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Abstract

Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technol-

ogy-based data collection methods have led to a torrent of high dimensional datasets, which

commonly have a small number of samples because of the intrinsic high cost of data collec-

tion involving human participants. High dimensional data with a small number of samples is

of critical importance for identifying biomarkers and conducting feasibility and pilot work,

however it can lead to biased machine learning (ML) performance estimates. Our review of

studies which have applied ML to predict autistic from non-autistic individuals showed that

small sample size is associated with higher reported classification accuracy. Thus, we have

investigated whether this bias could be caused by the use of validation methods which do

not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV)

produces strongly biased performance estimates with small sample sizes, and the bias is

still evident with sample size of 1000. Nested CV and train/test split approaches produce

robust and unbiased performance estimates regardless of sample size. We also show that

feature selection if performed on pooled training and testing data is contributing to bias con-

siderably more than parameter tuning. In addition, the contribution to bias by data

dimensionality, hyper-parameter space and number of CV folds was explored, and valida-

tion methods were compared with discriminable data. The results suggest how to design

robust testing methodologies when working with small datasets and how to interpret the

results of other studies based on what validation method was used.

Introduction

Generally, the larger the dataset the greater statistical power for pattern recognition [1]. Large

datasets are also becoming more common, partly because the data is increasingly gathered by

cheap and widely available methods such as Internet of things (IoT) devices. Databases such as

the UK Biobank [2] are aggregating data from more than 500,000 people to enable very large-

scale data analysis, provided that the desired analysis is supported by the data available in the

database.
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Unfortunately, such techniques and large databases are of less use for traditional hypothesis

driven research. Advances in neuroimaging, genomic, motion-tracking, eye-tracking and

many other technology-based data collection methods have led to many datasets, which fre-

quently have a small number of samples. Small samples are common because tasks and experi-

mental protocols which maximally discriminate between different conditions are still under

development and because of the costs associated with data collection involving human partici-

pants. For example, in our work with autistic adults, running an experiment to generate one

sample of high dimensional data may require 1.5–4 hours of experimenter time (for running

the experiment including set up and set down) and 3.5–6 hours of participant time (including

travel time). In addition, it is difficult to recruit large numbers of autistic adults due to difficul-

ties accessing participants and encouraging participation. Collecting samples from thousands

of subjects is thus not feasible with the resources available for early stage work. However, there

is still a critical need for robust and reliable machine learning (ML) methods using these

smaller datasets.

High dimensional data with small number of samples are particularly common in neuroim-

aging studies. Arbabshirani et al. [3] conducted a survey of neuroimaging studies which used

supervised ML methods to classify healthy individuals and individuals with brain disorders.

Most of the surveyed studies had a small number of subjects (median 88) and interestingly, the

overall reported accuracy was higher in the studies with smaller sample sizes. This effect was

evident in the studies focusing on different brain disorders: schizophrenia, mild cognitive

impairment, Alzheimer’s disease, depressive disorders, autism spectrum conditions, and atten-

tion-deficit hyperactivity disorder. However, Arbabshirani et al. [3] did not report statistical

measures of this relationship. Varoquaux [4] also performed a meta-analysis of neuroimaging

review papers which included studies focusing on various brain diseases and classification

methods. Overall, similarly as in Arbabshirani et al. [3] survey, a clear pattern emerged with

higher prediction accuracy reported in the studies with small sample sizes.

Despite small sample sizes being common, and the fact that limited data is problematic for

pattern recognition [1, 5, 6], only a limited number of papers have systematically investigated

how the ML validation process should be designed to help avoid optimistic performance esti-

mates. Previous papers [5, 7] used synthetic Gaussian noise data to investigate how far experi-

mental classification error is from the expected theoretical chance level. Varma and Simon [7]

used a fixed sample size dataset (40 samples), and investigated the change from theoretical

chance performance when using two different Cross-Validation (CV) approaches for selecting

the data used for model development and model validation (Different CV methods are intro-

duced in detail in section Validation strategies). They showed that the nested CV approach

which avoided pooling training and testing data produced an “almost unbiased estimate [of

performance]” [7]. In comparison, Combrisson and Jerbi [5] used only a K-fold CV approach

and varied sample size. They found that with small sample sizes empirical accuracies overshot

theoretical chance level and were more variable.

Overall, Varma and Simon [7] investigated the choice of validation method, at one fixed

sample size, while Combrisson and Jerbi [5] varied sample size, but only with one validation

method. In this paper we build on their work and combine the two approaches, by investigat-

ing different validation methods and systematically varying sample size. In addition, we extend

the synthetic Gaussian noise data classification approach to investigate a number of additional

factors influencing result reliability. Generally, the higher the ratio of features to sample size

the more likely that an ML model will fit the noise in the data instead of underlying pattern [1,

6, 8]. Similarly, the higher the number of adjustable parameters the more likely the ML model

is to overfit the data [9]. We quantify the effect of this by varying the feature-to-sample ratio

and number of adjustable parameters in the models, as part of our synthetic data classification.
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The reminder of this paper is organised as follows. First, we present a new literature review

illustrating the small sample size problem. Previous reviews [3, 4] have demonstrated a nega-

tive relationship between sample size and reported classification accuracy. To show this is an

ongoing issue we have performed a survey of studies which used ML algorithms in autism

research, which is relatively nascent field (with only 55 studies identified for inclusion in our

review). We then introduce the different validation methods in section Validation strategies.

Our analysis methods are given in section Methods. We have used five clearly defined valida-

tion approaches and systematically varied sample size. We investigated classification of both

Gaussian noise with an expected classification accuracy of 50% (random guessing level) and

randomly generated discriminable data.

In the Results section we show that while certain validation methods produce significantly

overoptimistic performance estimates (> 50%), especially when sample size is small, others are

robust regardless of sample size. We also show that the feature selection process, if performed

on pooled training and testing data, is contributing to bias considerably more than parameter

tuning. Results for other factors apart from sample size influencing overfitting and results on

different validation approaches with discriminable data are also included. After the results sec-

tion we have graphically illustrated why models, developed on pooled training and testing

data, can produce overoptimistic performance estimates. The same concepts as in our main

simulations are exemplified in a simpler and more intuitive way, as we are aware that some

readers may be less familiar with ML. Program code used for the main simulations performed

in this study is provided with this article in S1 File.

Machine learning in Autism

To investigate the state of the art of ML in Autism research, and whether there is an effect of

sample size on reported ML performance, a literature search was performed using search

terms “Autism” AND “Machine learning”, detailed in Table 1. The search time period was: no

start date—18 04 2019 and no search filters were used. Only studies which used ML to predict

two classes and reported accuracy as a performance measure were included to ensure clear

interpretation of the results. In total 55 studies were retained, with the results summarised in

Fig 1. Details of the surveyed studies and measures used for analyses as well as full references

are provided in S1 Table.

Most of the surveyed studies had a small number of subjects (median 80). The studies used

various types of data to classify autistic and non-autistic individuals, with the majority from

the brain imaging domain. Other studies used, microarray, clinical chemistry, cognitive,

motion and eye tracking data. Studies also used different data pre-processing, feature selection

and classification methods, Fig 1B. In our survey We explored if even after combining such

varied studies there was a relationship between sample size and accuracy. A Kolmogorov-

Smirnov test indicated that sample size in our surveyed studies did not follow a normal distri-

bution, D(55) = 0.28, p< 0.001. A distribution was strongly positively skewed and leptokurtic

Table 1. Literature search protocol.

Search engine Articles found Articles retained

Web of Science 275 27

Science Direct 1018 9

Google Scholar 19600 (first 1000 viewed) 10

Other sources 24 9

Total articles retained: 55

https://doi.org/10.1371/journal.pone.0224365.t001
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Fig 1. Relationship between log10 transformed sample size and reported accuracy. For 55 studies in the survey which applied ML

methods in autism research. A: Relationship between log10 transformed sample size and accuracy, with a dark blue regression line

and light blue area showing 95% confidence intervals. B: Classifiers used in the studies. C: Relationship between reported accuracy

and log10 transformed sample size by year, bottom scatter-plots are for the studies published in that year. Year 2019 includes studies

up to 18/04/2019 when the literature search was performed. N—sample size. D: Relationship between reported accuracy and log10

transformed sample size by modality of data used in the study.

https://doi.org/10.1371/journal.pone.0224365.g001
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because of high proportion of small sample studies. We have applied log10 transformation to

sample size data to resolve this issue. After the transformation, the data was normally distrib-

uted, D(55) = 0.12, p = 0.06, and we found a strong negative relationship between log10 trans-

formed sample size and reported accuracy, r(53) = −0.70, p< 0.001. By not transforming the

data and using non-parametric Spearman’s rank-order correlation we found a correlation of a

similar magnitude, r(53) = −0.67, p< 0.001, but we chose to transform sample size data for

clearer graphical representation in Fig 1. Forty nine percent (R2 = 0.49) of variance in reported

accuracy was simply explained by the sample size. Examining the relationship between

reported accuracy and log10 transformed sample size by year a consistent negative relationship

was evident, Fig 1C.

We have also performed additional analyses to exclude the possibility that the negative rela-

tionship between sample size and reported accuracy was dependent on the data modality. The

survey was dominated by brain imaging studies and only one other modality of motion track-

ing contained more than two studies allowing separate correlation analyses. We have com-

bined the rest of the studies into a category: other. The results show that a negative relationship

between sample size and reported accuracy was evident in different modalities, Fig 1D. The

correlation between log10 transformed sample size and reported accuracy was r(39) = −0.64,

p< 0.001, for brain imaging studies, r(3) = −0.61, p< 0.271 for motion tracking studies, and

r(7) = −0.90, p = 0.001 for other studies, suggesting that the negative relationship between sam-

ple size and reported accuracy was independent of the study modality.

A strong relationship between sample size and reported performance suggests that ML

models are biased to produce overoptimistic results when a sample used to train them is small

Fig 1. In supervised learning, the ideal model would both approximate the regularities in the

training data, and would generalise to unseen new data. However, this is unlikely because

training data may include noise and may not represent the population sufficiently well. Too

complex models are likely to represent noise in the training data, rather than underlying pat-

terns of interest. Such models overfit the training data. In contrast, too simple models are likely

to underfit training data and fail to capture underlying regularities. Obviously, one would aim

to construct a model which fits training data just enough to capture a pattern which is repre-

sentative of the population, but does not fit the noise inherent in the available training data.

Underfitting is improved by simply applying models of increasing complexity, however, over-

fitting, is a more difficult problem. To assess and control overfitting, model validation is com-

monly used.

Validation strategies

A reliable way to validate a ML model’s performance is to train a model with available data

and assess its classification performance using newly collected data or a separate dataset.

Another reliable approach, commonly called Train/Test Split, is to separate a portion of data

before developing a ML model and to use that data only for validation, Fig 2A. Using unseen
data to test a ML model gives an unbiased estimate of what performance would be when the

model is deployed for actual predictions in real-world situations. However, these approaches

require one to collect or hold a substantial amount of data for validation, and are rarely used in

research involving human participants, where data collection is commonly associated with

high costs.

Cross-Validation is a common solution when the available datasets are limited. Instead of

training a fixed model only once as in Train/Test split, iteratively several models are developed

on different portions of the data. K-Fold is a common CV approach. First, a well-defined

model is developed by normalising data, selecting features, tuning parameters and/or
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performing other development steps. Then a portion of data is separated for validation leaving

the rest to train a model and predict the classes on the left-out validation data. This process is

repeated several times, by leaving out a different portion of the data for validation until all the

data is used. The model’s performance is then calculated as a mean of classification perfor-

mances, in each of the validation folds, Fig 2B.

When validation with a separate dataset is not feasible because of small sample size, K-Fold

CV is very economical as it allows one to use all the data for training and also to reuse all of it

for validation. If validation was to be performed with a separate dataset, double the amount of

data would be needed to have the same quantity of data for training and validation. More

importantly CV theoretically should give more accurate out of sample error estimation, com-

pared to previously discussed approaches. Using all of the available data for validation should

Fig 2. Validation methods. A: Train/Test Split. B: K-Fold CV. C: Nested CV. D: Partially nested CV. ACC—overall accuracy of the model, ACCi.—
accuracy in a single CV fold.

https://doi.org/10.1371/journal.pone.0224365.g002
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give out of sample error estimates which are less influenced by noise and are more representa-

tive of the population, compared to using a portion of the data as with Train/Test Split or new

dataset.

However, K-Fold CV does not ensure that the data used to validate the classifier is not part

of the data used to train it. Stone [10] pointed out the importance of separating CV used for

model development and CV used for model evaluation. Varma and Simon [7] have demon-

strated that using the data to validate a model which was also used to develop it can produce

overoptimistic performance estimates.

One possible solution which avoids pooling training and validation data, but at the same

time is economical (allows all the data to be used for training and reuse for validation) is

Nested CV [7, 11], Fig 2C. A portion of data is split at the beginning and in each CV fold

a model is then developed on the reduced training set from scratch, including feature selec-

tion and parameter tuning. This is repeated with splitting a different portion of the data for

validation, and each time developing a new model for training until all the data is used.

Varma and Simon [7] suggest that Nested CV provides almost unbiased performance

estimates.

Methods

In this study, by using Gaussian noise as data, we have simulated a situation in which robust

validation should produce two-class classification accuracy approaching theoretical chance

level of 50%. We tested five validation approaches: Train/Test Split, K-fold, Nested, and two

types of partially nested CV. Importantly, we performed these simulations using different sam-

ple sizes to provide an insight into whether the tendency to report higher performance esti-

mates with smaller sample size could be due to insufficiently reliable validation. In addition,

we have tested what other factors, apart from sample size, influence overfitting and how differ-

ent validation methods perform with discriminable data. To show that simulation results gen-

eralise to algorithms differing in complexity, two algorithms were used. One, computationally

demanding and complex, where Support Vector Machine (SVM) [12] classifier with Radial

Basis Function (RBF) kernel was coupled with Support Vector Machine Recursive Feature

Elimination (SVM-RFE) [13] feature selection. Another, simpler, where the logistic regression

classifier was coupled with two-sample t-test feature selection.

Overview of procedures

Typically, ML algorithm development starts with data cleaning and outlier removal, then the

data is normalised to ensure that separate features have a balanced influence on the labels.

Then if number of features is large, which is especially true for neuroimaging and gene expres-

sion studies [3, 14, 15], feature selection is performed. This is done because ML algorithms

tend to achieve optimal performance in a reduced feature space [6, 16]. Many of the ML mod-

els include hyper-parameters which can be fine-tuned. This process is commonly coupled with

CV to not only achieve optimal algorithm performance, but also to control overfitting. Finally,

the model is validated to ensure that it generalises to “unseen” data. Below the development

stages of ML algorithms which were used in this study are described with a particular emphasis

on validation.

Data

Data was simulated by randomly drawing values from a Gaussian distribution with a mean of

zero and standard deviation (SD) of one. Numpy (Python) method random.normal was used

to generate pseudo-random values drawn from standard normal distribution. Binomial
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classification was used, and each simulated dataset was split into two equally sized subsets for

each class. Because features did not bear meaningful relationship to labels, and classes were

balanced, binomial classification models would be expected to yield chance level classification

accuracy of 50%.

Data normalisation, cleaning

As the data was drawn from standard normal distribution data normalisation was not neces-

sary and was omitted. Data cleaning was also not necessary in this case; however, with real

datasets, missing value replacement/removal and outlier replacement/removal are usually nec-

essary steps.

Classification algorithms

For classification, SVM [12] was chosen because it was by far most commonly used algorithm

in our survey, Fig 1B. We have also used a logistic regression algorithm.

SVM separates the classes by maximising the gap between training examples from each

class. The examples in the test data are when assigned a label based on which side of the gap

they fall. The SVM algorithm assumes linear separability of classes, however in reality this

assumption in rarely realistic. Therefore, a regularisation parameter C is introduced which

weighs the importance of misclassification and allows SVM to fit a linear separating hyper-

plane with some of the examples being misclassified. Another method to deal with non-line-

arly separable classes is to use kernel functions. Kernel functions project features to a higher

dimensional space. This enables the separation of classes which are non-linearly separable in

the original space with a linear hyperplane in a higher dimensional space. In this study SVM

with RBF kernel was used. RBF kernel has a regularisation parameter γ, which regulates the

spread of the kernel function and in turn determines the flexibility of the separating hyper-

plane. SVM was implemented with Libsvm library [17].

A logistic regression model was also used as a classifier. It uses logistic function to predict

binary classes based on linear combinations between class and features. Logistic regression

was implemented using Scikit-learn library [18].

Parameter tuning of classification algorithms

SVM-RBF regularization parameters C and γ were optimized to improve classification and to

control overfitting. Both parameters regulate the complexity of a separating hyperplane. By set-

ting a low penalty for misclassification (parameter C) SVM tries to classify all training exam-

ples correctly making a separating boundary complex. Similarly, the higher the value of

kernel’s γ parameter, the more flexible and complex the separating boundary. To optimise C
and γ parameters we used a grid search approach, which evaluates classification accuracy with

different combinations of C and γ parameters by using 10-fold CV. A pairing of C and γ
parameters which gave the highest CV accuracy was selected. Grid search was performed with

parameters set to: C = 2j, where j = 1, 2, . . . 7 and γ = 2i, where i = -1, -2, . . . -7. Grid search

was implemented with Scikit-learn library. For visualisation of how parameters influence SVM

decision boundary see Devos et al. [19]

To control for overfitting logistic regression was regularised using L1 (Lasso) or L2 (Ridge)

penalty terms and the magnitude of penalty was controlled by regularization parameter C.

Like in SVM, smaller values of C specify stronger regularization. To optimize parameters grid

search was performed with penalty set to L1 or L2 and C set to C = ei, where i = 0, 1, . . . 9.
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Feature selection

Most of the studies in our own and other surveys [3, 4] used feature selection. Therefore, for

our simulations we initially generated 50 features comprised of Gaussian noise and used fea-

ture selection to reduce dimensionality. We chose two feature selection methods, one compu-

tationally complex—SVM-RFE, and another simpler—two-sample t-test.

SVM-RFE algorithm selects features based on how important they are for an SVM classifier

to separate classes. SVM-RFE starts with a full feature set and in a number of iterations elimi-

nates a set number of features which are deemed least important for separating classes by an

SVM algorithm, using weight vector of dimension length(s) as a ranking criterion [13]. The

algorithm removes least important features in iterations because in each iteration the relation-

ship between features and labels changes. Top-ranked features are not necessarily the most rel-

evant individually; they are, however, optimized by considering interdependencies with other

features and the class. The final feature set is selected from the iteration in which SVM achieves

best classification performance. In this study a single feature was eliminated in each SVM-RFE

iteration and the final feature set was selected based on the highest classification accuracy by

linear SVM with C set to 1.

Two-sample t-test was also used for feature selection. In contrast to SVM-RFE it is a much

simpler method which ranks features based on how different feature means are between the

two classes. In this study, 10 features with the highest absolute value of t statistic were selected.

Validation and performance evaluation

For validation of the results, five different validation approaches were used and their perfor-

mance was compared.

Train/Test Split is a simple and reliable validation approach. A portion of the data was split

before any model development steps and it was used only once to validate the developed

model Fig 2A.

K-Fold CV. First, a single well-defined model was developed by selecting features and tun-

ing parameters, Fig 2B. Then the model was validated by separating one-tenth of the data for

validation and the rest for training. CV process was iteratively repeated ten times. In each fold,

a different one-tenth of the data was selected for validation. In such way, in the end, all the

data was used for training and also for validation. The final performance of the model was

then calculated as a mean of classification performances in each of the ten validation folds.

Nested CV is performed in two layers to achieve training and validation separation, Fig 2C.

In this study, ten-fold Nested CV was used. In the outer layer, 10% of the data was separated

for validation and the rest of the data was used to develop a model. In the internal layer, the

remaining 90% of the data was used for feature selection and parameter tuning. A developed

model was then validated with 10% of the data which was split at the beginning. This process

was repeated 10 times by selecting a different 10% of the data for validation and by using a dif-

ferent 90% of the data to develop a new model from scratch. The overall performance was then

calculated as a mean of classification performances of the 10 separately developed models on

different 10% sets of the validation data which was not involved in developing the models.

Partially nested validation. Arbabshirani et al [3] in their large survey noted that in most

studies, feature selection was performed in a non-nested fashion. Feature extraction/selection

can be computationally very demanding which could explain why it is frequently performed

only once on pooled training and testing data, instead of performing it in each CV fold. In this

study, to examine whether accuracy estimates are biased more by feature selection or parame-

ter tuning we performed two types of partially nested validation, Fig 2D. First, feature selection

was performed in a non-nested fashion and parameter tuning in nested fashion. That is,
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feature selection was performed once in an outer nested validation loop, on pooled training

and validation data. Only parameter tuning was nested and performed 10 times, avoiding the

pooling of training and validation data. Second, feature selection was performed in nested and

parameter tuning in a non-nested fashion.

Implementation

The results section is organised as follows. First, we compare five different validation methods

using Gaussian noise data as features. Data was split into two equally sized subsets for each

class. The feature set started with 50 features and was reduced by using feature selection. Sam-

ple size was manipulated, and classification results were evaluated using Train/Test Split, K-

fold CV, Nested CV and two types of partially nested CV. The performance estimate was accu-

racy. To obtain accuracy distributions models were trained 50 times at each sample point, then

validation results were compared against theoretical chance level using confidence level of

95%.

Then, other factors apart from sample size which can lead to overfitting with K-fold CV

were investigated. We kept sample size constant, but manipulated number of Gaussian noise

features. As feature-to-sample ratio is well known to influence classification result reliability

[20–22], we additionally manipulated feature-to-sample ratio from 1/3 to 3 and show that fea-

ture/sample size ratio can be a good indicator of how much a model is likely to overfit. We also

investigated how overfitting was influenced by grid size used to fine-tune classifier hyper-

parameters and number of CV folds.

Finally, different validation methods were compared by using discriminable data to investi-

gate an interaction between the increase in classification ability [23–25] and the reduction in

overfitting with larger samples. Discriminable datasets were generated with 50 features and

balanced labels. 40 of the features were generated from zero-mean and one SD Gaussian noise

for both classes. To create discriminability, the remaining 10 features for the first class were

generated from Gaussian noise with a mean of 0.5 and SD of one while for the second class

from the Gaussian noise with a mean of 0 and SD of one.

Unless indicated differently all model parameters were set as described in this section.

Results

Comparison of different validation methods

The effect of sample size on how close the empirical classification result is to theoretical chance

level was examined. The sample size was manipulated and ranged from 20 to 1000. To evaluate

classification results K-Fold, Nested, Train/Test Split and two types of partially nested valida-

tion were used. Fig 3 shows that by using both a complex algorithm, where SVM-RFE feature

selection was coupled with a SVM-RBF classifier (SVM algorithm hereafter, Fig 3A), and a

simpler algorithm, with t-test feature selection and a logistic regression classifier (logistic

regression algorithm hereafter, Fig 3B), accuracies given by K-Fold CV were considerably

higher than the theoretical chance level of 50%. The highest difference was observed with

smaller sample sizes; however, the difference was still evident even at the sample size of

N = 1000. In contrast accuracy distributions produced by using Nested CV and Train/Test

Split did not statistically significantly differ from 50% chance level with SVM and logistic

regression algorithms at 96.5% sample size points (p ranged from 4.3 × 10−4 to 0.997, a small

number of significant differences is expected by chance with 95% confidence level).

Two types of partially nested validation were also performed. In the first instance, only

parameter tuning was nested while feature selection was performed on the pooled training and

testing data in non-nested fashion. Fig 3 shows that nesting parameter tuning only was not
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sufficient to control overfitting. By using both SVM and logistic regression algorithms, empiri-

cal accuracies at each sample point were significantly higher than the 50% chance level (p ran-

ged from 1.1 × 10−42 to 6.3 × 10−20 and from 1.7 × 10−33 to 1.7 × 10−22 respectively). The

results were considerably different when feature selection was nested and only parameter tun-

ing was performed on the pooled training and testing data. The curves approached 50% chance

level, Fig 3. One sample t-tests showed that for the SVM algorithm empirical accuracy distribu-

tions were significantly higher than 50% chance level on 56% sample size points (p ranged

from 2.8 × 10−5 to 0.879). For a logistic regression algorithm accuracy distribution using this

type of partially nested validation was higher than the chance level only at one sample size

point (2%, p ranged from 0.039 to 1.0).

Taken together, partially nested validation results show that to perform feature selection in

nested fashion is paramount for controlling overfitting, while nesting parameter tuning has a

smaller effect. This was the case for our data and models used. However, for other situations,

especially, if feature selection is not used or relied less, parameter tuning could contribute to

overfitting more. Our models relied on feature selection substantially, reducing feature num-

ber from 50 to 10, to represent ML studies for disorder prediction, which commonly use fea-

ture selection as an important model development step [3, 26].

Other factors apart from sample size influencing overfitting

Other factors influencing overfitting with K-Fold CV were examined. Sample size was kept

constant at N = 100 while feature number, parameter tuning grid size and number of CV folds

were manipulated. Both SVM-RFE and t-test feature selection were used in combination with

SVM-RBF classifier (Fig 4) and logistic regression classifier (Fig 5).

Number of features. For both SVM (Fig 4A) and logistic regression (Fig 5A) classifiers

feature number had a clear influence on overfitting. The higher the number of features used,

the greater the difference was between the empirical classification accuracy and theoretical

chance level of 50%. There was also a clear difference between the feature selectors used.

SVM-RFE accuracies were higher than t-test, and this difference became greater with increas-

ing feature space to select from.

100 200 300 400 500 600 700 800 900 1000
Sample size, N

30

40

50

60

70

80

90

100

A
cc

ur
ac

y,
 %

K-Fold
Parameter tuning nested
Feature selection nested
Train/Test Split
Nested

100 200 300 400 500 600 700 800 900 1000
Sample size, N

30

40

50

60

70

80

90

100

A
cc

ur
ac

y,
 %

K-Fold
Parameter tuning nested
Feature selection nested
Train/Test Split
Nested

A B

Fig 3. Gaussian noise classification accuracy distributions with different validation approaches. K-Fold, Nested, Train/Test Split and two

types of partially nested validation methods used. Thick lines show mean validation accuracy and dash-dot lines show 95% confidence intervals

for 50 runs. A: SVM-RFE feature selection and SVM classification. B: t-test feature selection and logistic regression classification.

https://doi.org/10.1371/journal.pone.0224365.g003
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Classifier hyper-parameter optimisation. Grid size used to fine-tune SVM-RBF C and γ
parameters also had a clear influence on overfitting, as grid size increased, achieved accuracies

also increased (Fig 4B). There was, however, no such effect on accuracy when the grid size to

fine-tune logistic regression parameters was increased (Fig 5B).

Number of CV folds. Similar results were observed when the number of CV folds used to

fine-tune the model’s hyper-parameters was increased. With SVM-RBF classifier, the use of a

higher number of folds affected accuracy up to approximately 20 folds when the effect levelled

off. There was again no clear effect when the number of CV folds was increased with the logis-

tic regression classifier.

Feature-to-sample ratio

The results on other factors influencing overfitting showed that the number of features used to

develop a model had a clear impact on overfitting regardless of the feature selector or classifier

used. This effect was investigated further as it is likely that feature-to-sample ratio could be a

better indicator of how much a model is likely to overfit compared to sample size alone. Sam-

ple size was manipulated from 42 to 446 and feature number was also manipulated accord-

ingly, to achieve different feature-to-sample ratios of 1/3, 1/2, 1, 2, 3, 10 and 20, Fig 6. The
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Fig 4. Other factors apart from sample size influencing overfitting when K-Fold CV is used. SVM-RFE and t-test feature selection, SVM

classification, and sample size fixed at N = 100. A: Feature number manipulated from 20 to 200. B: Parameter tuning grid size manipulated from 2 × 2

to 20 × 20 with C = 2j, where j varied from 2 to 20 and γ = 2i, where i varied from −2 to −20. C: Number of CV folds varied from two-fold to leave-one

out. Thick dashed lines show fitted 5th order polynomial trend.

https://doi.org/10.1371/journal.pone.0224365.g004
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CV folds varied from two-fold to leave-one-out. Thick dashed lines show fitted 5th order polynomial trend.

https://doi.org/10.1371/journal.pone.0224365.g005
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results showed that feature-to-sample ratio is a good indicator of how much a model is likely

overfit. By using both SVM (Fig 6A) and logistic regression (Fig 6B) algorithms the accuracies

achieved by models with higher feature-to-sample ratios were greater.

Validation with discriminable data

To make data discriminable, 10 out of 50 features were generated from Gaussian noise with

means differing between classes (see section Implementation). SVM-RFE was used for feature

selection and SVM-RBF for classification. Models were validated using different validation

methods: K-Fold CV, Nested CV and Train/Test Split. Fig 7A shows that performance esti-

mates were varied. There were no significant differences in accuracy between Train/Test Split

validation and Nested CV at 96% of sample size points, two-sample t-test (p ranged from 0.039

to 0.995). K-fold CV however gave significantly higher performance estimates compared to

Nested CV (p ranged from 1.3 × 10−6 to 5.4 × 10−35) or Train/Test Split validation (p ranged

from 3.8 × 10−1 to 5.3 × 10−19). The accuracy for both Train/Test split and Nested CV

increased with sample size and then levelled off when sample size reached approximately

N = 700 at� 77% accuracy level. This shows a well-known aspect of ML models; with a larger

training sample size, models have higher statistical power to learn a pattern discriminating

between classes and achieve higher performance. Several studies have explored this by calculat-

ing learning curves which show accuracy as a function of the training sample size [23–25] and

assume a typical shape similar to Nested CV or Train/Test Split curves in Fig 7A. The K-fold

CV curve, on the other hand, was not of the typical learning curve shape. Although an increase

in learning must have been present with larger sample sizes, the overfitting had a stronger

effect. This was further shown by exploring variability of performance estimates expressed as

95% confidence intervals, Fig 7B. Similarly, as in [4, 5] we found that with larger sample sizes

variability in performance estimates decreased. This was not the case for K-fold validation

where variability increased up to N� 60 and then started decreasing, Fig 7B inset. This

was caused by a high frequency of perfect classification (100%) occurrences at sample sizes

below 60.

Fig 6. K-Fold CV with different feature-to-sample ratios. Sample size ranged from 14 to 446 and feature number was set accordingly to keep feature-

to-sample ratios at 20, 10, 3, 2, 1, 1/2 and 1/3. A: SVM-RFE feature selection and SVM classifier. B: t-test feature selection and logistic regression

classifier.

https://doi.org/10.1371/journal.pone.0224365.g006
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Illustrative examples of why models overfit

Our simulations show that validating models with the data which was also involved in model

training can lead to overfitting and overoptimistic performance estimates. However, it may

not necessarily be intuitive why overfitting occurs. Here we graphically illustrate how two

model development stages, parameter tuning and feature selection, can lead to overfitting if

those development stages are performed on the pooled training and validation data. The exam-

ples are small and simple, illustrating the concepts explored in our main simulations in a more

intuitive way.

Parameter tuning and overfitting

To illustrate how parameter tuning can lead to overfitting we have used a small classification

example with a sample size of 10 (5 samples from one class and 5 samples from a second class)

and only two features. The data was generated from random Gaussian noise and SVM-RBF

(with the same settings as in the main analyses) was used to separate data points from two clas-

ses (shown in red and blue in Fig 8A).

We have developed two models in parallel on the same data and with the identical settings.

To validate we have used the same two data points for both models. The only difference

between the models was that the first model (Fig 8A left) was trained on all 10 data points—on

the pooled training and validation data. The second model (Fig 8A right) was developed by

keeping training and validation data independent. It was trained on 8 data points making the

remaining 2 validation data points ‘’invisible’’ to the model. Decision boundaries (lines sepa-

rating blue and red areas in Fig 8A) were clearly differently learned by the two models. The

first model fitted the data which was used for validation and classified two validation data

points correctly, while the second model, for which validation data was ‘invisible’ misclassified

the same two validation data points.

By running these two models 1000 times, each time with different randomly generated

data, both models were capable of fitting training data and achieve over 80% classification

accuracy, showing that the models were capable of fitting random noise well. The first model,
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Fig 7. Classification with discriminable data using K-Fold CV, Nested CV and Train/Test Split validation methods. A: Comparison of

different validation methods. Dash-dot lines show 95% confidence intervals for 50 runs. B: Size of 95% confidence intervals. Inset plot shows

more refined view of confidence intervals for K-fold CV in a sample size range of 20 to 200 (in the inset plot sample sizes were N = 20, 22, . . . 198,

200, in the main plot N = 20, 40, . . . 980, 1000).

https://doi.org/10.1371/journal.pone.0224365.g007
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however, also fitted noise in the validation data achieving mean accuracy of 81%, while the sec-

ond model for which validation points were ‘invisible’ achieved accuracy rate of 50%, random

guessing level.

Overall, this example graphically illustrates that complex enough models are capable of fit-

ting random noise in the data. It also shows that if the data, which is used for validation, is also

involved in parameter tuning, the performance is inflated because the models fit the noise not

only in training but also in validation data.

Feature selection and overfitting

To graphically illustrate how performing feature selection on pooled training and validation

data can lead to overfitting we have used t-test feature selection. t statistic of two-sample t-test

simply shows how different are the means between two classes in units of standard error. We

have used Gaussian noise data of 50 samples equally balanced between two classes and per-

formed t-test feature selection to select 10 features from sets varying from 20 to 100 features.

20% of the data was randomly split for validation and once again we have performed feature

selection using two different approaches. in the first instance it was performed on the pooled

training and validation data and in the second instance only training data was used for feature

selection. This was repeated 100 times.

Fig 8B shows that with the larger pool of features to select from, the selected ten features

had greater between-class mean differences than with the smaller pool of features to select

from (train lines in Fig 8B). This was the case for both approaches. The main difference

between two approaches was in validation. Selecting 10 features with greatest mean differences

on pooled training and validation data (100% of data) also led to greater between-class mean

differences in validation data alone (randomly split 20% of data). The effect also increased with

larger feature pool to select from. This was not the case when validation data was independent

of feature selection. Despite mean differences being high in ten selected features in the training

data (80% of data), the selected features produced low mean differences on validation data

(20% of randomly split data) which would be expected by chance.

Fig 8. Illustrative examples of why models overfit. A: SVM-RBF decision boundary. Red and blue circles/crosses show data points

from two classes, red and blue areas show learned decision boundary by SVM-RBF. Left: Classifier trained on both train data points

(circles) and validation data points (crosses). Right: Classifier trained only on train data points (circles). B: Two-sample t-test feature

selection performed both, on pooled and on independent train and validation data. Y axis shows mean t-statistic for selected 10

features from the pool of features ranging from 20 to 100.

https://doi.org/10.1371/journal.pone.0224365.g008
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This example shows that feature selection is capable to select features as discriminative

between classes because of inherent noise (in this example the data was Gaussian noise with

between class differences occurring by chance). It also shows that if feature selection is per-

formed on pooled training and validation data, the validation data can occur discriminative

because of noise.

Discussion

Robust evaluation of ML classification is imperative for ML research as it allows meaningful

comparisons between different studies and different methods. Robust evaluation is even more

important when available training and testing samples are small [1, 6].

Our results demonstrate the importance of separating training and testing data to avoid

optimistically biased performance estimates. K-Fold CV was not sufficient to control overfit-

ting. By simply testing the performance of the algorithm with the data which was also involved

in algorithm training was enough to produce biased results with small sample sizes. However,

a substantial bias still remained even with sample size of 1000. On the other hand, similar to

[7] we have found that Nested CV gave unbiased performance estimates. Furthermore, Nested

CV results were unbiased regardless of the sample size.

Additionally, we examined which model development stage, feature selection or parameter

tuning is implicated in validation bias more. Partially-nested validation results showed that by

performing only feature selection in a non-nested fashion gave considerably biased results,

while the bias was much smaller when only parameter tuning was performed in non-nested

fashion. In many studies, the initial number of measures (features) can be very large. In their

survey Arbabshirani et al. [3] noted that most of the neuroimaging studies consisted of two

parts. In the first part using statistical tests, such as t-tests, differences between groups were

identified. In the second part features, which were preselected in the first part, were used for

classification. As a result, feature selection was performed on the pooled training and testing

data and posed a bias. Although, performing feature selection multiple times in nested fashion

with high dimensional data can be computationally demanding, our simulations have shown

that it is necessary to avoid overfitting. Additionally, other model development stages which

were not examined in this study (e.g. normalisation, outlier removal) if performed on pooled

training and testing data could also lead to biased results.

We have also investigated other factors which could influence overfitting when K-Fold CV

is used. Our results have demonstrated that feature-to-sample ratio is a good indicator of how

much a model is likely to overfit. The accuracies achieved by models with higher feature-to-

sample ratios were greater. Increasing the set of parameters over which a model is optimized

also increased amount of bias with SVM model. There was no such effect with logistic regres-

sion. Similarly, greater number of CV folds used for parameter tuning had only a slight effect

with SVM model and no effect with logistic regression model.

Our simulations with discriminable data showed that by using Nested CV and Train/Test

split validation, models were capable of learning a pattern in the data more efficiently and

achieved higher performance with larger sample sizes. This is consistent with previous studies

which investigated accuracy as a function of the training sample size [23–25]. Interestingly, the

distance between K-fold and Nested CV curves with non-discriminable data (Fig 3A) was

larger than with discriminable data (Fig 7A) at each sample size point. This suggests that with

more discriminable data bias produced by less robust validation is lower and also the opposite,

the less discriminable the data the higher the importance of robust validation.

Validation results were highly variable as can be seen from 95% confidence intervals

included in each graph. The same algorithm used on the data drawn from the same
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distribution produced broad range of performance estimates. The variability of performance

estimates was also greater with smaller sample sizes, Fig 7B. In most studies in our survey, a

single performance estimate was reported. However, as our results indicate and as noted by

Varoquaux [4] intrinsically large sampling noise signifies the importance of reporting confi-

dence intervals. Practically a distribution of performance measures could be produced by, for

example, multiple times differently/randomly splitting the data to CV folds [27].

Only a few previous studies systematically investigated ML validation caveats associated

with small sample size. Arbabshirani et al. [3] and Varoquaux [4] reviewed studies, which

applied ML methods for prediction of various brain disorders and found that studies with

smaller sample sizes tended to report higher classification performance. In this paper, as an

illustrative example we have performed a survey of studies which used ML classification to pre-

dict autism or absence of autism (two class problem) and indeed found a significant negative

relationship between sample size and accuracy, r(53) = −0.70, p< 0.001. Study surveys by

Arbabshirani et al. [3], Varoquaux [4] and our survey, all suggest the importance of robust

application of ML methods. To help in this process, there are good guideline studies advising

how to avoid pitfalls, including how to reliably validate the results [28, 29].

Like in our simulations Combrisson and Jerbi [5] used Gaussian noise data to investigate

how much empirical classification performance differed from theoretical chance level. Several

classifiers coupled with K-fold CV were used. Empirical accuracies overshot theoretical chance

level and were more variable when sample sizes were small. The researchers interpreted this

discrepancy between theoretical and empirical accuracy level as arising from the fact that small

samples give a bad approximation of true randomness. Our simulations, however, show that

this is not the case. In contrast to Combrisson and Jerbi [5] in our simulation we used not only

K-fold CV but also other validation methods. Nested and Train/Test Split validation results

showed no deviation from the theoretical chance level regardless of the sample size and the

effect of bad approximation of true randomness was not present. Overoptimistic performance

was observed only with validation methods in which the validation process pooled training

and testing data.

Varma and Simon [7] also used synthetic Gaussian noise data to investigate how far

experimental two-class classification error was from expected 50% theoretical error. The

researchers found that by using K-fold CV mean error was considerably overoptimistic. On

the other hand, Nested CV provided almost unbiased performance estimates. The research-

ers, however did not investigate the influence of sample size, which for all simulations was

fixed at N = 40. We show that not only with N = 40 but even at larger sample sizes of up to

N = 1000 K-fold CV bias remains, although it becomes less prominent with larger sample

sizes.

Combrisson and Jerbi [5] have shown that K-fold CV is more biased with small sample

size, while Varma and Simon [7] have shown that K-fold CV is biased, and Nested CV is not at

a fixed sample size. We have filled the gap by investigating both factors associated with bias,

namely validation method and sample size together. We have demonstrated that validation

methods which do not separate training and testing data at model development stage lead to

overoptimistic performance estimates. Moreover, the bias is strongest with small sample sizes.

This gives a good indication why in our own and other surveys [3, 4] there was a negative rela-

tionship between reported performance estimates and sample size.

Conclusion

We show that K-Fold CV provides optimistically biased performance estimates and is not suf-

ficient to control overfitting. Testing algorithm performance on the data which was used for
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training the same algorithm is enough to produce strongly optimistically biased results when a

sample size is small. However, a substantial bias remains even with respectable sample sizes. In

contrast, Nested CV provides unbiased performance estimates. Completely separating testing

and training data is enough to obtain unbiased performance estimates regardless of sample

size. When only part of model development is performed in a nested fashion, nesting feature

selection is more important than parameter tuning to avoid overfitting. Other factors which

influence bias, such as data dimensionality, hyper-parameter space, number of CV folds and

data discriminability should also be considered.
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