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Abstract

A short diversity oriented total synthesis (DOTS) of substituted rutaecarpines, homo-luotonins, 

homo-vasicinone, homo-isaindigotones and homo-vasnetine has been achieved from the key 

tricyclic intermediate. The [6,6,6] tricyclic ketone, the mackinazolindione, was accessed from 

simple substrates i.e., quinazolinone diester obtained from the disubstituted anthranilamide which 

in turn was prepared from the coupling of amino acid ester and ethyl oxalyl chloride with isatoic 

anhydride and Dieckmann condensation chemistry.
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1. Introduction

Quinazolinone, a ubiquitous nitrogen-containing heterocyclic structural motif that occurs 

in natural products (NPs) and pharmaceutically active molecules is a privileged scaffold 

for drug discovery[1]. It is found in approximately 200 natural products isolated from 

various natural sources including plants, microorganisms, and animals, and nearly 70 

of them harbor pyridoquinazolinone core (Fig. 1; highlighted in red). The majority of 
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the pyridoquinazolinones belong to the rutaecarpine class. Rutaecarpine (1) is a major 

indolopyridoquinazolinone alkaloid first isolated by Asahina from Evodia rutaecarpa [2a,b] 

(the dried fruit of it is called ‘Wu-Chu-Yu’ in traditional Chinese medicine). Interest in 

this class of rather old natural products has been growing lately, presumably due to their 

characteristic structures and intriguing biological properties. This late surge of interest is 

evident by the 1300 references that cite rutaecarpine in the SciFinder database provided 

by the American Chemical Society of which about 150 are patents, and nearly 1200 of 

them are from with in the last two decades. The biomedicinal potential of this parent 

alkaloid of the quinazolinone class is immense, especially for cardiovascular diseases [3]. 

It is a COX inhibitor and is also shown to possess anti-inflammatory [4], vasorelaxing 

[5], antiplatelet [6], antianoxic [7], anti-diabetic [8], and antitumor [9] activities, among 

others. Some of the naturally occurring substituted rutaecarpines that have been listed in 

Fig. 1 are known to have similar or better activities while quite a few of them have not 

been fully explored or tested yet. Other major metabolites of Wu-Chu-Yu, evodiamine (3a), 

and dehydroevodiamine (DHEA) (27), are also well documented for their biomedicinal 

potential attested by the 1600 citations of which 275 are patents in SciFinder, and 1500 

of those are within the last two decades, again indicating the late surge of interest [10]. 

The other notable members of the pyridoquinazolinone class, beside the various hydroxy, 

alkoxy etc. substituted versions of rutaecarpine and evodiamine, include euxylophorecins 

A-F (15a-e) [11], orisuaveolines A-B (16a-b) [12], hortiamines (22a-b) [13], fantanesines 

A-C (24a-c) [14], euxilophorines A-D (30a-d) [15,16], the glycosylated sugars such as 

ternatosides (31a-b) [16], and the conchacarpines A-B (35a-b) [17]. More recent and 

complex pyridoquinazolinones such as scedapins A-E (36a-e) [18], neosartoryadins A-B 

(37a-b) [19], and spiroquinazolines (38–46) [19e] harbor further linear and spiro fusions 

along with chiral carbon framework, and are shown to be anti-viral based on their screening 

and docking results. For example, scedapins and their analogues such as quinadoline 

are projected to have a potential for inhibition of COVID-19 type coronaviruses. They 

exhibited impressive binding affinity with human ACE-2 or SARS-CoV-2 main protease 

[20a-e]. Dievodiamine 47b is the only dimer known in the pyridoquinazolinone class 

however, its biomedicinal potential has not been explored yet [20f,g]. In general, the 

intriguing chemical architectures with vast and unique structural diversity of this class 

coupled with the promising biomedicinal potential attracted the attention of synthetic 

and medicinal chemists which led to the development of a plethora of impressive total 

synthetic routes to rutaecarpine and its natural congeners [21], and the methodologies for 

pyridoquinazolinone cores in general [22]. Yet, there is no universal diversity oriented 

total synthesis route or strategy that could be broadly adapted for the various members of 

this class. Motivated by the opportunity and intrigued by the structural similarity among 

these pyridoquinazolinone alkaloids, we were involved in developing a divergent synthetic 

strategy via the key mackinazolindione intermediate (Scheme 1) amenable for DOTS and 

completed the synthesis of rutaecarpine successfully [23]. However, the synthetic potential 

of the route remained to be explored for the synthesis of other natural and unnatural 

pyridoquinazolinone analogues listed in Fig. 1.

The building blocks utilized for the synthesis of mackinazolinedione i.e., various substituted 

isatoic anhydrides and amino acids are easily available, and the route has inbuilt diversity. 
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Hence it is suitable for the diversity-oriented total synthesis of various pyrido quinazolinone 

NPs in conjunction with the variations in the late-stage annulations of the AB cores onto 

the substituted mackinazolindione 48 by utilizing the substituted hydrazines or amines, or 

through the functionalization of the piperidone ring via the carbonyl chemistry as shown 

in Scheme 1. Attesting to this untapped potential of the route, Abe et al., have adopted 

our chemistry and the mackinazolindione intermediate to access fontanesines and their 

analogues [24]. As part of our recent initiation of a quinazolinone based medchem approach 

[25] for the development of novel anti-microbial and anthelminthic agents we revisited the 

chemistry of the mackinazolindione and decided to utilize its further potential to synthesize 

a more diverse set of natural and unnatural analogues and the efforts and results towards that 

direction have been delineated herein.

2. Results & discussion

Our large-scale synthesis of tricyclic quinazolinone core mainly relied on adapting our 

earlier method [23] (Scheme 2). It commenced with the synthesis of γ-amino butyrate 

hydrochloride 56 from γ-amino butyricacid 55, alcohol, and thionyl chloride. The resulting 

γ-amino butyrate hydrochloride 56 was treated with isatoic anhydride and Et3N in the 

presence of a catalytic amount of DMAP in DMF to furnish the amine 57, which was 

further condensed with ethyl oxalyl chloride to obtain the bisamide 58 in large scale 

(>100g). The cyclodehydration of the amide was achieved with PCl3 in refluxing xylene 

to form the quinazolinone. Having obtained the diester 59 with suitable functionalities 

needed, it was subjected to Dieckmann condensation in the presence of NaH. Gratifyingly, 

the β-ketoester 60 was produced in decent yields even on a large scale and did not 

need any further purification. The decarboxylation of 60 in the presence of refluxing 6 

N HCl produced dione 61 in good yield. Having accessed the mackinazolindione 61 in 

large quantity (>10g in 6 steps from GABA; some of the steps could be coaxed into one 

pot, however, the optimization studies were not undertaken), we undertook the efforts to 

showcase its utility in total and diverted total synthesis of quinazolinone alkaloids. First, 

we wanted to obtain the homo-vasicinone via the reduction of dione 61, however, it proved 

not as straightforward as we initially had hoped. The tricyclic benzylic ketone 61 was 

easily over reduced by BH3 (Scheme 3, Path A) or NaBH4 (Scheme 3, Path B). Even 

under Luche reduction condition (CeCl3/NaBH4, Scheme 3, Path C), which is used for the 

selective reduction of α,β-unsaturated ketones to allylic alcohols, the over reduction ensued 

to produce the compound 62, where both the C⚌O and C⚌N bonds were reduced. The 

weaker reducing agents that we turned to either failed or resulted in unidentified products. 

Notably, the NaBH3CN promoted the formation of a dimer whose structure could not be 

completely deduced, while the attempted NaBH(OAc)3 reduction led to hydration of the 

ketone resulting in geminal diol 63 (Scheme 3, Path D). After continuous experimentation, 

we were delighted to find that the L-selectride produced the desired homo-vasicinone 64 in a 

decent yield (Scheme 3, Path E).

We then decided to proceed with the annulation of indole core onto the pyridoquinazolinone 

61 (Scheme 4). Thus, the dione 61 was subjected to Fischer indolization [26] with 

various hydrazines in H3PO4 at 180 °C. We successfully obtained rutaecarpine 1 as 
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reported earlier and its analogues 65, and 66 i.e., substituted indolopyridoquinazolinones. 

However, the reaction of dione 61 with 4-methoxyphenylhydrazine hydrochloride to obtain 

hortiacine 18 was not as straightforward as others were. It failed under the H3PO4 

conditions. After careful experimentation with various reaction conditions, we found out 

that it could be obtained from dione 61 in the presence of ZnCl2/AcOH at 150 °C in 

18h. We then proceeded to prepare the ring heteroatom substituted rutaecarpines, e.g., 
aza-rutaecarpines. Towards that direction, we brominated the dione 61 successfully to obtain 

the bromo compound 67. It was subjected to condensations with bis-nucleophiles, such 

as 2-aminopyridine and thiourea, thus generating hitherto unreported compounds 68 and 

70 (Scheme 5) in moderate yields. However, disappointingly the attempts to access diaza-

rutaecarpine 69 were not successful as was the condensation with urea derivative (Scheme 

5).

Next, we focused on the annulation of quinoline core onto the pyridoquinazolinone 61 to 

obtain the homo-luotonin analogues [27]. Towards that direction, we subjected the dione 

61 for the Friedlander condensation [28] with various o-aminophenyl systems to access 

the pyridoquinazolinoquinolines. To obtain the homo-luotonin A 71 we have employed 

2-nitrobenzaldehyde as the surrogate for 2-aminobenzaldehyde since the latter is unstable 

in the classical Friedlander condensation conditions. The amenability of this chemistry to 

prepare the analogues of homo-luotonin A is showcased with Friedlander condensation of 

dione 61 with o-amino aceto-/propio-/benzo-phenones, and 2-aminobenzonitrile to obtain 

the methyl, ethyl, benzyl, and amino substituted homo-luotonins 72–76, respectively. 

Noteworthy, in our initial attempts cyanoenamine intermediate 75 was isolated in 

condensation of dione 61 with 2-aminobenzonitrile, which was reluctant to further cyclize 

to form the quinoline core. In our persistent efforts, compound 75 was found to undergo 

further cyclization in the presence of TfOH to give 78, and this new reagent also effected the 

one-step synthesis of 78 from 61 directly (Scheme 6).

In our further synthetic efforts, the dione 61 was subjected to Wittig olefination with various 

phosphonium salts to access the analogues of homo-isaindigotone [29]. A small collection of 

pyridoquinazolinonyl olefins has been built (Scheme 7). Interestingly, only the stable Wittig 

reagents reacted with dione 61 to generate the olefins 77–81 reliably. NOESY was used to 

assign the configuration of these olefins. Though Nepali et al. [30] reported that (E)-olefins 

of type 77 did not have the correlation between H1 and H2, the weak signal of H1 – H2 

was still observed in our case. As we cannot find more support for the existence of the 

(Z)-isomer, such as the correlation between the H of the quinazolinone core and the H of 

the arylidene group, we assigned (E)-configuration to these olefins. Our assignment was 

further affirmed by the crystal structure of olefin 77 confirming the (E)-configuration. This 

selectivity for the formation (E)-isomers can be attributed to the steric hindrance between the 

nitrogen lone pair of quinazolinone core and the benzene ring of the arylidene group [34] 

(See supplementary material, S84).

Finally, we have subjected the dione 61 to various aniline substrates hoping to access 

the homologues of 3-hydroxyanisitone, desmethoxyaniflorine, and vasnetine etc. [31] 

Disappointingly, our efforts with most of these nucleophilic additions did not proceed as 
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hoped. Only homo-vasnetine 83 was obtained via the reductive amination of the enamine-

imine tautomeric mixture resulting from the condensation of 61 with o-aminobenzoate in 

the presence of TsOH. The lack of reactivity of the carbonyl towards the pi- or substituted 

N-nucleophiles can either be attributed to the keto-enol tautomerism that 61 can engage 

under strong acidic or basic conditions, or it could be just that the substituted anilines are not 

nucleophilic enough to react with 61 as nucleophiles (Scheme 8).

3. Conclusions

In summary, we have utilized the mackinazolindione 61 as a key intermediate and 

gained a diversity oriented total synthesis access to various pyridoquinazolinone, 

indolopyridoquinazolinone, and pyridoquinazolinoquinoline natural products and their 

analogues. Our route involves readily available starting materials and inexpensive reagents 

and is amenable to large scale synthesis. It is also amenable to access analogues through 

the inbuilt diversity points and late-stage annulations of the AB or DE cores with suitably 

substituted synthons. Furthermore, it is flexible for the solid phase synthesis of the title 

compounds as it employs amino acid coupling chemistry which is well established on 

polymeric resins (peptide chemistry). This work attests to the power of DOTS to access 

focused libraries of natural product analogues for NP-based med chem approach. We found 

out that the column purification over a Et3N pre-washed SiO2 produced better yields than 

the regular SiO2 columns. However, it is pertinent to mention that the yields have not been 

optimized at this time. We believe that the key mackinazolindione is a versatile synthon 

and the chemistry disclosed herein is simple and reliable that would find applications in 

the total synthesis of other pyridoquinazolinone natural products reported (Fig. 1) and yet 

to be reported, some of which is underway in our lab as is screening studies of the library 

generated herein and the results will be reported in due course.
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Fig. 1. 
Structures of known pyridoquinazolinone natural products and mackinazolinedione.
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Scheme 1. 
The retrosynthetic analysis of substituted pyridoquinazolinones to the substituted 

mackinazolindione.
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Scheme 2. 
Synthesis of unsubstituted mackinazolindione 61.

Rasapalli et al. Page 13

Tetrahedron Chem. Author manuscript; available in PMC 2024 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Synthesis of homo-vasicinone via reduction of 61.
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Scheme 4. 
Synthesis of indolopyridoquinazolinones.
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Scheme 5. 
Synthesis of aza-rutaecarpines via bromide 67.
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Scheme 6. 
Synthesis of homo-luotonins via Friedlander condensation.
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Scheme 7. 
Synthesis of homo-isaindigotones via Wittig Olefination of 61.
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Scheme 8. 
Synthesis of homo-vasnetine via reductive amination.
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