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Abstract
Understanding the intersection of technology and plastic surgery has been and will be essential to positioning plastic sur-

geons at the forefront of surgical innovation. This account of the current and future applications of artificial intelligence (AI) 

in reconstructive and aesthetic surgery introduces us to the subset of issues amenable to support from this technology. It 

equips plastic surgeons with the knowledge to navigate technical conversations with peers, trainees, patients, and tech-

nical partners for collaboration and to usher in a new era of technology in plastic surgery. From the mathematical basis 

of AI to its commercially viable applications, topics introduced herein constitute a framework for design and execution of 

quantitative studies that will better outcomes and benefit patients. Finally, adherence to the principles of quality data col-

lection will leverage and amplify plastic surgeons’ creativity and undoubtedly drive the field forward.

Editorial Decision date: January 3, 2020; online publish-ahead-of-print January 8, 2020.

“AI is not a doctor, AI is not a cure, AI is a tool – a means 

to an end – increasingly embedded in everything for the 

benefit of the patient”—Keith Bigelow, General Manager, 

GE Healthcare.

“The computer scientist Donald Knuth was struck that ‘AI 

has by now succeeded in doing essentially everything 

that requires ‘thinking’ but has failed to do most of what 

people and animals do ‘without thinking’—that, somehow, 

is much harder!’”—Nick Bostrom, Superintelligence: Paths, 

Dangers, Strategies.

Current interest in artificial intelligence (AI) is unequivocal—

we are fascinated as healthcare professionals, but more 

generally as curious members of humankind. For most of 

us, however, our exposure has been extremely limited. As 

the technology community romanticizes AI and packages 

it into commercial products for resale to the healthcare in-

dustry (and all other industries for that matter), we on the 

front lines cannot help but wonder how to stay ahead of 

the curve. How might a research team grappling with study 

design and difficult data collection best position itself to 

leverage open-source AI resources in the name of effi-

ciency and better patient outcomes? How might the indi-

vidual surgeon use AI tools to assist in optimizing surgical 

plans or improving the patient experience? This account 

should provide plastic surgeons with a practical approach 

to understanding the uses, limitations, and potential of arti-

ficial intelligence in research and clinical practice.
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WHAT IS AN AI PROBLEM?

An introduction to the various applications of artificial in-

telligence is best driven by the following question: What 

is—and what is not—an “AI problem?” Identifying areas 

amenable to support from artificial intelligence should be 

the first step towards AI fluency.

It is important to first understand AI as a blanket term 

used to describe pattern recognition across massive data 

sets. Amazon leverages the features of commoditized 

transactions involving millions of customers and products 

to predict the best product you have not yet thought about 

buying. Specifically, AI is only at play here to the extent that 

a powerful computer can (1) scan a large database to iden-

tify peers (clusters of customers with similar purchasing 

trends) and (2) draw your attention to products you have 

not yet bought, but that your cluster has demonstrated in-

terest in. Different servers, algorithms, and data set sizes 

do this with varying degrees of success. From this perspec-

tive, the broad features of AI problems are much easier to 

elucidate. Google, Spotify, and Netflix all use similar ap-

proaches to modeling human preference and predicting 

user actions.1 Other fields apply this same strategy in less 

intuitive ways: credit card fraud and email spam filtering 

are both glorified pattern recognition problems.2,3

No matter how pervasive this technology has become, 

one must not stray from the basic understanding of AI as 

pattern recognition. The quintessential example is that 

of an AI algorithm trained to differentiate cats from dogs 

through what is called image recognition. Preliminarily, 

when shown an image and asked to classify it as either 

a cat or a dog, an algorithm is no more or less likely to 

choose “cat” or “dog” than would be a human flipping 

a coin. Gradually, however, as the algorithm sees an 

increasing number of images, it can be fine-tuned to begin 

correctly differentiating cats from dogs. Having been fine-

tuned and after looking at thousands or millions of images, 

the AI is now capable of human-level animal recognition 

simply by having learned the pattern.

In medicine, artificial intelligence has been well-

received by the radiology community because radiologists 

interface with a large quantity of standardized data. Plain 

films are more frequently the subject of studies relating 

to AI than are magnetic resonance imaging (MRI) studies 

because they are subject to less interoperator variability. 

A chest x-ray from one hospital is likely to be more sim-

ilar to a chest x-ray taken at another hospital than are two 

MRI studies performed in different centers.4 Standardized 

advanced imaging is now used by technology platforms 

such as Crisalix (Crisalix, Switzerland) and Vectra (Canfield 

Scientific, Parsippany, NJ) to simulate surgeries (breast, 

head, and neck) in the preoperative setting. It follows log-

ically that areas of medicine that are similarly reliant on 

high-quality standardized data are increasingly studied by 

data scientists. For example, the MIT Lab for Computational 

Physiology developed MIMIC, a freely accessible critical 

care database comprised of demographics, vital sign data, 

laboratory test results, procedures, medications, medical 

notes, imaging, and mortality for more than 40,000 critical 

care patients between 2001 and 2012.5 Countless seminal 

studies at the intersection of healthcare and AI have re-

lied on the MIMIC database and others like it.6,7 Successful 

uses of AI in other fields of medicine, such as diagnostic 

ophthalmology, dermatology, precision medicine, and pa-

thology, have also been reported on.8–11

Unsurprisingly, given the precondition of plentiful stand-

ardized data, artificial intelligence has had few successful 

use-cases in surgical fields. In surgery, thought leaders 

hobble towards consensus, publishing their preferences 

in case series with limited enrollees, suggesting sparsely 

available data and high interoperator technical variability, 

which has been a limitation to the use of AI in plastic sur-

gery. Thus, we propose two approaches to the integration 

of AI in plastic surgery: higher-quality data collection and 

feature engineering.

HIGHER-QUALITY DATA COLLECTION

Data collection has historically been the bane of sur-

gical teams. Surgeons are overworked, their craft is time-

sensitive, and complications have dire consequences on 

patient wellbeing. These features of surgery make the in-

tegration of technology a war of attrition. Technologists, 

whose clever products may be backed by strong data, 

often fail to get their proverbial foot in the operating room 

door because they are insensitive to the “ergonomics” of 

being a surgeon. If they fail to sell to surgeons as an ex-

tremely subspecialized category of customer, their prod-

ucts will be viewed as cumbersome and adoption will be 

slow and painful. The same pain points are relevant to sur-

gical data collection.12,13 Countless clever projects have 

failed at standardizing operating rooms for the purpose of 

collecting high-quality surgical data because seamless in-

tegration was not made a priority.

AI enthusiasts are more likely to have their data collec-

tion strategy widely adopted by being mindful of clinic and 

operating room workflow. The current standard of quality 

OR data collection is through the use of video.14 Namely, 

Hashimoto et al described their recording of laparoscopic 

sleeve gastrectomies for quantitative video analysis by al-

gorithms.15 With a greater emphasis on standardized data 

collection, prospective studies can be designed for even-

tual algorithmic analysis.

In plastic surgery, repositories of preoperative and post-

operative two- or three-dimensional imaging have great 

potential to harness the powers of AI. However, stand-

ardization of these images, including angles, lighting, 
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expressions, hair/makeup, not only is difficult to achieve be-

tween different surgeons, but often is poorly standardized 

within the same patient! As we push towards advocating 

for photography standardization to enable peers and pa-

tients to properly evaluate results of new techniques and 

technologies, the missed opportunities with AI should also 

be used to bolster the efforts.

MORE CREATIVE USE OF CURRENTLY 
AVAILABLE DATA—FEATURE 
ENGINEERING

Although Hashimoto et  al successfully collected surgical 

footage for the purpose of analysis by algorithms, data 

collection remains resource-intensive. This has given 

rise to what data scientists call “feature engineering.” 

Feature engineering refers to the process by which ex-

perts “augment,” or annotate data to help achieve func-

tional algorithms with less data. The classic example of 

feature engineering in healthcare AI is the annotation of 

histological slides. Healthcare startup PathAI is the leader 

in AI-assisted pathology laboratory interpretation, relying 

on trained pathologists to annotate clinical slides and 

achieving greater diagnostic accuracy than any human 

pathologist.16 By employing expert interpretation to data 

before introducing it to the algorithm, researchers can de-

crease the amount of data required to reach a meaningful 

conclusion.

To establish which of the above strategies will help most 

effectively integrate AI into your specific plastic surgery re-

search project or practice, it is important to gain a more 

granular understanding of the mathematical principles be-

hind AI.

AI MATH

Part of the luster of artificial intelligence lies in its com-

plexity. In reality, the degree of complexity of most of 

the peer-reviewed literature on AI is bimodal. Authors ei-

ther delve into great theoretical detail on their algorithm 

of choice, or they spend almost no time at all describing 

the technical aspects of their methodology.17 The authors 

have found the following conceptual understanding of “AI 

math” to be sufficient to orient oneself for the purposes of 

AI-related plastic surgery applications:

What Is an AI Algorithm?

In artificial intelligence, the term algorithm describes the 

mathematical relationships between input data and output 

predictions—with the basic understanding being that a fully 

functional (“trained”) AI algorithm can make predictions 

based on a set of feature-inputs. Examples of validated AI 

algorithms and models include decision trees, naïve Bayes, 

k-nearest neighbors, and support vector machines.18–21

What Is an AI Data set? What Are 
Features? What Are Training and 
Test Sets?

In artificial intelligence, a data set can be thought of as a 

table of y instances of x features. For example, a database 

of antibiotic resistance profiles (15 antibiotics) on 100,000 

patients may be described as having 100,000 instances of 

15 features. The linear algebra term “dimension” is often 

used instead of “feature.” When higher-order data are in-

volved (images and video), the number of features can in-

crease dramatically, with a corresponding increase in the 

number of instances required to reach a meaningful con-

clusion. Typically, data scientists expect a minimum of 5 

instances per feature when training an algorithm.

To train an algorithm is to teach it to perform a spe-

cific task. Using the example above, an algorithm may be 

trained using data on resistance to 14 antibiotics to predict 

resistance to the 15th. Training an algorithm for this task re-

quires segmenting the available data (100,000 instances) 

into training and test sets. The training set is first shown 

to the algorithm with the prediction variable (the “label,” 

positive or negative resistance to the 15th antibiotic in this 

case) visible. This is akin to a student studying a problem 

set and answer key before an exam. Once trained, the al-

gorithm is shown the remaining instances (the test set) with 

labels hidden and asked to make predictions about resist-

ance to the 15th antibiotic. This is akin to a student taking a 

similar test without access to the answer key. Training-test 

splits vary but often divide data sets into 70% training in-

stances and 30% test instances.

The overarching goal of training and testing is “gener-

alizability.” To successfully label test set instances, an al-

gorithm must not simply memorize a training set. It must 

organically learn to recognize features of the training set 

that are transferable to the test set. In AI, benign memori-

zation of training set features with limited success on a test 

set is called “overfitting.”

How Does an Algorithm Learn? What 
Are Weight Updates? What Are Loss and 
Optimization Functions?

Like a new pet, algorithms learn by being discouraged 

from being incorrect and rewarded for being correct, such 

as described in Skinner’s theory of operant conditioning. 

In AI, these events are described in real numbers through 

implementation of a loss function, a quantification of how 

incorrect the prediction is. A familiar and simple example 
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of use of a loss function from grade school statistics is 

generation of a regression line to a set of data points. 

Similarly, as an algorithm is fed a training set and prompted 

to make a prediction, a loss function quantifies and sums 

the degree to which the algorithm was incorrect on each 

individual training set instance. Examples of popular loss 

functions include the mean square error, mean absolute 

error, and mean bias error functions.

The un-tuned preliminary algorithm has now seen each 

instance of the training set once (known as the first epoch) 

and the loss function has quantified its sum inaccuracy. 

Logically, the aim is to fine-tune the algorithm to minimize 

the loss function, which would correspond to the condi-

tions under which the algorithm reaches maximum pre-

dictive accuracy. Fine-tuning requires the use of weight 

updates and an optimization function.

During the first epoch, feature weights (the degree to 

which each feature in an instance is considered when 

making a prediction) are initialized randomly for the sake 

of obtaining a first loss function output. Feature weights 

are then adjusted according to a learning rate such as to 

progress slowly towards the global minimum of the loss 

function. The learning rate is simply the upper-bound mag-

nitude by which feature weights can be adjusted from one 

epoch to another. Different schools of thought exist on the 

optimal learning rate to use—with relatively large learning 

rates converging towards the global loss minimum in few 

epochs but failing to actually reach it and small learning 

rates actually reaching the global minimum but in many 

more epochs. The most basic protocol for progressing 

from initialization to the global minimum on the loss func-

tion is known as gradient descent.22

Once feature weights have been adjusted and the 

global loss minimum has been reached, the algorithm is 

ready to be tested on the test set. Sensitivity and speci-

ficity are among many standard metrics used to determine 

an algorithm’s predictive accuracy on a test set.

While the researcher or clinician may never actually de-

sign or create these algorithms independently, knowledge 

of the basic tenants and terminology will help the dialogue 

with your data scientist and assist in understanding the 

needs and limitations of your “ask.”

CURRENT SUB-FIELDS OF HEALTHCARE AI

Now that the basic intuition required to understand artifi-

cial intelligence has been established, it is useful to seg-

ment current research into three sub-fields of AI: machine 

learning and neural networks, computer vision, and natural 

language processing (NLP).

Machine learning and neural networks constitute the 

bread and butter of AI research as described above. 

Many layers of complexity can be added to this brand of 

project, though the intuition remains the same: using gra-

dient descent to minimize a given algorithm’s loss function. 

Examples of projects in this category include risk modeling 

of complications in diabetes, optimizing heart disease di-

agnosis, and disease diagnosis based mainly on blood 

serum measurements.23,24

Computer vision is a mainstay of multimedia analysis 

and classification. Problems in this category range from 

basic image classification—differentiating between cats 

and dogs—to self-driving cars. Computer vision underpins 

the video segmentation work by Hashimoto et al described 

above and will likely eventually be the basis for surgeon-

less robot surgery.25

The NLP technology is used to help computers interpret 

human speech and language. From a first principles per-

spective, NLP problems can be thought of as high-order 

machine learning problems, with massive amounts of text 

or recorded speech required to understand and simulate 

human dialogue. In healthcare, NLP specialists are cur-

rently focusing on the interpretation of text contained in 

electronic medical records to lean out the chart-keeping 

process.26 Other applications of NLP include hospital in-

terpretation/translation, healthcare-specific speech-to-text 

dictation, and the automation of administrative tasks using 

chatbots.

CURRENT STATE AND PATH FORWARD 
FOR AI IN PLASTIC SURGERY

Although data collection remains a challenge in all fields, 

plastic surgery and aesthetic surgery—insofar as they are 

innately visual specialties—are uniquely suited to embrace 

artificial intelligence. Before and after photos are widely 

publicized and are a testament to the success or failure of 

a plastic surgery procedure, intimately linking visual fea-

tures to outcomes. Progress made in computer vision and 

facial recognition outside of healthcare is being leveraged 

to segment facial anatomy, quantify visual appeal, model 

procedure outcomes, and predict aging.27–29

Currently, published applications of artificial intelligence 

in plastic surgery are limited to the analysis of radiologic 

studies and information contained in medical records, ex-

amples of which have been published by de Brito et al and 

Choi et al.30,31 No consensus applications relating to plastic 

surgery, surgical technique, or nonradiologic diagnostic 

approaches exist in the literature.

As access to data increases, AI will become intricately 

woven to the pre-, peri-, and postoperative arenas, with 

patient-specific features guiding procedure selection, 

intraoperative decision-making, and early detection of 

complications. Specifically, AI will aid with diagnostic ac-

curacy, preoperative virtual planning, disease progression, 

and postoperative monitoring.
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Low-hanging fruits and current uses of this technology 

include soft tissue deformation prediction, data-driven 

treatment of peripheral nerve injuries using automated 

neuroprostheses, early detection and the planned correc-

tion of congenital craniofacial abnormalities (using both im-

aging and genetic studies), and the objective assessment 

of rhinoplasty and facial rejuvenation procedures.32–36 AI 

algorithms are also being used to assess wound depth, 

surface area and perfusion, with similar principles being 

applied to flap-based reconstruction procedures.37

Artificial intelligence as used in plastic surgery will also 

be patient- and client-facing. Data-driven surgical simula-

tion applications capable of identifying objective asymmet-

ries in preoperative images will provide guidance on the 

most appropriate method of achieving a desired cosmetic 

outcome. Currently, photo editing applications boasting 

these features seed unrealistic expectations and fail to ac-

count for the limitations of the realities of aesthetic surgery. 

This conservative approach to aesthetic surgical planning 

is economically and medically sounder and will quickly out-

compete legacy procedure selection schemes. It will also 

spawn the practice of “prophylactic aesthetics” whereby 

surgeons can market preventative procedures, though an 

analysis of the underlying ethical framework is beyond the 

scope of this article. From a surgical screening perspective, 

AI applications are being developed to identify patients for 

whom specific surgeries are too risky and ruling them out 

in the preoperative setting. These rely on unintuitive risk 

factors hidden in data on previous surgical complications 

and have huge health outcomes and economic upsides. 

In the current environment of breast implant-associated 

anaplastic large cell lymphoma (BIA-ALCL), these applica-

tions are likely to gain significant traction.38,39

Furthermore, the plastic surgery community has recently 

demonstrated its willingness to embrace big data through 

development of the Tracking Operations and Outcomes in 

plastic surgery (TOPS), General Registry of Autologous Fat 

Transfer (GRAFT), National Surgical Quality Improvement 

Program (NSQIP), CosmetAssure, and the ASAPS.CLOUD 

databases. These represent a commitment to standardized 

plastic surgery data collection and an open-mindedness 

to disruption by artificial intelligence. Lastly, the Aesthetic 

Neural Network (ANN), launched by the American Society 

for Aesthetic Plastic Surgery (ASAPS), is an early-stage tool 

designed for practice optimization and economic mod-

eling. These tools and databases promise to become es-

sential features of a competitive plastic surgery practice in 

the near future.

There are two clear limitations to the adoption of AI 

in plastic surgery. Sharing of patient data is an ethically 

and bureaucratically challenging process in all fields of 

medicine. Open-source datasets are uncommon—and 

extremely valuable—because anonymizing data and 

gaining authorization for it to be made freely available 

to other data scientists is uncharted waters in medi-

cine. This has resulted in researchers relying on frag-

mented datasets siloed from other teams and unable to 

benefit from the scale of data available in other fields. 

Specifically, in plastic surgery, collecting standardized 

data is an extremely resource-intensive process given 

increased fragmentation, especially in private practice. 

Current workflows are operator-dependent and tailored 

to individual surgeons and research projects. This is not 

conducive to generating the kind of data sets that can 

be leveraged by artificial intelligence algorithms. As de-

scribed elsewhere in the text, lack of quality data harms 

the predictive accuracy of any validated algorithm. This 

manuscript hopefully serves as a call-to-action to improve 

sharing of data and creating standardized data sets for 

artificial intelligence analysis.

CONCLUSION

Although there is an increasing appetite in the plastic sur-

gery community for expert peer-reviewed literature on 

the applications of artificial intelligence in surgery, it is im-

portant to note that the democratization of access to AI 

resources currently makes it possible for plastic surgery 

innovation to come from within our community. Surgical 

skills and clinical intuition are necessary but insufficient 

conditions to implementing such powerful technological 

advances as AI in the field of plastic surgery. The authors 

are optimistic that, equipped with the basic tools con-

tained herein, plastic surgeons will be able to navigate 

technical conversations with peers, trainees, patients, 

and technical partners for collaboration and to usher 

in a new era of technology in plastic surgery. Most im-

portantly, they will be able to think critically about study 

design involving AI and plastic surgery. For now, we will 

continue to identify and explore opportunities related to 

AI that can benefit plastic surgeons and we encourage 

our peers to publish their work about AI as it relates to 

aesthetic surgery to raise awareness about the potential 

applications in our field.
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