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Abstract: Background: The objectives of this study were to classify patients with serum magnesium
derangement on hospital admission into clusters using unsupervised machine learning approach and
to evaluate the mortality risks among these distinct clusters. Methods: Consensus cluster analysis was
performed based on demographic information, principal diagnoses, comorbidities, and laboratory
data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum
magnesium ≥ 2.4 mg/dL). Each cluster’s key features were determined using the standardized
mean difference. The associations of the clusters with hospital mortality and one-year mortality were
assessed. Results: In hypomagnesemia cohort (n = 13,320), consensus cluster analysis identified
three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium.
Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function.
Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were
associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia
cohort (n = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of
cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due
to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1,
cluster 2 was associated with higher hospital mortality and one-year mortality. Conclusion: Our
cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized
patients with dysmagnesemia. Future studies are required to assess the application of this ML
consensus clustering approach to care for hospitalized patients with dysmagnesemia.

Keywords: artificial intelligence; clustering; consensus clustering; dysmagnesemia; electrolytes;
hypomagnesemia; hypermagnesemia; individualized medicine; machine learning; magnesium;
mortality; nephrology; personalized medicine; precision medicine

Diagnostics 2021, 11, 2119. https://doi.org/10.3390/diagnostics11112119 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-9389-073X
https://orcid.org/0000-0001-8249-0848
https://orcid.org/0000-0002-6010-0033
https://orcid.org/0000-0002-1631-8238
https://orcid.org/0000-0003-1814-7003
https://orcid.org/0000-0001-9954-9711
https://doi.org/10.3390/diagnostics11112119
https://doi.org/10.3390/diagnostics11112119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11112119
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11112119?type=check_update&version=3


Diagnostics 2021, 11, 2119 2 of 15

1. Introduction

Magnesium is one of the most common cations in the body with great physiologic
importance, including signal transduction, glycolysis, oxidative phosphorylation, protein
synthesis and degradation, and more than 300 intracellular reactions [1–7]. Previous stud-
ies have reported hypomagnesemia and hypermagnesemia as common as 11–20% and
9–12%, respectively [8,9]. Dysregulated magnesium level or dysmagnesemia, whether
hypomagnesemia [8,10–12] or hypermagnesemia [8,11–14], has been associated with ad-
verse outcomes, including cardiac arrhythmias, respiratory failure, and increased mortality
in various patient populations [8,11,13,15–19]. Magnesium homeostasis is regulated by
intestinal absorption and renal excretion of magnesium [20], and identifying the pheno-
type of patients with dysmagnesemia on hospital admission can often be challenging
because of lack of detailed clinical information prior to admission and limited data on
urinary magnesium.

With the advancement of electronic medical record (EMR) and artificial intelligence,
machine learning (ML) approaches have been developed as part of precision medicine to as-
sist in clinical decision-making, including disease detection, medical imaging, and explain-
able risk prediction [21–29]. In recent years, unsupervised ML algorithms have been uti-
lized to reveal the patterns of diseases such as diabetes and cardiovascular diseases [30–33].
Consensus clustering is an unsupervised ML technique used to identify patterns of data,
and provides a visualization tool to inspect cluster numbers, membership, and bound-
aries [34]. It can be utilized to search for similarities and heterogeneities among data
and isolate them into clinically meaningful clusters [22,35]. Recent investigations have
demonstrated that ML clustering methods can distinguish meaningful disease subtypes
associated with different clinical outcomes [36,37]. Given the heterogeneity of patients with
dysmagnesemia on hospital admission [8], the application of ML consensus clustering may
help identify distinct phenotypic and clinicopathological clusters of dysmagnesemia that
are associated with different clinical outcomes.

In this study, we aimed to identify clinically meaningful clusters of hospitalized
patients with dysmagnesemia on hospital admission using an unsupervised ML approach
and to assess mortality risks among these distinct clusters.

2. Methods
2.1. Patient Population

Adult patients (age ≥ 18 years) admitted to Mayo Clinic in Rochester, Minnesota, USA
from January 2009 to 31 December 2013 were screened. Patients with serum magnesium
outside the normal reference range (1.7–2.3 mg/dL) on hospital admission were included.
Patients who did not have serum magnesium measurement within 24 h of hospital admis-
sion or had normal serum magnesium on hospital admission were excluded. Patients were
divided into 2 cohorts: (1) hypomagnesemia cohort (serum magnesium ≤ 1.6 mg/dL) and
(2) hypermagnesemia cohort (serum magnesium ≥ 2.4 mg/dL). The Mayo Clinic Institu-
tional Review Board approved this study (IRB number 21-003088 and date of approval;
30 March 2021). All included patients provided research authorization.

2.2. Data Collection

As previously described, we collected pertinent demographic information, principal
diagnoses, comorbidities, and laboratory data from our hospital’s EMR [8,14]. Only avail-
able data within 24 h of hospital admission were incorporated into cluster analysis. If there
were multiple laboratory values, the first one within the 24-h time frame was used. We
excluded variables with more than 10% missing data. If the variable had missing data
less than 10%, the missing data were imputed using Random Forest multiple imputation
technique before inputting the data into cluster analysis [38].
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2.3. Cluster Analysis

Unsupervised ML consensus clustering analysis was applied to identify clinical clus-
ters of hypomagnesemia and hypermagnesemia cohorts [39]. We utilized a pre-specified
subsampling parameter of 80% with 100 iterations. The number of possible clusters (k)
was selected to be between 2 to 10 in order to avoid excessive numbers of clusters that
would not be clinically useful. The ideal number of clusters was ascertained by evaluating
the cumulative distribution function (CDF), consensus matrix (CM) heat map, cluster-
consensus plots in the within-cluster consensus scores, and the proportion of ambiguously
clustered pairs (PAC) [34,40]. The within-cluster consensus score (range 0–1) is defined as
the average consensus value for all pairs of individuals belonging to the same cluster [34].
A value closer to one indicates better cluster stability [34]. PAC (range 0–1) is calculated as
the proportion of all sample pairs with consensus values falling within the predetermined
boundaries [40]. A value closer to 0 signifies higher cluster stability [40]. The details
regarding the consensus cluster algorithms can be found in the online supplementary.

2.4. Statistical Analysis

After cluster identification, subsequent analyses were performed to characterize dif-
ferences among the clusters. Clinical characteristics between the clusters were compared
using Student’s t-test for continuous variables and Chi-squared test for categorical vari-
ables. The key features of each cluster were determined using the standardized mean
difference in clinical characteristics between each cluster and the overall cohort, and clinical
characteristics with absolute standardized mean difference of >0.3 were included. Hospital
mortality and one-year mortality were compared among the clusters. Logistic regression
was used to assess the association of the cluster with hospital mortality, and odds ratio (OR)
with 95% confidence interval (95% CI) was reported. In contrast, Cox proportional hazard
regression was used to assess the association of the cluster with one-year mortality, and
hazard ratio (HR) with 95% CI was reported. We did not adjust for differences in clinical
variables between groups because these variables were utilized through unsupervised
machine learning to identify the clusters. We used the ConsensusClusterPlus package
(version 1.46.0) for consensus clustering analysis, and the “missForest” package for miss-
ing data imputation [41]. We used R, version 4.0.3 (RStudio, Inc., Boston, MA, USA) for
all analyses.

3. Results
3.1. Hypomagnesemia Cohort

There were 65,974 hospitalized patients with available admission serum magnesium
measurement. A total of 13,320 (20%) patients presented with hypomagnesemia on hospital
admission. The mean age was 61 ± 17 years. 47% were male. The mean estimated
glomerular filtration rate (eGFR) was 76 ± 31. The mean admission serum magnesium was
1.5 ± 0.2 mg/dL.

The CDF plot displays the consensus distributions for each hypomagnesemia cluster
(Figure 1A, Supplementary Figure S1). The delta area plot, in turn demonstrates the
relative change in the area under the CDF curve (Figure 1B, Supplementary Figure S2). The
largest changes in area occurred between k = 2 and k = 4. Beyond this range, the relative
increase in area became significantly smaller. The CM heatmap (Figure 2A, Supplementary
Figures S3–S11) reveals that the ML algorithm identified k = 2 and 3 with clear boundaries
(Figure 2A), indicating good cluster stability over repeated iterations. K = 2 and 3 also had
high stability given their high mean cluster consensus score (Figure 3A). K = 3 exhibited
favorably low PACs (Supplementary Figure S12); Thus, the consensus clustering analysis
from available hospital admission baseline characteristics identified three clusters that best
represented the data pattern of our patients admitted with hypomagnesemia.
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Figure 1. (A) Cumulative distribution function (CDF) plot displaying consensus distributions for each cluster (k) for pa-
tients with hypomagnesemia; (B) Delta area plot reflecting the relative changes in the area under the CDF curve for hypo-
magnesemia. (C) CDF plot displaying consensus distributions for each cluster (k) for patients with hypermagnesemia; (D) 
Delta area plot reflecting the relative changes in the area under the CDF curve for hypermagnesemia. 

Figure 1. (A) Cumulative distribution function (CDF) plot displaying consensus distributions for each cluster (k) for
patients with hypomagnesemia; (B) Delta area plot reflecting the relative changes in the area under the CDF curve for
hypomagnesemia. (C) CDF plot displaying consensus distributions for each cluster (k) for patients with hypermagnesemia;
(D) Delta area plot reflecting the relative changes in the area under the CDF curve for hypermagnesemia.

Cluster 1 had 3446 (26%) patients. Cluster 2 had 4351 (33%) patients. Cluster 3 had
5523 (41%) patients. As shown in Table 1, baseline characteristics significantly differed
among the three clusters in the hypomagnesemia cohort.

Based on standardized mean difference shown in Figure 4, cluster 1 was mainly
characterized by higher comorbidity burden and lower serum magnesium, albumin, and
calcium. On the other hand, cluster 2 was mainly characterized by younger age, lower
comorbidity burden, especially less history of hypertension, diabetes mellitus, coronary
artery disease, and leukemia/lymphoma, less use of angiotensin converting enzyme
inhibitors (ACEI)/angiotensin receptor blockers (ARB), and diuretics, less acute kidney
injury (AKI), higher eGFR, and lower serum albumin and calcium. Lastly, cluster 3 was
mainly characterized by older age, more history of hypertension, more use of ACEI/ARB,
lower eGFR, higher serum potassium, magnesium, albumin, and calcium.

The hospital-mortality was 3.4% in cluster 1, 1.4% in cluster 2, and 2.3% in cluster 3
(<0.001) (Figure 5A). Compared to cluster 2, cluster 1 and cluster 3 had higher odds
of hospital mortality with OR of 2.45 (95% CI 1.79–3.35), and 1.63 (95% CI 1.20–2.22)
respectively. The one-year mortality was 20.1% in cluster 1, 10.5% in cluster 2, and 16.8% in
cluster 3 (Figure 5B).
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Figure 2. (A) Consensus matrix heat map depicting consensus values on a white to blue color scale of each cluster (k) for 
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of each cluster (k) for patients with hypermagnesemia. 

Figure 2. (A) Consensus matrix heat map depicting consensus values on a white to blue color scale of each cluster (k) for
patients with hypomagnesemia; (B) Consensus matrix heat map depicting consensus values on a white to blue color scale of
each cluster (k) for patients with hypermagnesemia.
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Figure 3. (A) The bar plot represents the mean consensus score for different numbers of clusters (K ranges from two to ten)
for patients with hypomagnesemia; (B) The bar plot represents the mean consensus score for different numbers of clusters
(K ranges from two to ten) for patients with hypermagnesemia.

Table 1. Clinical characteristics.

Patient
Characteristics

Hypomagnesemia Cohort (n = 13,320) Hypermagnesemia Cohort (n = 4671)

Cluster 1 Cluster 2 Cluster 3 p-Value Cluster 1 Cluster 2 p-Value
(n = 3446) (n = 4351) (n = 5523) (n = 2445) (n = 2226)

Age (years) 66.0 ± 13.5 48.2 ± 15.9 67.9 ± 13.4 <0.001 59.5 ± 17.4 71.9 ± 14.6 <0.001

Male sex 1458 (42) 1848 (42) 2987 (54) <0.001 1444 (59) 1399 (63) 0.008

Race

<0.001 0.72
-White 3208 (93) 3810 (88) 5196 (94) 2198 (90) 2016 (91)
-Black 40 (1) 109 (3) 64 (1) 53 (2) 43 (2)
-Others 198 (6) 432 (10) 263 (5) 194 (8) 167 (8)

Principal diagnosis

<0.001 <0.001

-Cardiovascular 408 (12) 443 (10) 1084 (20) 863 (35) 718 (32)
-

Endocrine/metabolic 133 (4) 136 (3) 218 (4) 83 (3) 126 (6)

-Gastrointestinal 433 (13) 829 (19) 466 (8) 247 (10) 231 (10)

-Genitourinary 184 (5) 94 (2) 332 (6) 16 (0.7) 335 (15)
-

Hematology/oncology 1163 (34) 1082 (25) 1632 (30) 283 (12) 157 (7)

-Infectious
disease 334 (10) 226 (5) 159 (3) 67 (3) 141 (6)

-Respiratory 131 (4) 85 (2) 254 (5) 152 (6) 139 (6)

-Injury/poisoning 363 (11) 828 (19) 649 (12) 293 (12) 187 (8)

-Other 297 (9) 628 (14) 729 (13) 441 (18) 192 (9)

Charlson
Comorbidity Score 3.4 ± 3.0 1.3 ± 1.9 2.7 ± 2.6 <0.001 1.4 ± 1.9 3.2 ± 2.8 <0.001

Comorbidities
-Hypertension 2400 (70) 944 (22) 4101 (74) <0.001 1088 (44) 1621 (73) <0.001
-Diabetes

mellitus 1169 (34) 455 (10) 1835 (33) <0.001 282 (12) 862 (39) <0.001

-Coronary
artery disease 788 (23) 190 (4) 1493 (27) <0.001 451 (18) 933 (42) <0.001

-Congestive
heart failure 215 (6) 67 (2) 398 (7) <0.001 203 (8) 614 (28) <0.001

-Peripheral
vascular disease 170 (5) 50 (1) 256 (5) <0.001 49 (2) 204 (9) <0.001
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Table 1. Cont.

Patient
Characteristics

Hypomagnesemia Cohort (n = 13,320) Hypermagnesemia Cohort (n = 4671)

Cluster 1 Cluster 2 Cluster 3 p-Value Cluster 1 Cluster 2 p-Value
(n = 3446) (n = 4351) (n = 5523) (n = 2445) (n = 2226)

-Stroke 240 (7) 96 (2) 547 (10) <0.001 164 (7) 312 (14) <0.001
-End-stage

kidney disease 278 (8) 38 (1) 458 (8) <0.001 19 (0.8) 270 (12) <0.001

-Dementia 36 (1) 14 (0.3) 80 (1) <0.001 26 (1) 79 (4) <0.001
-COPD 410 (12) 136 (3) 676 (12) <0.001 232 (9) 393 (18) <0.001
-Cirrhosis 178 (5) 132 (3) 187 (3) <0.001 58 (2) 132 (6) <0.001
-Cancer 1699 (49) 1087 (25) 2071 (37) <0.001 414 (17) 597 (27) <0.001
-

Leukemia/lymphoma 142 (4) 123 (3) 293 (5) <0.001 117 (5) 90 (4) 0.22

Alcohol use 234 (7) 393 (9) 213 (4) <0.001 162 (7) 107 (5) 0.008

Laboratory test
-eGFR

(mL/min/1.73 m2) 67 ± 29 101 ± 23 63 ± 26 <0.001 81 ± 25 28 ± 16 <0.001

-Potassium
(mEq/L) 3.9 ± 0.6 3.9 ± 0.5 4.3 ± 0.6 <0.001 4.2 ± 0.6 4.8 ± 0.9 <0.001

-Magnesium
(mg/dL) 1.3 ± 0.2 1.4 ± 0.1 1.5 ± 0.1 <0.001 2.6 ± 0.4 2.7 ± 0.4 <0.001

-Albumin
(g/dL) 3.2 ± 0.5 3.1 ± 0.5 3.7 ± 0.4 <0.001 3.8 ± 0.4 3.4 ± 0.5 <0.001

-Total calcium
(mg/dL) 8.3 ± 0.8 8.2 ± 0.6 9.2 ± 0.7 <0.001 9.3 ± 0.6 9.0 ± 0.8 <0.001

-Phosphorus
(mg/dL) 3.7 ± 1.0 3.5 ± 0.8 3.8 ± 0.9 <0.001 3.7 ± 0.7 5.0 ± 1.8 <0.001

Medication
-ACEI/ARB 1629 (47) 557 (13) 3047 (55) <0.001 789 (32) 1172 (53) <0.001
-Diuretics 1524 (44) 699 (16) 2602 (47) <0.001 1007 (41) 1150 (70) <0.001

Acute kidney injury 830 (24) 179 (4) 1431 (26) <0.001 156 (6) 1947 (87) <0.001
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Figure 4. The standardized differences across three clusters for each of baseline parameters for
patients with hypomagnesemia and hypermagnesemia. The x-axis represents the standardized
differences value, and the y axis represents baseline variables. The dashed vertical lines signify the
standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: AG, anion gap; AKI, acute kidney
injury; BMI, body mass index; CHF, congestive heart failure; Cl, chloride; COPD, chronic obstructive
pulmonary disease; CVA, cerebrovascular accident; DM, diabetes mellitus; ESKD, end stage kidney
disease; GFR, glomerular filtration rate; GI, gastrointestinal; Hb, hemoglobin; HCO3, bicarbonate;
K, potassium; ID, infectious disease; MI, myocardial infarction; Na, sodium; PVD, peripheral vascular
disease; RS, respiratory system; SID, strong ion difference.
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Compared to cluster 2, cluster 1 and cluster 3 also had higher risk of one-year mortality
with HR of 2.04 (95% CI 1.79–2.32) and 1.68 (95% CI 1.49–1.90) respectively (Table 2).

Table 2. Mortality outcomes according to clusters.

Hospital
Mortality OR (95% CI) 1-Year Mortality HR (95% CI)

(a) Hypomagnesemia cohort

Cluster 1 3.4% 2.45 (1.79–3.35) 20.1% 2.04 (1.79–2.32)

Cluster 2 1.4% 1 (ref) 10.5% 1 (ref)

Cluster 3 2.3% 1.63 (1.20–2.22) 16.8% 1.68 (1.49–1.90)

(b) Hypermagnesemia cohort

Cluster 1 1.9% 1 (ref) 17.3% 1 (ref)

Cluster 2 8.8% 5.04 (3.63–6.98) 40.3% 2.85 (2.51–3.24)

3.2. Hypermagnesemia Cohort

A total of 4671 (7%) patients presented with hypermagnesemia on hospital admission.
The mean age was 65 ± 17 years. 61% were male. The mean eGFR was 56 ± 34. The mean
admission serum magnesium was 2.6 ± 0.4 mg/dL.

The CDF plot displays the consensus distributions for each hypermagnesemia cluster
(Figure 1C, Supplementary Figure S13). The delta area plot, in turn demonstrates the
relative change in the area under the CDF curve (Figure 1D, Supplementary Figure S14).
The largest changes in area occurred between k = 2 and k = 4. Beyond this range, the relative
increase in area became significantly smaller. The CM heatmap (Figure 2B, Supplementary
Figures S15–S23) reveals that the ML algorithm identified k = 2 with clear boundaries
(Figure 2B), indicating good cluster stability over repeated iterations. K = 2 also had high
stability given its high mean cluster consensus score (Figure 3B). Favorably low PACs were
demonstrated for k = 2 (Supplementary Figure S24). Thus, the consensus clustering analysis
from available hospital admission baseline characteristics identified two clusters that
optimally represented the data pattern of our patients admitted with hypermagnesemia.

Cluster 1 had 2445 (52%) patients while cluster 2 had 2226 (48%) patients. As shown
in Table 1, clinical characteristics were significantly different between the two identified
clusters in the hypermagnesemia cohort. Based on standardized mean difference shown in
Figure 4, the key features of patients in cluster 2, compared to those of patients in cluster 1,
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included older age, higher comorbidity burden, especially more history of hypertension
and diabetes mellitus, more AKI, more hospital admissions primarily due to kidney disease,
and lower eGFR and serum albumin but higher potassium and phosphorus.

Cluster 1 had hospital mortality of 1.9%, while cluster 2 had hospital mortality of
8.8% (p < 0.001) (Figure 5C). Compared to cluster 1, cluster 2 had higher odds of hospital
mortality with OR of 5.04 (95% CI 3.63–6.98). Cluster 1 had one-year mortality of 17.3%,
whereas cluster 2 had one-year mortality of 40.3% (p < 0.001) (Figure 5D). Compared
to cluster 1, cluster 2 also had higher risk of one-year mortality with HR of 2.85 (95%
CI 2.51–3.24) (Table 2).

4. Discussion

ML consensus clustering algorithms offer the ability to efficiently analyze and identify
clusters of patients with different characteristics in a large amount of data [22,35,42,43]. In
this study, the unsupervised ML consensus clustering approach was utilized to distinguish
patients with dysmagnesemia into distinct clusters. Among patients with hypomagne-
semia on hospital admission, age, comorbidity burden, kidney function (with baseline
eGFR and AKI on admission as surrogate markers), and degree of hypomagnesemia were
important features to differentiate the phenotypes. Similarly, among patients with hy-
permagnesemia on hospital admission, age, comorbidity burden, kidney function, and
principal genitourinary diagnosis were important features to differentiate the phenotypes.

Applying the unsupervised consensus clustering approach to the patient character-
istics at the time of hospital admission, we identified three clinically distinct clusters of
patients with concomitant hypomagnesemia. The three clusters demonstrated different
characteristics and were associated with different hospital and one-year mortality risks.
Even though the majority of the patients across all three clusters presented with similar
conditions (mainly hematology/oncology-, cardiovascular-, and gastrointestinal-related
conditions), the three clusters demonstrated different clinical outcomes.

Cluster 2, the reference cluster of hypomagnesemia, consisted of patients with younger
age with the lowest comorbidity burden compared to other clusters. They also had higher
eGFR, lower use of ACEI/ARB and diuretics, and lower incidence of AKI. Interestingly, they
had the highest prevalence of alcohol use. They also had the lowest serum albumin, calcium,
and phosphate compared to other clusters. Calcium and magnesium are electrolytes that
normally bind to albumin. Alteration of circulating albumin levels alters the measured
levels of these electrolytes. Measured or total calcium and magnesium alike are lower in the
setting of concomitant low serum albumin [44–46]. In addition, it is possible that alcoholism
and malnutrition played important roles in the development of hypomagnesemia in this
patient population because of poor oral intake. Furthermore, these patients also had the
highest principal diagnosis of gastrointestinal conditions on admission, which could have
potentially resulted in gastrointestinal magnesium loss or redistribution of magnesium
triggered by acute pancreatitis [47,48]. Given the fact that patients in cluster 2 were younger
and had the lowest comorbidity burden, they had the lowest in-hospital and one-year
mortality risks among the three clusters.

Compared to the patients in cluster 2 of hypomagnesemia, those in clusters 1 and 3
were older and had higher comorbidity burden, reduced kidney function (lower baseline
eGFR and higher incidence of AKI), and higher use of ACEI/ARB and diuretics. Patients
in cluster 1 had the highest comorbidity burden and the highest prevalence of cancer
among the three clusters. They also presented more frequently with a principal diagnosis
of infectious disease on hospital admission. Furthermore, they had the lowest serum
magnesium. A number of cancer-specific therapies can cause hypomagnesemia via renal
magnesium wasting, including platinum-based chemotherapy, anti-epidermal growth
factor receptor (EGFR) monoclonal antibodies, inhibitors of human epidermal growth
factor receptor 2 (HER2), and calcineurin inhibitors [49]. In addition, cancer patients
frequently use medications that cause or exacerbate hypomagnesemia, such as proton
pump inhibitors (PPIs), diuretics, and chemotherapy [49]. These patients in cluster 1 had
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the highest in-hospital and one-year mortality risks among the three clusters, which could
potentially be due to poor outcomes among cancer patients with hypomagnesemia [8,50].
Previous studies also reported that hypomagnesemia is associated with increased mortality
risk among patients with infection [10,51,52], which is one of the main characteristics of
the patients in this cluster.

Patients in cluster 3 of hypomagnesemia were the oldest among the three clusters.
They had the highest prevalence of hypertension, coronary artery disease, congestive heart
failure, and principal diagnosis of cardiovascular disease on hospital admission. They also
had the highest use of diuretics, which could lead to urinary magnesium wasting. Previous
studies have shown that hypomagnesemia in patients with cardiovascular diseases carries
a high mortality rate [53,54]. While these patients in cluster 3 had increased in-hospital
mortality and one-year mortality compared to those in cluster 2, they had lower mortality
when compared to those in cluster 1 (phenotype of cancer patients with hypomagnesemia)
despite having the oldest age group among the three clusters.

Within the cohort of hypermagnesemia on hospital admission, we identified two
clinically distinct clusters by ML consensus clustering approach. Compared to cluster
1, the key features of cluster 2 included older age, higher comorbidity burden, more
hospital admissions primarily due to kidney disease, more AKI, and lower eGFR. Because
of the reduction in kidney function, these patients in cluster 2 likely had reduced ability
to renally excrete magnesium, resulting in hypermagnesemia. Reported clinical cases
include the administration of antacids or magnesium supplements in older patients or
those with reduced kidney function [55]. Conversely, patients in cluster 1 were younger
but had higher alcohol use and were more likely to be admitted with principal diagnoses of
injury/poisoning and hematology/oncology. As such, it is possible that hypermagnesemia
among patients in cluster 1 could have resulted from excessive tissue injury or breakdown
(such as tumor lysis syndrome and burn injury) [56,57]. Compared to those in cluster 1,
patients in cluster 2 had higher hospital mortality and one-year mortality.

The strengths of this study include a large sample size and unbiased data manip-
ulation, and easy reproducibility by unsupervised ML consensus clustering. There are
also, however, limitations that should be noted. First, the data were abstracted from a
single-center, and our patient population was predominantly Caucasian, which might limit
the extrapolation of our findings to other populations. Second, consensus clustering was
performed on hospital admission and did not include data before or during hospitaliza-
tion, which could affect hospitalization-related outcomes. Third, we did not have data on
magnesium supplements or other medications that might have affected serum magnesium,
such as antibiotics, proton pump inhibitors, and chemotherapy. Fourth, some relevant
laboratory results were not available, including 24-h urinary magnesium, fractional uri-
nary excretion of magnesium, and genetic testing (for conditions that might have caused
hypomagnesemia in adults, such as Gitelman syndrome). These investigations are not com-
monly performed on hospital admission and were thus not included in our ML clustering
algorithm. Therefore, future studies are required to assess whether these variables could
have improved the discriminatory ability of these clusters we identified. Nevertheless, we
included readily available data at the time of hospital admission and successfully identified
distinct clusters of dysmagnesemia associated with different clinical outcomes.

5. Conclusions

In summary, we present an unsupervised ML consensus clustering analysis of hospital-
ized patients with dysmagnesemia. We discovered three distinct phenotypes of admission
hypomagnesemia and two distinct phenotypes of admission hypermagnesemia with dif-
ferent hospital and one-year mortality risks. With the advancement of EMR and artificial
intelligence, future studies are required to evaluate and validate the application of this ML
consensus clustering approach to care for hospitalized patients with dysmagnesemia.
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