CT images to quantify tumor fea-
tures at the macroscopic level and may not meet these problems above-
mentioned. In our study, we compared the prediction performance of
radiomic model with changes of AFP or the combined model, and the re-
sults suggest that a better predictive AUC of radiomic algorithm than that
of change of AFP (0.89 vs 0.63, P = .038) and similar with the combined
model in detecting recurrence. This indicated that radiomic features played
a key role in early detecting HCC recurrence.

Major limitation of this study is the retrospective nature with selective
bias and a single-center study with a limited sample size. Larger sample
size is required to strengthen the power of the conclusion. Despite no exter-
nal validation, cross validation would make up for this shortcoming and
demonstrate robustness of our radiomics algorithm. Larger validation co-
horts will be needed in future studies. In addition, definition of suspected
6

lesions was potentially subjective though using LI-RADS. If the radiologist
was uncertain which the lesions belong to, another expert was consulted
and agreement should be reached. In addition, almost all (97.4%) patients
had a Child Score A in our study. For other patients who suffer from under-
lying health issues, our current model might not be applied. Further, to im-
prove generalizability of our model, more patients with alcoholism,
Hepatitis B or C should be included.

In conclusion, we found that difference-in-difference of CT radiomic fea-
tures could detect early changes associated with recurrence and might assist
clinicians in earlier intervention for recurrence of hepatocellular carcinoma.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100866.
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