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Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation
to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed
to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6)
were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent
serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin
and eosin, periodic acid-Schiff, and Masson’s trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and
urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-f3,
NF-xf3, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal
damage, without clear changes on the traditional markers, but with changes in serums TGF-f and IL-7, TBARs clearance, and
kidney TGF- 3 and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while
NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL.

1. Introduction

Calcineurin inhibitors, such as cyclosporin A (CsA), are clin-
ically important immunosuppressive drugs for prevention of
allograft rejection after organ transplantation and also for
several autoimmune disorders, such as psoriasis, rheumatoid
arthritis, systemic lupus erythematosus, and inflammatory
bowel disease, among other indications [1, 2]. Despite the

impressive reduction in the number of acute rejection
episodes after the beginning of CsA use in clinical practice,
long-term therapy is typically associated with drug-induced
nephrotoxicity [3]. Renal dysfunction is an independent risk
factor for graft loss and mortality after kidney transplantation
(KTx) and cardiovascular disease (CVD) is the main cause of
dead post-KTx [4-6]; thus, extended long-term graft survival
has not been completely achieved.
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Complete avoidance of CNIs, in particular of CsA,
from transplantation immunotherapy, has been viewed as an
invalid option by almost all the transplantation centres world-
wide, particularly because of the risks in acute rejection. The
main long-term goals of immunosuppressive therapy are to
reduce drug exposure while maintaining a well-functioning
graft, keeping efficacy and minimizing drug-induced serious
side-effects, including infections and nephrotoxicity [7]. The
recognition of these serious adverse effects sparked interest
in CsA-sparing strategies [8]: dose reduction is associated
with a modest improvement in renal function, but CsA-
induced nephropathy is progressive over time when exposure
is maintained; CsA avoidance is associated with high acute
rejection rates and is not an option; minimization protocols
are the current preferred therapy, including the conversion
from CsA to other drugs, especially sirolimus (SRL), an
inhibitor of the mammalian target of rapamycin (mTOR)
[9-11]. Despite the SRL-evoked proteinuria, this drug has
been indicated as a less nephrotoxic immunosuppressive
agent per se when compared with calcineurin inhibitors
[12], but its use after CsA would have an impact on the
renal function/structure that should be precisely defined.
The major question nowadays concerning the protocols of
immunotherapy is to find the most adequate duration for
CsA exposure and the proper moment for replacement by
other less nephrotoxic drugs, such as SRL, in order to afford
renoprotection without compromising the graft by a rejection
episode.

Early diagnosis of nephropathy can greatly improve
patient diagnosis, but the initial stages of CsA-induced
nephropathy are largely asymptomatic, making early diag-
nosis difficult [13]. Since the current diagnostic techniques
employed to detect CsA nephropathy seem to be unsat-
isfactory, the identification of novel, early disease indica-
tors is currently a major research focus. Identifying drug
safety liabilities or predictive biomarkers for drug-induced
organ damage is of great value. Drug safety evaluation has
mainly been based on biochemical and histopathological
data, but transcriptional profiling has the promise of being
able to detect toxicity objectively. In addition, gene expression
changes associated with toxicity may also accurately and
earlier assist our understanding on the mechanism of certain
drug-induced toxicity [14, 15], which will be pivotal for drugs
with a low therapeutic window, such as the immunosuppres-
sive agents. The precise mechanisms and biomarkers, under-
lying transition from renal dysfunction to nephrotoxicity,
deserve better elucidation; experimental studies have been
important to improve the knowledge on this translational
issue of clinical relevance.

The mechanisms underlying CsA-induced nephropathy
have been debated for the last decades and are clearly
viewed as having a multifactorial nature (including vasore-
laxant/vasoconstrictor disequilibrium, oxidative stress, apop-
tosis, and proliferation/fibrosis) [16-20], as evolving and
changing with the increased duration of exposure [3, 21, 22]
and as modulated by influence on renal tissue gene expression
[23-25]. With nephrotoxicity remaining a major contributing
factor to late allograft damage, it is crucial to understand
the impact on the kidney tissue of protocols of conversion
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from CsA to SRL and identify early biomarkers in order to
improve the therapeutic strategies after transplantation, thus
extending long-term graft survival by reducing cardiorenal
mortality. Molecular studies on animal tissues are essential to
elucidate these questions and emergent biomarkers of renal
damage, such as NGAL, KIM-1, and CTGE, among others,
would increase our knowledge of how to better manage this
drug-related nephropathy.

We have previously shown, in a preliminary study using
an experimental model for comparing CsA and SRL, that
distinct mechanisms and players are involved in the effects
of these drugs on the kidney tissue, in a moment when renal
lesions are almost absent [26]. In addition, our previous data
suggested that early conversion from CsA to SRL promotes
a better cardiorenal profile than late conversion [27], whose
mechanisms and biomarkers deserve now more elucida-
tion. The current study intended to clarify the pathways
of nephropathy evolution in a protocol of conversion from
CsA to SRL in the rat, focusing on serum, urine, and renal
(gene and protein) tissue samples, as well as to elucidate the
involvement of several emergent biomarkers of renal damage
which are putative candidates to act as players in the evolution
from renal dysfunction to nephrotoxicity.

2. Materials and Methods

2.1. Animals and Treatments. Male Wistar rats (aged 11
weeks) were purchased from Charles River Laboratories
(Barcelona, Spain) and housed (two animals per cage) in
IVC racks, subjected to 12h dark/light cycles and given
standard laboratory rat chow (IPM-R20, Letica, Barcelona,
Spain) and free access to tap water. Forty-two animals were
divided into two groups, according to the period of the
treatments. Eighteen animals were used in a protocol of 3-
week treatments and divided in 3 groups: control (vehicle),
cyclosporin A (5 mg/Kg/day of Sandimmun Neoral, Novartis
Farma Produtos Farmacéuticos SA, Sintra, Portugal), and
sirolimus (1 mg/kg BW/day of Rapamune, Laboratdrios Pfizer
Lda., Lisbon, Portugal). Twenty-four animals were used in
a protocol of 9-week treatments and divided into 4 groups:
control (vehicle), cyclosporin A, sirolimus, and conversion
(cyclosporin A during 3 weeks and sirolimus during the last
6 weeks). Treatments were performed by oral gavage and
body weight was monitored daily. Animal experiments were
conducted according to the European Council Directives on
Animal Care and to the National Authorities.

2.2. Sample Collection and Preparation. The rats were anes-
thetized (i.p.) with 2mg/KgBW of a 2:1 (v:v) 50 mg/mL
Ketamine (Ketalar, Parke-Davis, Pfizer Laboratories Ltd,
Seixal, Portugal) solution in 2.5% chlorpromazine (Largatil,
Rhone-Poulenc Rorer, Vitdria laboratories, Amadora, Portu-
gal). When the animal did not present response to stimulus,
blood samples were immediately collected by venipuncture
from the jugular vein in needles with no anticoagulant for
serum samples collection. Then, the rats were sacrificed
by cervical dislocation, and the kidneys were immediately
removed, weighted, divided, and stored according to the
next procedure: RNA-stabilizer reagent for gene expression



BioMed Research International

determinations, frozen in nitrogen for lipid peroxidation
assays, prefixed with formaldehyde for histopathological
analysis and immunohistochemical detections.

2.3. Serum and Urinary Measures

2.3.1. Serum Biochemical Data. Serum creatinine and blood
urea nitrogen (BUN) contents were evaluated by automatic
validated methods and equipment (Hitachi 717 analyser,
Roche Diagnostics Inc., MA, USA). Serum levels of inter-
leukin 1p (IL-1p), interleukin 2 (IL-2), vascular epidermal
growth factor (VEGF), and transforming growth factor beta 1
(TGF-f3,) were measured by ultrasensitive Quantikine ELISA
kits (R&D Systems, Minneapolis, USA). High sensitivity
CRP (hsCRP) was detected by using an ELISA kit (Alpha
Diagnostic International, San Antonio, USA). Interleukin-7
(IL-7) was measured through an ELISA kit obtained from
Wuhan EIAAB Science Co (Wuhan, China).

2.3.2. Urinary Data. The animals were housed in metabolic
cages during 24 hours and received tap water and food ad
libitum. The urine concentration of creatinine, BUN, and
protein was assessed in 24-hour urine (Cobas Integra 400
plus, Roche), and the urine volumes were measured in order
to calculate creatinine and BUN clearance and glomerular
filtration rate, as previously described [28].

2.3.3. Serum, Kidney, and 24-Hour Urine Lipid Peroxidation.
Lipid peroxidation was determined by assaying the malondi-
aldehyde (MDA) production by means of the thiobarbituric
acid (TBA) test. Briefly, 100 4L of kidney tissue supernatant,
serum, or urine (previously centrifuged to remove partic-
ulates) was incubated 1 hour in a TBA solution. Samples
incubated at 90°C for 60 min. In this test, one molecule of
MDA reacts with two molecules of TBA with the production
of a pink pigment producing maximal absorbance at 532 nm.
The concentration of MDA was calculated with respect
to a calibration curve using 1,1,3,3-tetramethoxypropane as
the external standard (range: 0.1-83.5 uM) and results were
expressed as uM/g of kidney tissue and M of serum or urine.

2.4. RT-qPCR Kidney Gene Expression

2.4.1. Total RNA Isolation. The kidneys were stored in RNA
later solution (Ambion, Austin, TX, USA). For RNA extrac-
tion, 10 mg of tissue was weighted, 450 yL of RLT lysis buffer
was added, and tissue disruption and homogenization for
2min at 30 Hz were performed using a TissueLyser (Qiagen,
Hilden, Germany). Tissue lysates were processed according
to the RNeasy Mini Kit protocol (Qiagen, Hilden, Germany).
Total RNA was eluted in 50 4L of RNase-free water (without
optional treatment with DNAse). In order to quantify the
amount of total RNA extracted and to verify RNA integrity
(RIN, RNA Integrity Number), samples were analyzed using
a 6000 Nano Chip kit, in the Agilent 2100 Bioanalyzer
(Agilent Technologies, Walbronn, Germany) and the 2100
expert software, following manufacturer’s instructions. The

isolation yield was from 0.5 to 3 ug; RIN values were 6.0-9.0
and purity (A260/A280) was 1.8-2.0.

2.4.2. Reverse Transcription. RNA was reverse transcribed
with SuperScript IIT First-Strand Synthesis System for RT-
PCR (Invitrogen, California, USA). One microgram of total
RNA was mixed with a 2x First-Strand Reaction Mix and
a SuperScript III Enzyme Mix (Oligo (dT) plus random
hexamers). Reactions were carried out in a thermocycler
Gene Amp PCR System 9600 (Perkin Elmer, Norwalk, CT,
USA), 10 min at 25°C, 30 min at 50°C, and 5min at 85°C.
Reaction products were then digested with 1 4L (2 U) RNase
H for 20 min at 37°C and, finally, cDNA was eluted to a final
volume of 50 4L and stored at —20°C.

2.4.3. Relative Gene Expression Quantification. Gene expres-
sion was performed using a 7900 HT Sequence Detec-
tion System (Applied Biosystems, Foster City, USA). A
normalization step preceded the gene expression quantifi-
cation, using geNorm Housekeeping Gene Selection kit
for Rattus norvegicus (Primer Design, Southampton, UK)
and geNorm software (Ghent University Hospital, Center
for Medical Genetics, Ghent, Belgium) to select optimal
housekeeping genes for this study [29]. Real-time PCR
reactions used specific QuantiTect Primer Assays (Qia-
gen, Hilden, Germany) with optimized primers for trans-
forming growth factor beta 1 (QT00187796), proliferat-
ing cell nuclear antigen (QT00178647), mechanistic tar-
get of rapamycin (QT00180586), nuclear factor kappa B
(QT01577975), monoclonal antibody Ki-67 (QT00450786),
and tumor protein p53 (QT00193522) as proliferative mark-
ers; vascular endothelial growth factor beta (QT01290163) as
angiogenic marker; interleukin 1 beta (QT00181657), inter-
leukin 2 (QT00185360), tumor necrosis factor (QT00178717),
cyclooxygenase 2 (QT00192934), and C-reactive protein
(QT00391650) as inflammatory markers. Endogenous con-
trols were used for kidney [glyceraldehyde-3-phosphate
dehydrogenase (QT00199633), actin beta (QT00193473), and
topoisomerase I (QT01820861)]. A QuantiTect SYBR Green
PCR Kit (Qiagen, Hilden, Germany) was used according to
manufacturer’s instructions. RT-qPCR reactions were carried
out with 100 ng ¢cDNA sample, primers (50-200 nM), and
1x QuantiTect SYBR Green PCR Master Mix. Nontemplate
control reactions were performed for each gene, in order
to assure nonunspecific amplification. Reactions were per-
formed with the following thermal profile: 10 min at 95°C plus
40 cycles of 15 seconds at 95°C and 1 min at 60°C. Real-time
PCR results were analyzed with SDS 2.1 software (Applied
Biosystems, Foster City, USA) and quantification used the
2724€t method [30]. The results were obtained in CNRQ
(calibrated normalized relative quantities).

2.5. Histopathological Analysis

2.5.1. Haematoxylin and Eosin Staining. Samples were fixed
in BocK’s fixative and embedded in paraffin wax, and 4 ym
thick sections were mounted on glass slides and stained for



routine histopathological diagnosis with haematoxylin and
eosin (H&E).

2.5.2. Periodic Acid of Schiff Staining. Periodic acid of Schiff
(PAS) was used to evaluate and quantify the renal lesions.
Samples were fixed in 10% neutral formalin, embedded in
paraffin wax, and 4 ym thick sections were immersed in
water and subsequently treated with a 1% aqueous solution
of periodic acid, then washed to remove any traces of the
periodic acid, and finally treated with Schiff’s reagent. All
samples were examined by light microscopy using a Zeiss
Microscope Mod. Axioplan 2. The degree of injury visible by
light microscopy was scored in a double-blinded fashion by
two independent pathologists. Lesions were evaluated on the
total tissue on the slide.

2.5.3. Analysis of Lesions. Glomerular damage was assessed
by evaluating mesangial expansion, the glomerular basement
membrane and the Bowman’s capsule thickenings, nodular
sclerosis, and vascular pole hyalinosis. The analysed tubuloin-
terstitial lesions comprised inflammatory infiltration, pres-
ence of hyaline cylinders, tubular basement membrane irreg-
ularity, tubular calcification, tubular vacuolization, and the
association of interstitial fibrosis and tubular atrophy (IFTA).
The evaluation of vascular lesions was concentrated on
vascular congestion and hyperemia, arteriolar vacuolization,
arteriolosclerosis, and arteriosclerosis. A semiquantitative
rating for each slide ranging from normal (or minimal) to
severe (extensive damage) was assigned to each component.
Severity was graded as absent/normal (0), mild (1), moderate
(2), and severe (3). Scoring was defined according to the
extension of the lesion (number of capsules): normal: 0%;
mild: <25%; moderate: 25-50%; severe: >50%. The final score
of each sample was obtained by the average score observed
in the individual glomeruli, in the considered microscopic
fields. Tubular calcification was evaluated and graded by the
same semiquantitative method. Regarding vascular lesions,
arteriosclerosis was scored as 0 if no intimal thickening was
present, as 1 if intimal thickening was less than the thickness
of the media, and as 2 if intimal thickening was more than
the thickness of the media and considering the worst artery
on the slide. Using PAS, the rating was set for intensity
and extension of staining, ranging from 0 (no staining) to 3
(intense and extensive staining), respecting tissue specificity
scoring when adequate.

2.5.4. Masson’s Trichrome Staining. Deparaffinise and rehy-
drate through 100% alcohol, 95% alcohol, and 70% alcohol.
Wash in distilled water. After that, refix in Bouin’s solution for
1 hour at 56°C to improve staining quality and rinse in run-
ning tap water for 5-10 minutes to remove the yellow colour.
Stain in Weigerts iron hematoxylin working solution for 10
minutes and rinse in running warm tap water for 10 minutes.
Wash in distilled water. Stain in Biebrich scarlet-acid fuchsin
solution for 10-15 minutes and wash in distilled water. Differ-
entiate in phosphomolybdic-phosphotungstic acid solution
for 10-15 minutes and transfer sections directly to aniline blue
solution and stain for 5-10 minutes. Rinse briefly in distilled
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water and differentiate in 1% acetic acid solution for 2-5
minutes and wash in distilled water. Finally, dehydrate very
quickly through 95% ethyl alcohol, absolute ethyl alcohol,
clear in xylene, and mount with resinous mounting medium.
All samples were examined in a blind fashion by expert
personnel (pathologists) by light microscopy using a Zeiss
Microscope Mod. Axioplan 2.

2.6. Immunohistochemical Analysis. Immunohistochemical
analyses were performed in 4 ym thick sections with sagittal
orientation of kidney fixed in BocK’s fixative and embedded
in paraffin wax. The samples were processed by indirect
immune detection technique with mouse and rabbit specific
HRP/DAB detection IHC kit (Abcam, Cambridge, UK) using
the primary antibody mammalian target of rapamycin (Mil-
lipore Corporation, Billerica, MA, USA, 04-385) (dilution
1:250). The protocol was executed according to the manu-
facturer’s instructions. In this study, we employed primary
antibodies against CTGF (dilution 1:100, ab6992; Abcam),
TGF-b (dilution 1:100, ab66043; Abcam), mTOR (dilution
1:250, 04-385; Millipore), NF-«xf3 p50 (dilution 1:500, sc-
114; Santa Cruz Biotechnology), and KIM-1 (dilution 1:14,
AF3689; R&D Systems). For KIM-1 detection the secondary
antibody was anti-goat (dilution 1:500, sc2771; Santa Cruz
Biotechnology). After testing the different antigen-retrieval
methods and negative controls, immunohistochemical pro-
cedures were optimized. To identify PCNA protein we used a
standard kit (ready to use, 93-1143, Invitrogen Corporation).
An appropriate positive control was used in each staining run,
and each slide was stained with a negative control obtained
by omitting the primary antibody. Standard procedures were
used for visualisation and the staining was quantified using a
semiquantitative scale (1-4) that evaluated both the intensity
and area of staining. Intensity was graded as very low (1), low
(2), moderate/mild (3), and high (4); staining area was graded
as <25% (1), 25-50% (2), 25-75% (3), and >75% (4). All slides
were reviewed independently by 2 investigators blinded to the
data. In this evaluation a quantitative immunohistochemical
score (QIC) was calculated. QIC = % of staining area *
staining intensity * 0.1.

2.7 Statistical Analysis. Statistical analyses were performed
using the GraphPad Prism for Windows (version 5.00).
The results are presented as means + S.E.M. Comparisons
between groups were performed using one-way ANOVA
test, followed by the post hoc Bonferroni’s multiple com-
parisons. The association between categorical variables was
analyzed using Pearson’s test in the IBM Statistical Package
for Social Sciences (SPSS) for Windows, version 20.0 (SPSS
Inc., Chicago, IL, USA). Significance was accepted at P less
than 0.05.

3. Results

3.1. Kidney Histomorphological Changes and Collagen Depo-
sition. Nephrotoxicity was confirmed by two independent
pathologists, which have characterized the lesions through
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the attribution of degrees to each vascular, glomerular, and
tubular lesion, examining kidney slices stained with H&E and
PAS. After 3 weeks of CsA treatment, only slight morphologi-
cal changes on the tubules (tubular vacuolization) were found
when compared with the control (Figure 1). However, signs
of toxicity were identified in the vessels since some kidney
slices revealed arteriolar vacuolization and hyperemia. SRL
treatment during identical period, described in the literature
as less nephrotoxic than CsA, surprisingly revealed some
lesions in the vascular (congestion and hyperemia) and
tubular (vacuolization and calcification) fields. Total lesion
scoring showed that only SRL was able to induce significant
damage in the vessels (P < 0.05) and tubules (P < 0.01)
after the first 3-week period (Figures 2(a;) and 2(c,)). Long-
term CsA treatment (9 weeks) promoted relevant changes
on the kidney (vessels, glomeruli, and tubules) structure,
which are viewed as clear signs of nephrotoxicity. The main
changes encountered compared with the normal controls
are represented in Figure 1. In the long-term CsA exposure,
vascular congestion, vascular hyperemia, and arteriolar vac-
uolization and arteriolosclerosis were identified, being all sta-
tistically significant versus the control group (Figure 1(a,_,)).
Sirolimus revealed similar pattern to that found for CsA
but does not induce arteriolosclerosis, compared to CsA
(P < 0.05). The conversion protocol does not promote
any advantage in the vascular field when compared with
the CsA treatment alone; two rats of the group presented
arteriosclerosis (grades 1 and 2).

Regarding the glomerular field after 9 weeks of CsA
treatment, the major lesions found were mesangial expansion
(P < 0.01), hyalinosis of vascular pole (P < 0.001),
and thickening of Bowman’s capsule (P < 0.001) when
compared with the control rat kidneys (Figure1(b,_,)).
One rat presented hydronephrosis and cortical atrophy. In
the SRL treatment the single significant lesion found was
Bowman’s capsule thickening, confirming a better profile in
the conversion protocol. Mesangial expansion and vascular
pole hyalinization grade were almost absent when compared
with the isolate CsA treatment. However, all rats from the
conversion group showed glomerular basement membrane
thickening (P < 0.05 versus CsA). The global glomerular
score clearly showed that SRL is less toxic than CsA (P <
0.01) and this was reflected in the lower score found in the
conversion group.

CsA induces tubular damages and the main lesions
identified were tubular vacuolization and calcification (P <
0.001, both), versus the normal profile found in the control
rats (Figures 1(c,_,) and 2(c, ;)). However, the presence of
hyaline cylinders and inflammatory infiltration was iden-
tified in almost all the kidneys (grade 1, less than 25%
of the tubules). Sirolimus treatment only induced tubular
vacuolization. However, when CsA was used prior to SRL
(conversion group), tubular calcification and vacuolization
remain present in the same grade than that encountered for
CsA therapy alone. In contrast, hyaline cylinders (P < 0.05)
and inflammatory infiltration were absent in the kidneys of
the conversion group rats. Figure 2(c,) gives an idea about the
treatments influence on the tubules. Clearly, CsA promotes
more tubular damage than SRL, and CsA conversion to SRL

revealed less total lesions grade in glomerular and tubular
fields.

Collagen is the major insoluble fibrous protein in the
extracellular matrix and in connective tissue and is clearly
marked with Masson’s trichrome; modifications of collagen
production reflect cellular changes and consequent kidney
dysfunction. In the kidneys from vehicle-treated rats, colla-
gen staining was rare in the glomeruli, and a small amount
of blue Trichrome staining appeared in the outer borders
tubules and around the vessels (Figures 2(a,_s), 2(b,.5), and
2(cy.5)). After 9 weeks of CsA treatment, staining was clearly
visible in the outer borders of tubular cells (cortex and
medulla), well representing wide-spread interstitial fibro-
sis. Bowman’s capsule thickening also occurred in some
glomeruli; around the vessels we also verified higher collagen
deposition in the CsA-treated rats. Sirolimus and conversion
group revealed normal collagen staining (comparable to that
encountered in the control group).

3.2. Nephrotoxicity Evaluation through Serum, Kidney, and
Urine Markers. Classical serum markers of renal function,
such as creatinine and BUN, presented a trend to increased
levels after 3 weeks of CsA treatment, accompanied by a
trend to decreased creatinine and BUN clearances (Figures
3(a), 3(b), 3(d), and 3(e)), resp.); however, all those measures
did not reach a statistical significant value. Moreover, CsA
showed a trend to decreased glomerular filtration rate (GFR).
On the other hand, unchanged values were found for the
SRL group for all serum and urine markers. Long-term
CsA treatment (9 weeks) presented a trend to aggravated
serum creatinine and BUN levels; in addition, while GFR and
kw/bw remained decreased, kidney TBARs production and
clearance significantly increased (P < 0.05). The main change
found for the SRL treatment after 3 weeks was increased
urinary protein, with additional increment after 9 weeks,
suggesting a time-dependent effect. The conversion protocol
revealed no significant change on serum creatinine and BUN
levels and clearances; moreover, GFR remains unchanged as
well as urinary protein and TBARs (Figure 3).

NGAL has been described as a putative biomarker of
nephrotoxicity. Long-term CsA treatment only promoted
serum NGAL increment (P < 0.05), without affecting urine
and clearance values. The rats treated with SRL presented
increased serum and urine NGAL contents, as well as
augmented clearance. The use of SRL to replace CsA leads
to increased NGAL levels in serum and urine compared to
the CsA group (P < 0.05) (Figures 4(a), 4(b), and 4(c)).
Figure 4(d) showed the correlation between serum and urine
NGAL levels; interestingly, with only 6 samples of each group,
while the control and CsA groups were unable to show
significant Person’s correlation; in SRL group there was a good
linearity (r = 0,627, P = 0,183), which was even more
evident and statistically significant, in the conversion group
(r = 0.905, P = 0.034).

3.3. Serum Markers of Inflammation, Proliferation, and Angio-
genesis. Unchanged values of serum hsCRP were found
for both immunosuppressive drugs when compared with
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FIGURE 1: Semiquantitative evaluation of vascular (a), glomerular (b), and tubulointerstitial (c) lesions. Each graphic represents one lesion
for the 3 groups at week 3 (control, cyclosporin A, and sirolimus) and 4 groups at week 9 (control, cyclosporin A, sirolimus, and conversion).
Values are mean + SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 versus control; “P < 0.05 and **P < 0.001 versus cyclosporin; P < 0.05
and **P < 0.01 versus sirolimus. GBM thickening, glomerular basement membrane thickening.

the control group. However, serum IL-13 showed distinct
patterns; in fact, SRL treatment was able to increase IL-
183 levels in the short-term treatment and CsA to decrease
in the long-term use (Figures 5(a) and 5(b)). Serum IL-2
levels, which is simultaneously a marker of inflammation
and immunosuppressive activity, decreased after 3 weeks
of SRL treatment (P < 0.01). Identical reduction (P <
0.01) was found at 9 weeks for all the treated groups (CsA,
SRL, and conversion) versus the control one (Figure 5(c)).
Serum contents of the VEGF only decreased in the short-
term treatment for both drugs, with unchanged values in
long-term protocols. Serum TGF-beta levels showed a trend
to increased values after 3 weeks, which was even more

pronounced after 9 weeks in the CsA group (Figures 5(e)
and 5(f)). Interestingly, similar pattern was encountered for
serum IL-7 levels, showing significant correlation with serum
TGEF- 3, contents in the short- and long-term treatments (r =
0.871,P = 0.129; r = 0.873, P = 0.053, resp., in Person’s Test).

3.4. Kidney Gene Expression Evaluation. Several markers
of proliferation, fibrosis, inflammation, and angiogenesis
were evaluated in terms of kidney mRNA expression in the
weeks 3 and 9 for the three immunosuppressive protocols
in comparison to control group (Figure 6). After 3 weeks of
CsA treatment, a significant downregulation of the antigen
identified by the monoclonal antibody Ki67 (MKi67) (P <
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FIGURE 2: Total score of vascular (a,), glomerular (b, ), and tubulointerstitial (c,) lesions and representative photomicrographs of kidney
histomorphologic sections with PAS and Masson’s trichrome stainings. The image (a,) represents a normal kidney arteriole from the control
group and A, an arteriolosclerosis lesion present in all the rats treated with CsA. (b,) and (b;) represent a normal capsule and a vascular pole
hyalinization and Bowman’s capsule thickening from the CsA group, respectively. (c,) and (c;) images match normal tubules and tubular
calcification in the kidney of CsA-treated rats, respectively. Representative photomicrographs of kidney histomorphologic sections with
Masson’s trichrome staining for control ((a,), (b,), and (c,)) and CsA ((a5), (bs), and (c;)). CsA promotes collagen fibers deposition around
arterioles, Bowman’s capsules, and tubules (fibrosis). Values are mean + SEM. P < 0.05, **P < 0.01, and ***P < 0.001 versus the control

group; “P < 0.05 and *P < 0.01 versus cyclosporin.

0.001), CRP (P < 0.01), TNF-alpha (P < 0.05), and VEGF
(P < 0.01) was found (Figure 6). However, IL-2, COX-2,
mTOR, and IL-18 remain unchanged. Furthermore, there
was a significant overexpression of proliferating cell nuclear
antigen (PCNA) and tumor protein p53 (TP53) mRNA (P <
0.001), accompanied by a slight increase (P < 0.05) in the
expression of TGF-; and NF-«B. On the other hand, the
mTOR inhibitor only stimulated the expression of TP53 gene

and downregulated some inflammatory markers (TNF-a,
COX-2, and IL-1f). In the long-term CsA treatment, almost
all the genes presented normal mRNA expression, when
compared with the control group. However, a significant
upregulation of IL-2, mTOR, and Mki67 was encountered.
In the SRL and conversion groups only mTOR and Mki67
remained overexpressed, in contrast to what was observed
with the short-term exposures.
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3.5. Kidney Protein Expression Evaluation. Short-term CsA
treatment increased CTGE, KIM-1, mTOR, NF-xf3; , and
TGF-B (P < 0.001) protein expression, when compared
to control, while SRL treatment was unable to promote
changes on the expression of these proteins (Figures 7
and 8). Long-term treatment with CsA promoted increased
expression of mTOR, TGF-f3, and CTGE, versus the con-
trol group, but the last two proteins present less area
and stain intensity (QIC score) when compared to the
short-term (3 weeks) CsA treatment. Kidney KIM-1, NF-
kB, and PCNA expression were unchanged in the CsA-
treated rats when compared with the control animals. SRL
treatment promoted, after 9 weeks, a decreased KIM-1
expression and overexpression of TGF-f. In the conver-
sion protocol, CTGF and PCNA protein overexpression
was obtained, but mTOR and TGF-f8 expression were sig-
nificantly reduced when compared with the CsA group
(Figures 7 and 8).

4. Discussion

Monitoring immunosuppressive therapy in solid organ trans-
plant patients is based on measuring putative indicators of
allograft rejection, as well as on regularly assessing drug
blood levels, which should be maintained within the estab-
lished therapeutic range for the drug in order to maintain
immunosuppressive efficacy without excessive/undesirable
side-effects. Drug-related nephrotoxicity evaluation has been
mainly based on classical serum measures of renal function,
which are easier to perform and less expensive; however, an
increasing amount of evidence suggests that these markers
cannot accurately reflect the renal function status at a given
time point of drug use. In fact, traditional markers of
nephrotoxicity, such as increased BUN or serum creatinine,
have been reported as insensitive, only indicating damage
when 70-80% of renal epithelial mass has been lost [31, 32].
The use of noninvasive samples (e.g., urine) has been pointed
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as a choice to access drug-related toxicity; however, detection
of enzymes and other proteins can be difficult due to their
instability and high variability levels in urine [32]. Identifying
potentially useful biomarkers in peripheral blood and urine,
compared to kidney tissue markers (gene or protein), will be
clinically very important. The current study was intended to
clarify the pathways of nephropathy evolution in a protocol
of conversion from CsA to SRL in the rat, focusing on
serum, urine, and renal (gene and protein) tissue samples,
as well as to elucidate the involvement of several emergent
biomarkers of renal damage which are putative candidates
to act as players in the evolution from renal dysfunction to
nephrotoxicity.

In our study, the classical serum and urine markers were
unable to accurately reflect the changes on renal function
after both the short- and long-term treatments, despite the
presence of renal lesion, which were more pronounced for
the longer CsA exposure; that failure demonstrates the need
of better biomarkers of renal dysfunction/damage. Regarding

renal pathology characterization, we found that vessels are
the first renal structures affected by CsA use, after just
3 weeks of treatment, as shown by the presence of some
lesions, such as vascular hyperemia and arteriolar vacuoliza-
tion (that might be related to hypertension appearance);
the lesions were further aggravated with prolonged CsA
exposure. This data complements the information that the
first CsA pathologic events are related to afferent arteriolar
vasoconstriction, thrombotic microangiopathy, and isomeric
tubular vacuolization [33]. In addition, acute CsA events are
related to decreased vasodilation and unopposed vasocon-
striction and free radical formation, which are among the
main mechanisms underlying development of hypertension
and decreased GFR [34]. SRL has been described as a less
nephrotoxic agent than CsA [20], which explains the fact
that mTOR inhibitors have been used to replace CsA [9, 11].
According to our data, SRL induces less toxicity in vascular,
glomerular, and tubular fields than CsA, and this factor leads
to a better profile in the conversion group; however, tubular
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vascular congestion and hyperemia were not prevented when
using SRL after CsA. Overall, we can conclude that total
vascular scoring in the conversion group remained similar
to the CsA group, but glomerular and tubular lesions scores
were clearly reduced due to conversion to SRL. In addition, in
the CsA-treated rats there was development of kidney fibrosis
through collagen formation and deposition around vessels
and tubules, together with bowman’s capsules thickening.
SRL, per se, or even after CsA treatment, was unable to
present fibrosis or collagen deposition.

After 3 weeks of CsA exposure very slight changes
on tissue structure were found, with absent or only mild
lesions; however, after the long-term CsA exposure, signifi-
cant glomerular, tubular, and vascular lesions were observed.
In spite of that, at week 9 renal markers used in clinical
practice (GFR, creatinine and BUN contents and clearances)
appeared only modestly changed. Additionally, we observed
an interesting variation of MDA clearance levels between
3 and 9 weeks of CsA treatment, when renal lesions were
clearly noted. Knight et al. detected high MDA levels in
urine of transplanted patients, but they were unable to
explain their importance [35]. Our data suggests that MDA
clearance could be a predictive marker of CsA-induced
nephrotoxicity, as increased MDA clearance appears at the
same time point as the first kidney lesions. Oxidative stress
can promote the formation/release of a variety of vasoactive
mediators [36] that can affect renal function directly by
causing renal vasoconstriction or decreasing the glomerular
capillary ultrafiltration coefficient, thus reducing the GFR.
Moreover, the relationship between proteinuria and CsA-
evoked nephrotoxicity is complex, limiting its power as an
early marker [13]. Lipid peroxidation occurs as a result
of multiunsaturated lipids reacting with oxidizing agents,

promoting oxidative stress in the kidney structures. Urinary
MDA reflects the presence of renal damage, which may
be the cause or the consequence of lipid peroxidation, and
the correlation between MDA clearance and kidney lesion
grade could be a good strategy to identify early CsA-induced
nephrotoxicity. The presence of slight or low grade lesions
on the chronic SRL treatment and in the conversion protocol
groups reinforces this idea, because no significance increase
was found in MDA clearance for both groups.

The development of noninvasive biomarker that could
diagnose renal dysfunction early and also monitor the
response to therapy, as well as the ability to predict severity
and outcome, would be very valuable. It is also important to
recognize that changes in serum creatinine and BUN con-
centrations primarily reflect functional changes in filtration
capacity and are not genuine injury markers [37]. During the
last years, there has been an effort to identify better accurate
biomarkers of acute CsA-induced nephrotoxicity. Gelatinase-
associated lipocalin (NGAL) has been indicated as an acute
marker of nephrotoxicity [38, 39]. NGAL in urine and plasma
could have a 10,000-fold and 100-fold concentration rise,
respectively, from normal levels in cases of renal injury. This
could make NGAL a potentially very sensitive marker of
different degrees of renal wound. However, according to our
data, short- and long-term CsA treatments (clearly described
as a nephrotoxic drug) were unable to promote increased
serum and urine NGAL levels. Curiously, urine and serum
samples presented linearity in the SRL group and a strong
correlation in the conversion group. SRL is described in the
literature as a less nephrotoxic agent than the calcineurin
inhibitors, but one of the effects better described is the devel-
opment of SRL-evoked proteinuria [40, 41]. The elevation
in urine and serum NGAL levels in the SRL-treated rats in



BioMed Research International

20 PCNA 15 TP53 mTOR
’ 3w 9w ' 3w 9w 2 3w 9w
5 1.5 et 5 10 ok sk o x I
£ 10 % ' * g 1
#
g o5 O 05 S - #
S oo T it —I— o . & 01—+ !
Z .
U Q“ . 1_4
2 05 - !!Eij 00 pal [ [==l
~1.0 ~05 _
Ctrl CsA Sl Ctrl CsA Srl Conv Ctrl CsA Srl  Ctrl CsA Srl Conv Ctrl CsA Srl ~ Ctrl CsA SrlConv
(a) (b) ()
s TGF-B, o NF-«f3 Mki67
' 3w 9w ' 3w 9w ) 3w 9w
foy) —~~ sk sk sk Kk ok
g 10 9 05 9
& ¥ g O g
5 05 3 p Z
= . #i# * S o0 {— A . ) .
< 00{+ — < H s TR
& - L 05 g
= —05 Z = -
— 0 J —
Ctrl CsA Srl  Ctrl CsA Srl Conv Ctrl CsA Srl  Ctrl CsA Srl Conv Ctrl CsA Sr1  Ctrl CsA Srl Conv
(d) (e) (f)
0.5 CRP TNF-« 3 IL-2
’ 3w ow 1 3w 9w 3w * Iw
= 00 bl ﬁ o * kkk -
T e g e g
~y T2 ]
5 £ . o
- |
Q 1.0 E 3 = 04— - +
-1.5 —4 -
Ctrl CsA Srl  Ctrl CsA Srl Conv Ctrl CsA Srl ~ Ctrl CsA Srl Conv Ctrl CsA Srl  Ctrl CsA Srl Conv
(g) (h) (i)
COX-2 IL-1B VEGF
1.5 1.0 1.0
Lo 3w Iw 3w CATS 3w Iw
a . = 05 * % P~
£ 05 g ## i E g 05 #h#
z N Z  00{— —I— & [
S o0{+ = + S . S 00{+ =
a . -0.5 =
=05 —~ (u'?l
S _10 = -10 5 05
— 5 — —
Ctrl CsA Srl ~ Ctrl CsA SrlConv CtrlCsA Srl ~ Ctrl CsA Srl Conv CtrlCsA Sl Ctrl CsA Srl Conv

)

()

M

1

FIGURE 6: Kidney mRNA expression of proliferation, inflammation, and angiogenesis mediators. PCNA (a), TP53 (b), mTOR (c), TGF-f;
(d), NF-«B (e), and Mki67 (f) as proliferation status markers; CRP (g), TNF-« (h), IL-2 (i), COX-2 (j), and IL-18 (k) as inflammation status
markers and VEGF (1) as angiogenesis status marker. Values are mean of CNRQ (calibrated normalized relative quantities) of the control
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our study could be related to the proteinuria appearance.
Recently, a mouse mTOR knockout model revealed accumu-
lation of autolysosomal vesicle in podocytes that potentiated
proteinuria appearance [41] and reduced AKT activity, thus
affecting podocyte cytoskeleton [42]. Moreover, concerning
the tubular field, mTOR inhibition by using rapamycin has
a role in the protein transport because it reduces tubular
protein reabsorption that contributes to increasing urinary

protein levels [43]. Furthermore, angiotensin II receptor
blocker can counteract the effect of sirolimus, not only
through hemodynamic changes but also partly by repairing
the injury of podocytes [40].

In our study, a trend to increased serum and kidney TGEF-
B, was found in the CsA-treated rats, starting after just 3
weeks and aggravating with prolonged exposure, suggesting
this factor as a putative good biomarker of nephrotoxicity
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FIGURE 7: Kidney protein expression by immunohistochemistry. CTGF (a), KIM-1 (b), mTOR (c), and NF-xB, (d). Each figure is
representative of the groups at week 3 (control, cyclosporin A, and sirolimus) and 4 groups at week 9 (control, cyclosporin A, sirolimus,
and conversion). CTGFE, connective tissue growth factor; KIM-1, kidney injury molecule-1; mTOR, mammalian target of rapamycin; NF-xB,,
nuclear factor kappa beta-1.
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progression. Interestingly, similar pattern was encountered
for serum IL-7 levels, showing significant correlation with
serum TGF-f3; contents in the short- and long-term treat-
ments. IL-7 is produced constitutively by stromal cells and
consumed by the available pool of resting T cells, all of
which express the IL-7 receptor (IL-7R) at high levels except
for CD4™ CD25" regulatory T cells. Circulating IL-7 levels
increase during periods of lymphopenia to maintain naive
T-cell homeostasis and support the thymic-independent
peripheral expansion and maintenance of mature T cells
[44] because they upregulate bcl-2 protein that has anti-
apoptotic properties [45, 46]. CsA treatment decreases the
immune system, specially T-cells number and activation, but
alternatively the remaining immune cells can counterwork
the immunologic depression by increasing IL-7 levels which
could be correlated with the progression of chronic kidney
disease in this study.

Changes in messenger RNA expression are considered to
be one of the earliest events, which may occur in response to
cellular and tissue damage; it has been speculated that these
biomarkers might help to predict adverse effects before dam-
age is indicated by the current gold standard markers (clinical
chemistry and histopathology). Current theories point that
renal damage is caused by nonimmunological factors, such
as ischemia, which lead to activation of various proinflam-
matory and profibrotic mediators. A parallel concept of how
CsA might induce renal injury was described by Li and
Yang, suggesting that kidney damage involves activation of
the innate immune response that causes NF-«f3 activation
and induces dendritic cell maturation and T-lymphocyte
infiltration into the graft, with both pathways ultimately
resulting in interstitial inflammation and interstitial fibrosis
that contributes to chronic nephropathy [47]. In agreement,
our data confirm that CsA toxicity might start with increased
NF-xf3 gene (RT-qPCR) and protein (immunohistochem-
istry) overexpression after 3 weeks of CsA treatment, an
effect that is then downregulated with prolonged exposure.
SRL treatment reduced mRNA levels, resulting in normal
protein expression, when compared to control, both in short-
and long-term treatments, indicating that this nuclear factor
could have an important impact in the development of
nephrotoxicity. At the end of the conversion protocol (CsA
replaced by SRL), no difference was found in gene expression
but protein overexpression remained in the tubulointerstitial
region, most probably because of the previous CsA exposure.
In our animal model, the short-term CsA treatment was
mainly associated with upregulation of TGF-f3, and PCNA
in the kidney tissue, which has been identified as the key
mediator of fibrosis and proliferation [47, 48]. However,
these changes were accompanied by a putative compensatory
response, since markers of inflammation (including COX2,
TNF-a, and CRP), as well as of cellular proliferation (MKi67)
and angiogenesis (VEGF), were downregulated, perhaps
responsible for the attenuation of the cytotoxic effects of
CsA in the short term. The overexpression of NF-xf3 and
TP53 might be included in this compensatory response, since
they inhibit mMTOR [49]. Short-term SRL treatment revealed
acute anti-inflammatory, antifibrotic, and antiproliferative
properties, viewed by the downregulation of kidney mRNA

BioMed Research International

levels of TNF-«, COX2, IL-15, TGF-f3;, NF-«f3, and mTOR.
Nevertheless, during prolonged CsA exposure, nephrotoxic-
ity evolves, as viewed by the degree of increased histological
lesions, which seems to be associated with other molecular
pathways and mediators. In fact, there was a significant
overexpression of MKi67, contrary to what was observed after
the short-term treatment, suggesting a depletion of counter-
regulatory responses, which was accompanied by a parallel
increase in mTOR expression, a serine/threonine protein
kinase, important in regulating cell growth, proliferation,
motility, survival, protein synthesis, and transcription [48].
As Lieberthal and Levine demonstrated, mTOR plays an
important role in mediating the process of regeneration
and recovery, depending on the kidney damage extension
[50]. Moreover, mTOR activity is low or absent in the
normal kidney but increases markedly after acute kidney
injury. In agreement, mTOR inhibition has been associated
with amelioration of kidney fibrosis, glomerulosclerosis, and
interstitial inflammation, having an important role in distinct
renal diseases [50-52]. In our study, protein expression
assessed by immunostaining revealed increased mTOR in the
CsA-treated rats, which is in agreement with a previous study
that suggested mTOR overexpression in CsA-treated rats,
resulting in podocyte epithelial to mesenchymal transition
leading to glomerular damage [53]. In addition, while normal
kidney mTOR expression was found in the SRL-treated rats,
there was an important decreased kidney expression in the
conversion protocol group, which might explain the reduced
lesions found when compared with the CsA monotherapy
group.

In the last years, some toxicological studies showed hypo-
thetical biomarkers that could predict acute nephropathy
[32, 37, 54]. However, those studies were unable to assess if
they could be viewed also as markers of chronic toxicity. Due
to its functional reserve, minor effects on kidney function are
too difficult to detect. Kidney injury molecule-1 (KIM-1) is
a type 1 transmembrane protein expressed in the proximal
tubules and further excreted in the urine; in the last years,
KIM-1 has been pointed as a possible marker of renal injury
in acute models. This factor has a role in proliferation and
tissue repair [32, 55] because it confers phagocytic capacity to
clear cell debris [56]. In our study, KIM-1 staining occurred
in proximal tubule epithelial cells and might putatively be
indicated as one of the most sensitive markers of tissue injury,
in agreement with the previous suggestion of Rached et al.
when studying nephrotoxin ochratoxin A [32]. In our study,
after 3 weeks of CsA treatment, intense KIM-1 staining was
found in the proximal tubules, but not after 9 weeks, when less
stain intensity was found in all proximal tubules, suggesting
that KIM-1 could be viewed as a putative good marker of
acute CsA toxicity (without structural lesions), but not as a
biomarker of chronic CsA treatment nephrotoxicity. KIM-11is
downexpressed in the kidneys of SRL-treated rats; however,
when SRL was used to replace CsA (conversion group), a
similar expression was found to that encountered for the
CsA-treated rats after 3 weeks, suggesting that previous CsA
exposure damaged some proximal tubules in an irreversible
manner.



BioMed Research International

Connective tissue growth factor (CTGF) is a polypeptide
implicated in the extracellular matrix synthesis that belongs
to a profibrotic signalling (TGF-f3; downstream modulator)
and has been pointed as a possible biomarker of CsA-
evoked damage. In our model, kidney CTGF expression
increased after short- and long-term treatment with CsA, in
agreement with the kidney overexpression of TGF- 3, viewed
by immunohistochemistry. After a longer CsA exposure the
kidney expression of CTGF was slightly reduced, which
might be explained by an increased urinary elimination, as
previously suggested by O’Connell et al. in another experi-
mental study [18]. SRL treatment per se does not promote
any significant CTGF expression when compared with the
control, in agreement with the absence of fibrosis or collagen
deposition in the SRL-treated rats, as previously mentioned.
However, SRL treatment after CsA therapy (Conversion pro-
tocol) was unable to restore basal levels of CTGF, suggesting
that, once again, some of the lesions induced by CsA are
maintained after the conversion for SRL.

In chronic kidney disease, rapamycin was able to slow
the progression of renal fibrosis and delayed the onset of
renal failure, through reduction of glomerular hypertrophy,
decrease of proinflammatory and profibrotic cytokines pro-
duction, and decline in interstitial inflammation [48]. As
previously suggested, rapamycin is less fibrogenic than CsA
[20], which is in agreement with the reduced kidney damage
in the conversion protocol of our study. Our results reinforce
the rationale for the early substitution of CsA by SRL, not only
because longer CsA exposure is notoriously more deleterious,
promoting structural kidney deterioration, but also because
mTOR overexpression seems to be a feature of the chronic
CsA exposure.

5. Conclusions

This experimental study demonstrated that CsA-induced
nephrotoxicity is significantly aggravated over time and
distinct mechanisms seem to underlie short- and long-
term renal toxicity. The currently used clinical techniques
and biomarkers, namely of biochemical impairment (such
as serum and urine creatinine and BUN contents and
clearance), if coupled with genetic and protein analysis in
different samples, will bring more accuracy to early detect and
follow up the appearance and development of nephrotoxicity.
Conversion to SRL prevented CsA-induced renal damage
evolution, which is better viewed by nontraditional, emergent
biomarkers including serum TGF-f and IL-7, TBARs clear-
ance, and kidney TGF-f and mTOR, while NGAL (serum
versus urine) seems to be a feasible indicator of substitution
to the mTOR inhibitor.
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