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Abstract: Ultraviolet (UV) light is a leading cause of diseases, such as skin cancers and 

cataracts. A main process mediating UV-induced pathogenesis is the production of reactive 

oxygen species (ROS). Excessive ROS levels induce the formation of DNA adducts (e.g., 

pyrimidine dimers) and result in stalled DNA replication forks. In addition, ROS promotes 

phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream 

energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and 

photodamage, the antitumoral and antioxidant functions of natural compounds become 

important for reducing UV-induced adverse effects. One important question in the field is 

what determines the differential sensitivity of various types of cells to UV light and how 

exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted 

damage while potentiating tumor cell death, presumably via interaction with intracellular 

target molecules and signaling pathways. Several endogenous molecules have emerged as 

possible players mediating UV-triggered DNA damage responses. Specifically, UV activates 

the PIKK (phosphatidylinositol 3-kinase-related kinase) family members, which include 

DNA-PKcs, ATM (ataxia telangiectasia mutated) and mTOR (mammalian target of 

rapamycin), whose signaling can be affected by energy metabolism; however, it remains 
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unclear to what extent the activation of hormone receptors regulates PIKKs and whether 

this crosstalk occurs in all types of cells in response to UV. This review focuses on 

proteomic descriptions of the relationships between cellular photosensitivity and the 

phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-

dependent pathways, which have recently been shown to regulate the DNA repair 

machinery through interactions with the PIKK family members. Finally, this review 

provides a strategic illustration of how UV-induced mitogenic activity is modulated by the 

insulin sensitizer, ursolic acid (UA), which results in the metabolic adaptation of normal 

cells against UV-induced ROS, and the metabolic switch of tumor cells subject to  

UV-induced damage. The multifaceted natural compound, UA, specifically inhibits  

photo-oxidative DNA damage in retinal pigment epithelial cells while enhancing that in 

skin melanoma. Considering the UA-mediated differential effects on cell bioenergetics, 

this article reviews the disparities in glucose metabolism between tumor and normal cells, 

along with (peroxisome proliferator-activated receptor-γ coactivator 1α)-dependent 

mitochondrial metabolism and redox (reduction-oxidation) control to demonstrate UA-induced 

synthetic lethality in tumor cells.  

Keywords: ultraviolet; phosphatidylinositol 3-kinase-related kinases; hormone receptors; 

ursolic acid 

 

Abbreviations  

ATM  ataxia telangiectasia mutated  

AMPK  AMP-activated protein kinase  

cAMP  cyclic adenosine monophosphate 

CPD  cyclobutane pyrimidine dimers  

DNA-PK DNA-dependent protein kinase  

G6PD  glucose-6-phosphate dehydrogenase  

GSK3β  glycogen synthase kinase 3β  

HRR  homologous recombination repair  

IGF-1  insulin-like growth factor 1  

IRS-1  insulin receptor substrate 1  

MAPK  mitogen-activated protein kinase  

mTOR mammalian target of rapamycin 

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells  

NHEJ  non-homologous end-joining  

Nrf2  nuclear factor erythroid-derived 2-related factor 2  

PGC-1α  PPAR-γ coactivator 1α 

PIKK  phosphatidylinositol 3-kinase-related kinase  

PKA  cAMP-dependent protein kinase  

PPAR  peroxisome proliferator-activated receptor  

PPP  pentose phosphate pathway  

redox  reduction-oxidation  
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ROS  reactive oxygen species  

RPE  retinal pigment epithelium  

TKR tyrosine kinase-coupled receptor  

UA  ursolic acid  

UV  ultraviolet  

UV-VIS  (or UVR) radiation with spectrum wavelength ranging from UV to visible light  

1. Background 

1.1. Effects of UV in Sunlight 

The majority of solar radiation delivered to Earth surface is distributed in the region of near-infrared, 

accompanied by far ultraviolet (UV) radiation and visible light. This broadband radiation, although 

containing only a small fraction of the UV radiation, has the potential to cause skin damage and 

malignant transformation [1–3]. The spectrum of ultraviolet light is divided up into UVA (315–400 nm), 

UVB (280–315 nm) and UVC (200–280 nm) [4]. The UVC is completely absorbed by the atmosphere 

whereas the UVB is only partly absorbed and the UVA is not. UV radiation of energy greater than 6 eV 

can ionize water molecules into hydroxide ions and protons that enable photochemical reactions within 

cells whereby endogenous chromophores can be excited to undergo the Type I and II reactions [4–6]. 

Singlet oxygen generated from endogenous chromophores can not only result in DNA interstrand 

cross-linking but also cause photochemical modification of nitrogenous bases [7]. The oxidization of 

guanosine residues into 7-hydro-8-oxodeoxyguanosine leads to guanine-thymine transversion mutation [8]. 

Because the aromatic ring structures of purine and pyrimidine bases are strong absorbents of light with 

wavelengths in the range of 230–300 nm, direct photodamage of DNA can be readily caused by UVB. 

Adjacent pyrimidines are subject to dimerization upon UVB irradiation, and the resultant cyclobutane 

pyrimidine dimers (CPDs) may result in cytosine-thymine base transitions in case of insufficient  

DNA repair [9]. In contrast, UVA indirectly causes CPDs and (6-4) photoproducts by producing free 

radicals [10,11]. Under equimutagenic doses, UVA induces higher rates of mutation formation at DNA 

photoproducts than UVB does due to its antagonistic effect on cellular DNA damage responses. In 

addition, the oxidation-reduction (redox) reaction of plasma membrane electron transport systems, but 

not that of mitochondrial electron transport chain, is affected by UVA for inducing light toxicity [12]. 

Considering that sunlight is a broadband radiation, the interplay of multiple spectrum wavelengths may 

lead to different cellular responses. One of the important light effects that decelerate mutagenesis is 

through activation of tyrosine kinases, such as insulin and insulin-like growth factor 1 (IGF-1) 

receptors [13]. Researchers have found that (IGF-1)-mediated AKT activation delays UVB-induced 

apoptosis, allowing more time for removing cyclobutane thymine dimers in primary human 

keratinocytes [14]. Additionally, IGF-1 activation in mammalian and rat cell lines was found to 

facilitate homologous recombination repair by mediating IRS-1 (insulin receptor substrate 1) 

phosphorylation and promoting Rad51 trafficking to the site of damaged DNA [13]. In photosensitive 

tissues, such as retinal rod outer segments, intrinsic tyrosine kinases can be activated by light [15].  

Bell et al. have reported that a 97-kDa protein (later known as β-subunit of the insulin receptor) in 

retinal rod outer segments is actively phosphorylated in vitro under conditions that favor tyrosine 

phosphorylation [16]. The 97-kDa protein was also found by Ghalayini et al. to be phosphorylated in 
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rat retinal rod outer segments in a light-dependent manner [17]. This indicates that activation of insulin 

receptor generally reduces cellular photosensitivity by counteracting UV-induced pro-apoptotic cell 

signaling [18]. By applying broadband radiation from a mercury arc lamp, the light-induced p53 and 

NF-κB activation of retinal pigment epithelial (RPE) were both observed to be enhanced by the 

pretreatment with insulin and the insulin receptor sensitizer, ursolic acid (UA) [18].  

1.2. Ursolic Acid and Its Biological Functions 

1.2.1. Antioxidant Activity 

UA (structure shown in Figure 1) is a naturally occurring triterpenoid compound present in a wide 

variety of fruits and vegetables, including basil, apples, and cranberries. UA exhibits antibacterial 

activity against plant pathogens and is reported to have a range of actions in cells and tissues. Studies 

have shown that UA can ameliorate oxidative damage via free radical scavenging and enzymatic 

activity modulation. For instance, UA was found to inhibit the activity of lipoxygenase in murine 

macrophages, human platelets and HL60 leukemic cells and reduce the production of leukotrienes [19]. 

Additionally, UA has been found to possess antioxidant activity that pharmacologically modifies 

human enzymes, including superoxide dismutase, catalase, glutathione reductase, glutathione 

peroxidase, and glutathione levels in the liver [20]. Furthermore, UA decreases hepatotoxicity by 

slowing the clearance of chemotherapy drugs via cytochrome P-450 enzymes in the liver and decreases 

H2O2 production via the uncoupling of mitochondrial oxidative phosphorylation in the heart [21,22]. 

This antioxidant effect correlates with the reduced UV-induced lethality found in healthy cells treated 

with UA [23,24]. Thus, UA is postulated to confer photoprotection on normal cells. 

Figure 1. Structural formula of UA. UA is also called prunol, malol, β-ursolic acid, 

NSC4060, CCRIS 7123, TOS-BB-0966, 3-β-hydroxyurs-12-en-28-oic acid with a molecular 

formula of C30H48O3 and a molar mass of 456.7 g/mol. Adaped with permission from [25].  

 

1.2.2. Capabilities of Ceramide Stabilization and Surface Protein Recognition 

Lipid peroxidation is strongly induced by UV [26,27]. Among various kinds of natural compounds, 

triterpenoids are lipophilic molecules that can confer photoprotection on UV-exposed cells through 

stabilization of lipid rafts [28]. Ursolic acid and its isomer, oleanolic acid, have been found to tightly 

pack with sphingomyelin and glycosphingolipids due to the steric hindrance presented by their methyl 

groups. Due to the fact that UA stabilizes the ceramide structure, ceramide-mediated apoptosis can be 

reduced by UA upon irradiation. Given that the internalized surface membrane protein, CD36, acts as a 
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mediator for the functions of fatty acid transporters, its association with UA may stimulate cell  

uptake of fatty acid and trigger sensitization of insulin receptors along with suppression of lipid 

synthesis [29–31]. 

1.2.3. Antitumoral Activity 

UA is found to be potent in cancer suppression with its cytostatic and cytotoxic activity in tumor 

cells. It exerts an early cytostatic effect at G1 followed by cell death through apoptosis. The  

pro-apoptotic effect of UA is associated with the up-regulation of bax and down-regulation of bcl-2 

leading to mitochondria-mediated apoptosis [32,33]. Concomitantly, UA inhibits NF-κB (nuclear 

factor kappa-light-chain-enhancer of activated B cells) activation and mediates tumor cell apoptosis 

via activation of p53 and/or caspase-3 [32–35]. The antitumoral effect of UA exerted at high dosages is 

associated with inactivation of the PI3K (phosphoinositide 3-kinase)-AKT-mTOR (the mammalian 

target of rapamycin)-(NF-κB) signaling pathway, which is in turn activated for reducing endoplasmic 

reticulum stress and restores insulin signaling in mice fed with a high fat diet [35,36]. This indicates 

that the inhibitory effect of UA on glucose metabolism may selectively attenuate tumor resistance to 

UV by blocking cancer cells’ high glycolysis rate, which otherwise would raise antioxidant defenses 

through inhibition of pyruvate kinase M2 and increased entry into the pentose phosphate pathway 

(PPP) [37,38]. The increased PPP pathway activity and resultant production of GSH (reduced form of 

glutathione) and NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) may lead to 

enhanced cellular antioxidant capacity [38]. In summary, UA exerts pharmacological actions that lead 

to radiation sensitization not only through induction of apoptosis but also perturbation of redox 

homeostasis in tumor cells. 

2. UV-Induced Mitogenic Activation for Cell Survival 

UV-induced photochemical reactions impair cellular redox homeostasis and lead to the oxidation of 

cellular constituents [18]. The oxidation of the catalytic cysteine residues of protein tyrosine 

phosphatases (PTPs) by UV results in the prolonged activation of tyrosine kinase-coupled receptors 

(TKRs) because of sustained phosphorylation [39,40]. UV-induced DNA damage responses also play a 

role in maintaining the activity of TKRs through endogenous signaling. Upon UV irradiation, p53 

activation, mediated by DNA-PK (DNA-dependent protein kinase) and ATM (ataxia telangiectasia 

mutated), arrests cells in G1/S, intra S, and G2/M phases through up-regulation of p21
Cip1

 and the 

subsequent inhibition of CDK (cyclin-dependent kinase)-cyclin complexes and PCNA (proliferating 

cell nuclear antigen) [41–43]. The cell cycle arrest facilitates non-homologous end-joining (NHEJ) 

repair machinery due to the negative regulatory effect of p53 on Rad51 transcription via binding to the 

p53 response element of Rad51 promoter [44]. On the other hand, UV-induced p53 activation inhibits 

the MDM2 (mouse double minute 2 homolog)-mediated ubiquitination of IGF-1 (insulin-like growth 

factor 1) receptor by sequestering MDM2 to the nucleus [45]. The up-regulation and activation of IGF-1 

receptor, in turn, facilitates the nuclear exclusion of p53, followed by MDM2-mediated lysosomal 

degradation [45]. The negative feedback loop maintains temporary activation of p53 for eliciting its 

effect on DNA repair, but not the protracted effect on cellular apoptosis. In 2001, Hѐron-Milhavet et al. 

showed that UV-mimetic-induced DNA damage by 4-nitroquinoline 1-oxide (4NQO) was reduced by 
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activation of the IGF-1 receptor and p38 MAPK signaling pathway [46]. A year later, Hѐron-Milhavet 

and LeRoith published a study demonstrating that IGF-1 receptor signaling can rescue UV-mimetic-

induced p53 up-regulation via the transcription of MDM2 and the dissociation of MDM2 from the 

nucleolar protein, p19
Arf

 [45,47]. These findings imply that p53-mediated DNA damage responses 

coordinates with activation of TKRs to sequentially down-regulate p53 activity for cell survival.  

In response to receptor tyrosine phosphorylation, the cytoplasmic association of insulin/IGF-1 

receptor with insulin receptor substrates 1 and 2 (IRS-1/2) through the SH2 domain leads to the 

phosphorylation of IRS-1/2 by the β-subunit of insulin/IGF-1 receptors [48,49]. By functioning as a 

second messenger, IRS-1/2 interacts with and activates the regulatory subunits of PI3K and MAPK 

(mitogen-activated protein kinase) to effect a variety of cell activities, including cell proliferation, 

metabolism and apoptosis [49]. Following UV-induced TKR activation, phosphorylated IRS-1 and Shc 

bind to Grb-2 to trigger Ras-Raf-MEK (mitogen-activated protein kinase kinase)-MAPK signaling [50]. 

In addition, IRS-1 acts as an adaptor that facilitates PI3K activation through binding its pYMXM motif 

to the SH2 domains of p85 [48]. The resultant PI3K-AKT-(NF-κB) signaling cascade inhibits cell 

apoptosis induced by UV. Nevertheless, different cell lines respond to UV-induced TKR activation 

differently. Expression of the IGF-1 receptor on osteoblasts and fibroblasts was found in proportion to 

the UV-induced AKT activational phosphorylation by Thakur et al. [51]. Interestingly, those authors 

showed that UV-induced AKT phosphorylation of C2C12 myoblasts exclusively occurs under IGF-1 

receptor deficiency. This controversial result indicates that cell specificity exists towards UV-induced 

TKR activation.  

2.1. UV-Induced Adaptive Defense against TKR-Mediated Mitogenic Effect 

UVB was reported to desensitize insulin/(IGF-1)-mediated energy metabolism through down-regulation 

of the nuclear hormone receptors, PPARs (peroxisome proliferator-activated receptors) at the mRNA 

level. This occurs even though PPARγ can be activated by UVB via free radical-induced cleavage of 

endogenous glycerophosphocholines, leading to the expression of the pro-inflammatory proteins, 

COX-2 (cyclooxygenase-2) and prostaglandin E2 [52–55]. On the other hand, PPARγ is phosphorylated 

and inhibited by ROS-activated p38 MAPK, leading to decreased transactivation of genes that contain 

an evolutionarily conserved peroxisome proliferator response element consensus-binding site, including 

genes encoding enzymes involved in fatty acid oxidation and antioxidant defenses [53,56–58]. This 

regulation allows irradiated cells to prevent energy depletion via inhibition of UV-initiated mitochondrial 

oxidative stress [58]. The shutdown of mitochondrial metabolism, however, leads to insufficient 

energy production, resulting in an increase in the AMP (adenosine monophosphate)-to-ATP 

(adenosine triphosphate) ratio. As a result, the lack of ATP limits the conversion of ATP into cAMP 

(cyclic adenosine monophosphate) by UV-activated adenylyl cyclase. The increased AMP-to-cAMP 

ratio activates the glucose dependent G1-S checkpoint as well as p53 stabilization through AMPK 

(AMP-activated protein kinase)-mediated MDMX phosphorylation [59]. Stabilized p53 antagonizes 

glycolysis through activation of TIGER (TP53-induced glycolysis and apoptosis regulator) and 

inhibition of NF-κB-mediated GLUT3 (glucose transporter 3) gene transactivation. Through TIGER 

transactivation, p53 decreases the activity of phosphofructokinase 1 (PFK1) and increases the activity 

of fructose 2,6-biphosphatase (FBPase), leading to reduced glycolysis [33,60]. Additionally, p53 
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interacts with PTEN (phosphatase and tensine homolog) and negatively regulates AKT phosphorylation, 

resulting in a reduction of glycolysis upon mTOR inactivation [61]. As a downstream effecter of AKT, 

mTOR launches pro-survival signaling by coordinating metabolism with DNA repair. HIF-1α 

(hypoxia-inducible factor 1 alpha) is up-regulated by mTOR, thereby transactivating pyruvate kinase 

M2, whose RNA splicing is promoted by heterogeneous nuclear ribonucleoproteins (hnRNPs) upon 

mTOR activation [62,63]. In addition, expression of glucose transporters and the isozyme 1 of pyruvate 

dehydrogenase kinase (PDK1) are increased by mTOR-mediated HIF-1α (hypoxia-inducible factor 1α) 

translation, driving glycolysis for ATP generation in the absence of oxygen/mitochondrial respiration [64].  

Taken together, cells that are less responsive to UV-induced mitogenic actions for energy production 

from glycolysis may rely on p53-mediated TIGER activation, which facilitates the pentose phosphate 

pathway (PPP) via increasing FBPase activity against UV-induced ROS [65]. In addition, we have 

observed oxidative stress in mitochondria increased by UV-VIS radiation (radiation with spectral 

wavelength ranging from ultraviolet to visible light, abbreviated as UVR hereafter), which, however, 

was decreased upon rapamycin pretreatment in retinal pigment epithelial cells, implying an intricate 

interplay between p53 and mTOR signaling in the regulation of mitochondrial metabolism [18]. 

2.2. UV-induced Cell Lethality through TKR-mediated Mitogenic Effects 

From the point of view of energy metabolism, the degradation of one mole of palmitate can 

generate 138 moles ATP whereas a mole of glucose can generate 32 moles of ATP through oxidative 

phosphorylation following glycolysis [66,67]. Thus, UV-inhibited PPAR activity can reduce lipid 

oxidation and cause a marked decrease in intracellular ATP, leading to deficient cAMP signaling. The 

expression of many molecules involved in cell cycle regulation is regulated by cAMP via phosphorylation 

of the mediator, PKA (cAMP-dependent protein kinase). Studies have shown that Cdc20 (cell-division 

cycle protein 20) can be phosphorylated by the catalytic subunit of PKA, thus preventing Cdc20 from 

interacting with and mediating the proteolysis of two mitotic inhibitors, securin and Clb2 [68]. PKA 

also suppresses proteolysis of cyclin B and other factors that regulate sister chromatid separation via 

inhibitory phosphorylation of the ubiquitin ligase, anaphase-promoting complex/cyclosome (APC) [69]. 

Furthermore, the activity of Cdc25 phosphatase is maintained by PKA-dependent phosphorylation and 

therefore activates cdc2-cyclin B complex by dephosphorylation [70]. The identified mechanisms 

show how cAMP regulates the cellular responses to UV, i.e., by suspending mitosis and explains the 

prevalence of UV-induced mitotic catastrophe as a consequence of the absence of PKA-induced G2 

delay and mitotic arrest [71]. 

Furthermore, UV-induced IGF-1 activation induces anabolic biosynthesis instead of catabolic 

energy production, leading to the accumulation of intracellular AMP. Nevertheless, UV-induced 

AMPK activation can hardly transduce p53 activation in parallel with the IGF-1 signaling [72]. 

Transmitted by the (IGF-1)-PI3K-AKT pathway, MDM2 activity increases and mediates p53 

ubiquitination and proteosomal degradation. Under UV-induced IGF-1 receptor activation, AKT 

activation can be induced, not only by PI3K-mediated phosphorylation of membrane lipid, but also via 

cAMP down-regulation owing to the fact that insulin/IGF-1 receptor activation increases cAMP 

phosphodiesterase activity [73]. AKT activation exacerbates UV-induced cell lethality via  

(NF-κB)-mediated amelioration of replication-driven DNA repair. Through phosphorylation of IKK  
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(I kappaB kinase), the catalytic regulator of IκBα (nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha), AKT mediates NF-κB activation in association with mTOR and 

Raptor [74,75]. Phosphorylated p65 and p50 subunits of NF-κB then translocate to the nucleus to bind 

to the promoter of FANCD2 (Fanconi anemia group D2 protein). The binding NF-κB suppresses 

FANCD2 transcription and leads to defective DNA repair when FANCD2 monoubiquitination is 

insufficient for forming complexes at the DNA damage loci that precede the repair of DNA double 

stranded break during DNA replication and transcription [76,77].  

In addition to the cellular metabolic switch in response to UV-induced TKR activity, UV-induced 

mitogenic activity ameliorates the DNA damage responses of cells that express light-stimulated 

receptor kinases via activation of the mTOR-(NF-κB)-FANCD2 pathway. Evidence has been obtained 

that skin melanoma cells display greater UV-induced mitochondrial oxidative stress under mTOR 

inactivation, implying mTOR promotes glycolysis for the maintenance of energy and redox 

homeostasis [18]. Combined with the observation of UVR-induced increase in the S phase population, 

UVR-mediated mitogenic effects on skin melanoma cells is hypothesized to compromise the DNA 

repair capacity of cells during DNA synthesis [18]. This implies that receptor signaling modulates cell 

sensitivity to UV in association with mTOR activity [78].  

3. Kinase Activation by UA Modulates UV-Induced Oxidative DNA Damage 

UV radiation not only stimulates cells by increasing TKR activation, but also damages cells by 

introducing reactive oxygen species (ROS) and inducing protein and DNA adducts via photochemical 

reactions [79–82]. ROS-triggered PI3K activation can transduce oncogenic AKT-mTOR signaling; 

mTOR can increase the phosphorylation of both eukaryotic initiation factor 4E-binding protein1 

(4EBP-1) and S6K1, leading to the translation and expression of mRNAs encoding several major  

anti-apoptotic proteins including XIAP, c-IAP1, Bcl-XL, and BCl-2 [83]. Through the integration of 

several upstream signals, including growth factors, nutrients, energy levels, and stresses, mTOR is 

differentially regulated by TSC2 via phosphorylation [84]. Studies have shown that the 

phosphorylation sites of TSC2 at Ser981, Ser1130 and Ser1132 by AKT impair the ability of TSC2 to 

inhibit the activator of mTOR, GTP-bound Rheb (Ras homolog enriched in brain) [84], whereas TSC2 

phosphorylation at Thr1271 and Ser1387 by AMPK inhibits mTORC1 activity in an ATM-dependent 

manner [85]. In addition to those actions, AKT indirectly activates mTOR through inhibition of  

TSC2, while mTORC2 also responds to UV by forming into a complex with DNA-PKcs to 

phosphorylate AKT at Ser-473 [86]. Through its activation by phopshorylation, AKT suppresses 

homologous recombination repair (HHR) via TopBP1 (DNA topoisomerase 2-binding protein 1) [87]. 

Functioning as an adaptor protein for ATR, TopBP1 facilitates Chk1 phosphorylation as a consequence 

of cAMP-mediated AKT inactivation via PKA-dependent Rap1b phosphorylation [83–88]; however, 

the phosphorylation of TopBP1 at Ser-1159 by AKT induces TopBP1 oligomerization under oxidative 

stress and thereby prevents its recruitment to chromatin and ATR binding sites [89].  

Recent studies have demonstrated the modulatory effects of phytochemicals on UV-induced ROS 

and DNA damage. For instance, many flavonoids present in red wine, cocoa and tea absorb UV light 

and hence reduce radiation-induced photodamage and photocarconogenesis [90]. Natural compounds 

from broccoli and the Australian dessert tree Acacia victoriae exhibit antioxidant activity against  
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UV-induced oxidative stress through activation of phase II detoxification enzymes and antioxidant 

proteins via the Nrf2 (nuclear factor erythroid-derived 2-related factor 2)/ARE (antioxidant response 

element) system. In addition, phytochemicals, such as extracts of soybean and rhubarb, can regulate 

the activity of protein tyrosine kinase to elicit hormonal actions on human systems [90,91]. 

Phytochemical-induced down-regulation of tyrosine kinase activity decreases UV-stimulated 

production of pro-inflammatory enzymes and cytokines, including cyclooxygenase-2, prostaglandin, 

TNF-α (tumor necrosis factor α), and IL-1α (interleukin-1α) [92–95]. The natural pentacyclic 

triterpenoid, UA, which is found in several edible plants, exhibits anti-oxidant and anti-inflammatory 

properties partly via insulin receptor signaling [96]. Administration of UA to mice suppresses  

ischemic injury induced by cerebral artery occlusion through Nrf2 activation, which reduces the 

malonyldialdehyde formed as an end product of lipid peroxidation, along with NF-κB and TLR4 

expression. Based on in vitro cell studies, UA decreased UVB-induced lipid peroxidation,  

oxidative DNA damage and cytotoxicity through both enzymatic activity modulation and signal 

transduction [23,97]. It has been shown that UA scavenges free radicals through up-regulation of 

superoxide dismutase and catalase expression in a dose-dependent and bioavailable manner [23,98,99]. 

On the other hand, UA-induced AKT activation in C2C12 skeletal myotubes is found to be elicited by 

ligand-dependent activation of the insulin receptor or the IGF-1 receptor [100]. UA increases mRNA 

levels of HK2 (hexokinase 2) and IGF-1, leading to enhanced glucose utilization and (IGF-1)-AKT 

signaling. Furthermore, UA enhances glucose uptake by inhibiting T-cell protein tyrosine phosphatase 

and src homology phosphatase-2 for sustaining insulin/IGF-1 receptor phosphorylation [101,102]. 

Interestingly, the increase in IGF-1 expression by UA increases insulin-induced AKT phosphorylation 

which promotes anabolic protein synthesis in skeletal muscles, but not adipose tissues [103,104]. 

These findings reveal the potential of UA to enhance photosensitization via facilitating IGF-1  

receptor-driven AKT activation. 

3.1. UA-Induced p53 Activation and Modulation of UV-Invoked ROS 

AKT mediates p53 degradation via MDM2 activation as well as the inhibitory phosphorylation of 

glycogen synthase kinase 3β (GSK3β). That is to say, p53-activated DNA repair can be abrogated by 

AKT signaling, yet AKT-enhanced mTOR activity supports p53-mediated antioxidant defense upon 

irradiation [105,106]. Under moderate p53 expression, Nrf2 is up-regulated and activated by p21
Cip1

, 

allowing transactivation of downstream antioxidant genes that contain an antioxidant response element 

(ARE) in the promoter regions [107,108]. As a downstream effecter of p53, p21
Cip1

 associates with the 

DLG motif of Nrf2 and disrupts the binding between Keap1 and Nrf2, leading to inactivation of 

Cullin-3-based ubiquitin E3 ligase for Nrf2 [109,110]. Nrf2 stabilization thereby induces the 

expression of NAD(P)H: quinone oxidoreductase 1 (NQO1), glutathione biosynthetic enzymes 

(glutathione cysteine ligase modifier subunit and glutathione cysteine ligase catalytic subunit), and 

GSH-dependent antioxidant enzymes (glutathione peroxidase 2 and glutathione S-transferases), which 

scavenges superoxide via NADH and NADPH oxidation in response to UV irradiation [110–113]. 

Nevertheless, the nuclear translocation of Nrf2 can be inhibited by GSK3β via mTOR inactivation, 

indicating that cells relay aberrant mitogenic activation to PIKK family members for eliciting 

antioxidant defense against UV-induced DNA adducts [106,107].  
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Previously, we have observed that UVR induced mild p53 activation led to the up-regulation of 

glucose-6-phosphate dehydrogenase (G6PD) at the mRNA level, presumably through activation of 

Nrf2 in orchestration with mTOR activation, in RPE cells (Figure 2) [18,114,115]. The UVR-induced 

G6PD up-regulation was further promoted by UA pretreatment, leading to alleviation of UVR-induced 

mitochondrial oxidative stress and oxidative DNA damage [18,116]. In contrast, UVR suppressed the 

transcription of G6PD, and UA pretreatment further down-regulated G6PD transcription in skin 

melanoma cells. Mechanistically, mTOR inhibition eliminated UVR-induced p53 activation in both 

cell types, while differentially regulating p53 activation upon UA treatment. These results suggest  

cell-dependent responses to mTOR inhibition upon UA-mediated regulation of p53 activation. UA 

agonizes signaling of insulin/IGF-1 receptor and elicits AMPK-mediated p53 activation, which is 

abolished by mTOR-mediated IRS-1 degradation downstream of IGF-1 receptor signaling [117]. 

Intriguingly, mTOR inhibition did not up-regulate UA-induced p53 activation in skin melanoma cells. 

Moreover, mTOR inhibition mitigated p53 activation induced by UA-and-UVR combined treatment, 

in both RPE and skin melanoma cells, but specifically sustained the NF-κB activation in the latter cell 

line [18]. These phenomena suggest crosstalk between UVR- and UA- induced signaling, reflecting the 

fundamental metabolic disparity between normal and malignant cells linked to their differences in 

aerobic glycolysis described by Dr. Otto Heinrich Warburg in 1924. The Warburg effect depicts the 

exclusive expression of pyruvate kinase M2 in cancer cells to generate ATP quickly, versus mitochondrial 

oxidative phosphorylation by normal cells [63]. As the mitogenic action through the AKT-mTOR 

pathway propels aerobic glycolysis more in skin melanoma cells than in RPE cells, the UVR- or  

UA-induced p53 activation can result in tumor glycolysis inhibition, leading to a metabolic switch 

from lactate fermentation to pyruvate oxidation, preferentially occurring in skin melanoma cells [18,118]. 

Correspondingly, UVR-induced mitochondrial metabolism in skin melanoma cells was enhanced by 

pretreatment with UA. In comparison, mitochondrial metabolism in RPE cells was not promoted by 

UA due to the greater activation of p53 versus NF-κB activation (following the mechanism illustrated 

in the next paragraph) even though our real-time PCR analysis indicates that UA mediated SCO2 

(synthesis of cytochrome c oxidase 2) transcription upon p53 activation (Figure 2) [18,119]. 

UVR-induced NF-κB was first shown to be specifically down-regulated by UA and/or mTOR 

inhibition in RPE cells, indicating differential mTOR signaling under UA-mediated regulatory effects 

on NF-κB activation. We speculate that the UVR-mediated PI3K-AKT-mTOR pathway and p38 

MAPK-MAPKAPK2 (MAP kinase-activated protein kinase 2)-mTOR is responsible for NF-κB 

activation, by which the nuclear translocation of RelA/p65 can transactivate p53 promoter to result in 

enhanced mitochondrial oxidation [18,120,121]. The up-regulated p53 has been shown to interfere 

with the interaction between mortalin (a heat shock 70 family member) and RelA. Under p53 

interference, Mortalin fails to sequester RelA into mitochondria to suppress mitochondrial gene 

transcription, leading to the promotion of oxidative phosphorylation [122]. In regard to the finding that 

UA and/or mTOR inhibition differentially modulated UVR-induced NF-κB activation and mitochondrial 

oxidative stress in skin melanoma versus RPE cells, we speculated that NF-κB activation of RPE cells 

is decreased through UA-mediated insulin/IGF-1-dependent anabolic metabolism against mTOR 

activity, while the hyperactive tyrosine kinase of IGF-1 receptor in skin melanoma cells manifests  

NF-κB activation and mitochondrial oxidation via the PI3K-AKT cascade (Figure 3) [18].  
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Figure 2. Transcriptional modulation of genes involved in glucose metabolism by UA in 

response to UVR. Transcription levels of glucogenetic genes in RPE cells (Panel A) 

indicate that the transcription of glycolytic and glucogenetic genes, except for G6PD in 

RPE cells, was down-regulated by UVR. The up-regulation of G6PD by UVR was further 

augmented by the pretreatment with UA. On the other hand, all investigated genes in SM 

cells were down-regulated by UA and/or UVR (Panel B). Cell culture and treatment was 

described in Reference 18. RNA were extracted from cells in control, UA-treated (denoted 

as UA), UA-plus-UVR-treated (denoted as UA+R), and UVR-treated (denoted as R) 

groups with TRIZOL reagent, followed by PCR analysis conducted with ReadyMix Taq 

PCR Reaction Mix with MgCl2 (Sigma-Aldrich, St. Louis, MO, USA) on Thermocycler 

(7900 HT Fast Real-Time PCR System, Applied Biosystems, Foster City, CA, USA). 

Quantitative results represent the mean values and standard errors of triplicate measurements. 

Two-way ANOVA was applied for analyzing the influence of UA or/and UVR on the 

transcription of investigated genes. G6P: a gene coding for glucose-6-phosphatase; LDHA: 

a gene coding for lactate dehydrogenase A; SCO2: a gene coding for synthesis of cytochrome c 

oxidase, subunit 2; PYGM: a gene coding for the muscle isoform of glycogen phosphorylase; 

G6PD: a gene coding for glucose-6-phosphate dehydrogenase; PCK2: a gene coding for 

phosphoenolpyruvate carboxykinase 2 (mitochondria); PFKM: a gene coding for the 

muscle isoform of phosphofructokinase; PC: a gene coding for pyruvate carboxylase.  

 (A) 

(B) 
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Figure 3. Schematic descriptions of crosstalk between UV- and UA-induced cell signaling 

and effects. In RPE cells, UV activates p53 which up-regulates IGF-1 signaling without 

affecting NF-κB activation (A). Upon (IGF-1)-provoked AKT-mTOR signaling, mTOR 

phosphorylates NF-kB but also mediates inactivation of NF-kB via PGC-1α stabilization. 

Empirically, the PIKK family member, mTOR, can enhance IGF-1 signaling via suppression 

of GSK3 activity. In skin melanoma cells, UV induces phosphorylation of p38MAPK and 

AKT to inactivate PPARγ and inhibit PGC-1α transcription, leading to the up-regulation 

and down-regulation of the IGF-1 receptor, respectively (B). Upon UA-mediated AMPK 

activation, PGC-1α can be up-regulated to promote mitochondrial oxidation as well as 

IGF-1 receptor expression. Notes for mitochondrial redox signaling: (1) AKT prevents 

PGC-1α degradation thus promoting UA-mediated antioxidant defenses via mTOR-suppressed 

GSK3 activity [123]; (2) AKT inhibits PGC-1α transcription and counteracts UA-mediated 

mitochondrial biogenesis by phosphorylating and promoting the nuclear exclusion of 

FoxO1. Dashed lines represent indirect mechanisms.  

 

(A) 

 

(B) 
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3.2. Modulatory Effects of UA on Cellular Response to UV-Induced TKR Down-Regulation 

Although IGF-1 receptor activity can be maintained by UV-mediated inhibition of PTPs, igf-1 

transactivation can be inhibited by UV-mediated down-regulation of PPARα, leading to reduced 

mitochondrial oxidation [52,53]. The down-regulated IGF-1 signaling is expected to result in p53 

stabilization and subsequent NF-κB inhibition via inactivation of PI3K in RPE cells. Comparatively, 

UA-mediated AMPK signaling promotes the cytoplasmic translocation of glucose transporters and 

increases the expression of the PPAR-γ coactivator 1α (PGC-1α), thus, up-regulating insulin signaling 

and mitochondrial biogenetics [124,125]. By interacting with PPAR-γ, PGC-1α can regulate the 

activity of the nuclear respiratory factors, Nrf1 and Nrf2, for expression and function of the respiratory 

chain and cytochrome oxidase in mitochondrial biogenesis [126–128]. Several genes including 

gluconeogenetic enzymes (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase), glycolytic 

enzymes (phosphofructokinase and lactate dehydrogenase A), and enzymes involved in oxidative 

phosphorylation and glycogenolysis (cytochrome c oxidase and glycogen phosphorylase) are capable 

of being indirectly regulated by PGC-1α (Table 1) [129–133]. 

Table 1. Transcription of metabolic genes regulated by PGC-1 α. 

Enzymes mRNA Expression Cell Lines, Tissues or Organs Invetigated 

Glucose-6-phosphatase Up-regulation Human hepatic carcinoma and mouse liver [127,129] 

Phosphoenolpyruvate 

carboxykinase 
Up-regulation Human hepatic carcinoma [129] 

Phosphofructokinase Down-regulation Mouse skeletal muscle [128] 

Lactate dehydrogenase A Down-regulation Mouse skeletal muscle [127] 

Cytochrome c oxidase Up-regulation Human kidney [128] 

Glycogen phosphorylase Down-regulation Mouse skeletal muscle [128] 

To determine whether UA-mediated tumor sensitization and photoprotection of normal cells are 

regulated by differential energy metabolism, the expression of multiple genes involved in glucose 

metabolism has been studied. The transcription of investigated genes was promoted by UA in RPE 

cells but antagonized in skin melanoma cells, indicating that UA-mediated AMPK-(PGC-1α) signaling 

enhances metabolic gene transcription in RPE cells while inhibiting the transcription in skin melanoma 

cells by eliciting AKT-inactivated PGC-1α expression, as indicated by the downstream effecter,  

NF-κB (Figure 3) [18,124]. Studies have shown that PGC-1α transcription can be down-regulated by  

AKT-mediated nuclear exclusion of FoxO1, while its proteosomal degradation can be elicited by 

GSK3β upon mTOR-mediated phosphorylation [125]. The UA-induced NF-κB activation in skin 

melanoma cells was relatively sustained in response to mTOR inhibition, suggesting that both AKT 

and the AKT-activated mTOR exert regulatory effects on PGC-1α expression. The antagonistic effects 

of AKT and mTOR provide a potential explanation for the up-regulated transcription of metabolic 

enzymes observed in RPE cells but not in skin melanoma cells. As cytochrome c-oxidase activity is 

up-regulated by PGC-1α along with increase of cAMP response element-binding protein (CREB) for 

the transactivation capacity of Nrf1 and Nrf2 [134], UA-induced energy metabolism and phase II 

enzyme expression in RPE cells are proposed as defenses of normal cells against UV-induced energy 

depletion and oxidative stress. 
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On the other hand, we speculate that AKT-mediated PGC-1α inhibition and the subsequent 

inactivation of metabolic gene transcription are more effectively exerted by skin melanoma cells to 

counteract mTOR-inhibited PGC-1α degradation upon UA-induced IGF-1 receptor signaling (Figure 3). 

This allows UA to preferentially sensitize skin melanoma cells to UVR, i.e., by energy deprivation. 

Under UA-mediated energy deprivation, UVR-attenuated cAMP can be further restricted to mediate 

p53 proteosomal degradation via AKT-dependent p53-MDM2 interaction, leading to apoptosis of  

p53-reactive tumor cells [18,135]. By treating cells with UA, we found induction of DNA breakage in 

both RPE and skin melanoma cells (Figure 4). However, UA pretreatment decreased UV-induced 

DNA double-stranded breaks (DSBs) in RPE cells while potentiating UV-induced DNA DSBs and 

impairing DNA repair in skin melanoma cells. This result suggests activation of the (PGC-1α)-Nrf2 

pathway, as well as inhibitory phosphorylation of insulin receptor substrates by mTOR signaling, 

strengthened cellular antioxidant defenses and attenuated AKT-suppressed HRR in RPE cells [136]. 

Nevertheless, (DNA-PK)-dependent NHEJ repair can be down-regulated by UA-mediated AMPK-p53 

signaling and the consequent inhibition of AKT-mediated DNA-PK phosphorylation. As a result, UA 

modulates UVR-induced DNA damage responses in a cell-specific fashion, which is highly related to 

the resultant alteration of metabolism. 

Figure 4. Detection of nuclear DNA fragmentation under UVR irradiation. Following 

irradiation (irradiation method was described in Ref. [18]), cells were directly harvested or 

incubated for another 30 minutes prior to harvesting. DNA fragmentation (assayed with 

agarose gel electrophoresis following a protocol adapted from that of Paola Bossù [137]) 

was differentially induced by UA and/or radiation in RPE (Panel (A)) and SM cells  

(Panel (B)). Gel imaging and analysis were conducted with a UV light box (ChemiDoc 

XRS system, Universal Hood with Camera, Bio-Rad) and the graphics software GIMP. 

Quantitative results represent the mean values and standard deviations of triplicate 

measurements and were analyzed with two-way ANOVA. Control: cells without irradiation; 

UVR: cells exposed to 10-min UV-VIS radiation; UVR+Incubation: cells were incubated 

30-min after 10-min UV-VIS irradiation. 
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(B) 

The abrogation of AKT activation by cAMP-PKA-Rap1b signaling reflects the important role of 

intracellular cAMP on the overall cell responses to UV-induced insults [138]. Because cAMP can be 

regulated by UV-activated adenylyl cyclase as well as IGF-1 receptor-mediated activation of cAMP 

phosphodiesterase, it provides a link between UA-induced photosensitivity and UA-abrogated DNA 

damage checkpoint and repair. UA affects the size of the intracellular cAMP pool in association with 

the signal transduction from IGF-1 receptor to PGC-1α through AKT activation (Figure 3) [100]. 

Inhibition of PGC-1α activity additionally leads to insufficiency of cellular antioxidant defense and 

deficiency of cellular energy metabolism against UV-induced DNA damage [14]. Under mild AKT 

activation, UA stimulates lipolysis by promoting HSL (hormone-sensitive lipase) translocation from 

cytosol to the lipid droplets via the cAMP-dependent PKA axis [139,140]. Lipolytic products, in turn, 

elevate intracellular cAMP, which can block ATM- and (DNA-PKcs)-mediated p53 activation and 

apoptotic signaling following UV-induced DNA damage [141,142].  

4. Conclusions 

Ultraviolet is a proven human carcinogen, which induces DNA lesions, including a (6-4) 

photoproduct [T(6-4)T] and a cis-syn cyclobutane TT dimer (T=T), and promotes transversion 

mutations [143]. In the United States, one in every five Americans develops skin cancer in the course 

of a lifetime. Up to 86% of melanomas have been hypothesized to result from solar UV exposure [144]. 

Additionally, more than 50% Americans have a cataract by the age of 80. With respect to the risk of 

UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of 

natural compounds may be useful for modulating UV-induced effects. When cells are exposed to UV, 

the induced DNA damage and oxidative stress provoke activation of PIKKs, PI3K and MAPK, leading 

to cell cycle arrest, DNA repair and metabolic adaptation via p53 and NF-κB signaling. By pretreating 

skin melanoma cells with UA, we observed that UVR-induced mitochondrial metabolic stress further 

increased with activation of NF-κB and p53, effects which were not found in RPE cells. This suggests 

a metabolic switch induced by UA occurred in the glycolytic cancer cells, causing severe oxidative 

stress and rendering cells apoptotic following UV irradiation. On the other hand, UA-mediated  

up-regulation of multiple enzymatic genes of glucose metabolism was specifically observed in RPE 
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cells, while the lack of these responses in skin melanoma cells indicated the existence of a negative 

feedback loop of AKT activation to suppress PGC-1α expression in malignant cells.  

As many malignant cancer cell lines encompass over-expressed 3-phosphoinositide-dependent 

kinase 1 or a loss of PTEN function, the anabolism activator, insulin or its mimetics, usually 

exacerbate AKT-mediated PGC-1α suppression and reduce mitochondrial metabolism and antioxidant 

defenses [145,146]. Thereafter, energy starvation as well as UV-induced oxidative stress induces 

AMPK-mediated metabolic adaptation through inhibition of acetyl-CoA carboxylase and TORC1, 

along with p53 activation [147–151]. When p53 initiates mitochondrial bioenergenesis in the absence 

of mTOR activity, metabolic stress rapidly accumulates during the TCA cycle to perturb bioenergetic 

and redox homeostasis. As a result, lack of mTOR-mediated GSK3β inhibition for Nrf2-driven 

transactivation of antioxidant and detoxification genes can lead to cytochrome c release from 

mitochondria and putative induction of apoptosis. 

UA modulates cellular sensitivity to UV by agonizing insulin-/(IGF-1)-mediated anabolism and  

up-regulating (PGC-1α)-mediated catabolism. Insulin-/(IGF-1)-mediated anabolism reduces intracellular 

cAMP, which in contrast is increased by (PGC-1α)-mediated catabolism. Differential expression of 

insulin/IGF-1 receptors in different cell lines, therefore, controls the intracellular cAMP pool and 

affects cellular responses to UV [152]. Through activation of adenylyl cyclase and ATM, UV increases 

intracellular cAMP and induces gluconeogenesis and mitochondrial oxidation for producing cellular 

antioxidant reductants from the PPP and TCA cycle. Additionally, cAMP reinforces homologous 

recombination repair by attenuating p53 accumulation and inhibiting AKT activity upon UV-induced 

DNA damage. The cAMP signaling, however, is negatively affected by insulin-/(IGF-1)-mediated cAMP 

reduction. As a result, the insulin mimetic, UA, can preferentially sensitize insulin-resistant cells toward 

UV-induced oxidative DNA damage. The metabolic and mitogenic effects of UA trigger a decrease in 

carbohydrate sources, leading to reduction of mTOR activity and activation of the AMPK-p53 axis. The 

UA-induced metabolic alterations predispose insulin-resistant cells to suffer a lack of energy and 

perturbation of redox homeostasis as the crosstalk between p53 and mTOR is diminished. In comparison, 

cells that are sensitive to insulin remain viable throughout mTOR inhibition due to the prevalence of 

oxidative metabolism for redox and energy homeostasis. The perspective presented by this review 

introduces a new understanding of the mechanism by which UA exerts differential effects on cells 

exercising different metabolic pathways in response to UV-induced oxidative stress and DNA damage. 
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