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Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer and is
characterized by high rates of metastasis. Cancer stem cell is a vital cause of renal cancer
metastasis and recurrence. However, little is known regarding the change and the roles of
stem cells during the development of renal cancer. To clarify this problem, we developed a
novel stem cell clustering strategy. Based on The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC) genomic datasets, we used 19 stem cell
gene sets to classify each dataset. A machine learning method was used to perform the
classification. We classified ccRCC into three subtypes—stem cell activated (SC-A), stem
cell dormant (SC-D), and stem cell excluded (SC-E)—based on the expressions of stem
cell-related genes. Compared with the other subtypes, C2(SC-A) had the highest degree
of cancer stem cell concentration, the highest level of immune cell infiltration, a distinct
mutation landscape, and the worst prognosis. Moreover, drug sensitivity analysis revealed
that subgroup C2(SC-A) had the highest sensitivity to immunotherapy CTLA-4 blockade
and the vascular endothelial growth factor receptor (VEGFR) inhibitor sunitinib. The
identification of ccRCC subtypes based on cancer stem cell gene sets demonstrated
the heterogeneity of ccRCC and provided a new strategy for its treatment.
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INTRODUCTION

Renal cancer accounts for 3% of all adult malignancies worldwide, and its incidence have been
increasing in recent years. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of
renal cancer, jeopardizing 70%–80% of renal cell carcinoma (RCC) patients. Over 30% of ccRCC
patients have distant metastasis at the time of diagnosis, and one-third of patients with localized
ccRCC will develop metastasis after nephrectomy (1–3). The 5-year survival rate of localized ccRCC
Abbreviations: ccRCC, clear cell renal cell carcinoma; CSC, cancer stem cell; SC-A, stem cell activated; SC-D, stem cell
dormant; SC-E: stem cell excluded; OS: overall survival; TMB: tumor mutation burden.
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is about 65%; however, it drops to 10%–20% after cancer
metastasis (4). Surgery remains the major approach for the
treatment of localized ccRCC; nevertheless, novel therapeutic
strategies are urgently needed for metastatic patients.

Significant achievements have been made in treating
advanced ccRCC in the last two decades, such as the
application of tyrosine kinase and mammalian target of
rapamycin (mTOR) inhibitors or monoclonal antibodies
against vascular endothelial growth factor (VEGF) (5, 6).
Combination therapy with these inhibitors prolonged the life
span of patients. However, most tumors will progress within 2
years. Recently, new approaches for boosting the immune
response to renal tumors with immune checkpoint inhibitors,
which block programmed cell death protein-1 (PD-1) or
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on T
cells, have shown promising effects in a subset of patients (7).
Fundamentally, improving the outcome of renal cancer patients
will require personalized treatment strategies specific to the
biological characteristic of each tumor.

Stem cells are defined as cells with the ability to self-renew
and differentiate into mature cells of a particular tissue (8).
Cancer stem cells (CSCs) are a subpopulation of cancer cells
with a higher self-renewal ability and the ability to reproduce the
heterogeneity of tumors (9). CSCs have been characterized in
various cancers and have been proven to contribute to drug
resistance, tumor recurrence, and distant metastasis; however,
the situation in kidney cancer remains obscure (10–12). Some
studies have indicated that targeting the Notch, Hedgehog, and
Wnt signaling pathways could inhibit the self-renewal and
pluripotency ability of ccRCC cancer stem cells (13, 14). DKK3
and Notch3, which are members of the Wnt and Notch
pathways, have been proven to be indicators of the prognosis
of renal cancer patients (13). IL8/CXCR1 signaling was proven to
promote the sphere formation and self-renewal capability of
renal tumor cells (15). Both IL8 and CXCR1 are significantly
correlated with patient survival. These studies indicated that the
genes expressed in renal CSCs (RCSCs) could be effective
Frontiers in Oncology | www.frontiersin.org 2
prognostic factors. However, the functional significance and
the prognostic value of stem cell-related genes in ccRCC are
still scarcely investigated and need to be further clarified.

In the present study, we aimed to identify the subclasses of
ccRCC with different CSC properties based on the expressions of
stem cell-related genes. We divided ccRCC into three clusters
with different features and prognosis. In addition, we proved the
stability and reliability of this clustering with an independent
dataset using the unsupervised clustering method. Moreover, we
comprehensively analyzed the prognosis of the RCSC subtypes,
relationship with immune cells and genes, the sensitivity of the
immune checkpoint inhibitor treatment, and potential changes
in the biological process. Classification of the stem cell gene-
related subtypes may contribute to formulating the optimal
treatment for renal cancer patients.
RESULTS

NMF Identifies Three Subclasses in
ccRCC
An analysis flowchart was designed to systematically depict our
study (Figure 1). Three hundred and ninety-two stem cell-
related genes were enrolled for subsequent non-negative matrix
factorization (NMF) analysis. The training set comprising 263
ccRCC samples from The Cancer Genome Atlas (TCGA) was
clustered based on the expressions of the aforementioned 392
candidate genes using NMF consensus clustering. Cophenetic
correlation coefficients, dispersion, and silhouette were
calculated to identify the best k value; k = 3 was proven to be
the optimal number of clusters (three subclasses were assigned:
C1, C2, and C3) (Figure 2A). Based on the present classification,
the consensus heatmap showed sharp and crisp boundaries,
indicating the applicability and robust clustering of these
samples (Figure 2B). To validate the subtype classification, we
conducted t-distributed stochastic neighbor embedding (t-SNE)
FIGURE 1 | Workflow chart.
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to reduce the dimension of the features and found that samples
in the same subclass generally gather in the same region. This
indicates that the subclasses were mostly accordant with the t-
SNE distribution patterns (Figure 2C). Additionally, to validate
this classification, we performed an independent analysis on
TCGA testing set and the International Cancer Genome
Consortium (ICGC) dataset, the results of which also
demonstrated that there were three distinct molecular
subclasses. Based on the classification, a significant prognostic
difference was observed in both TCGA testing set and the ICGC
dataset (Figures 2D–F).

Correlation of the ccRCC Subclass With
Stem Cell-Related Signatures
Considering that the clustering was based on stem cell-related
genes, we further investigated whether the different subclasses
had distinct stem cell characteristics. Firstly, 19 stem cell-related
biological process scores were calculated using the GSVA R
package based on TCGA training cohort. Three subtypes
showed significantly different stem cell-related signatures and
Frontiers in Oncology | www.frontiersin.org 3
clinicopathological characteristics (Figure 3A). Similar trends
were identified in the ICGC cohort (Supplementary Figure S1).
The results showed that C1 was related to the negative regulation
of stem cell maintenance (Figure 3B), while C2 and C3 were
correlated with positive stem cell maintenance (Figure 3C).
Moreover, the scores of the stem cell proliferation signatures
were highest in C2 (Figure 3E). Compared with C3, the C2
subtype was characterized by higher stem cell proliferation and
differentiation scores (Figures 3D, E). Hence, we defined C1 as
the stem cell excluded (SC_E) subclass, C2 as the stem cell
activated (SC_A) subclass, and C3 as the stem cell dormant
(SC_D) subclass.

To further characterize the subclasses, the expressions of the
RCSC surface markers (CD44, CXCRL8, CXCR4, and ENG) and
the stem cell-related pathways such as hypoxia-inducible factor
(HIF), Notch, Wnt, and Hedgehog were investigated. Subclass
C2(SC_A) had the highest expression of RCSC marker genes
(Figure 4E). Moreover, subclasses C2(SC_A) and C3(SC_D) had
higher normal stem cell and CSC gene markers (Figures 4A, C).
Generally, compared to that in subclasses C2(SC_A) and C3
D
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FIGURE 2 | Identification of three stem cell subtypes using non-negative matrix factorization (NMF) consensus clustering in clear cell renal cell carcinoma (ccRCC)
The Cancer Genome Atlas (TCGA) training cohort. (A) NMF clustering using 392 stem cell-associated genes. Cophenetic correlation coefficients for k = 2–6 are
shown. (B) Consensus heatmap for ccRCC samples when k = 3. (C) t-Distributed stochastic neighbor embedding (t-SNE) analysis supported the stratification into
three stem cell subtypes. Dots with different colors represent different samples in the subclasses. (D–F) Overall survival of the three subclasses (C1, C2, C3) in TCGA
training and testing sets and the International Cancer Genome Consortium (ICGC) cohort.
November 2021 | Volume 11 | Article 758989
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(SC_D), HIF, Notch, Wnt, and Hedgehog were less activated in
subclass C1(SC_E) (Figures 4B, D, F, G). Besides, the immune
and stromal scores of the subclasses were calculated using the
ESTIMATE (estimation of stromal and immune cells in
malignant tumours using expression data) algorithm. As
shown in Figures 3F, G, subclass C2(SC_A) had the highest
stromal and immune cell infiltration scores.
Frontiers in Oncology | www.frontiersin.org 4
Correlation of the ccRCC Subclasses With
Immune Infiltration
Considering the significant differences in the immune and
stromal scores displayed among the subclasses, immune and
stromal cell infiltration was explored to depict their
microenvironment landscape based on TCGA training cohort.
Using the single-sample gene set enrichment analysis (ssGSEA)
DCB
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FIGURE 3 | Association between the stem cell-associated signatures and the clear cell renal cell carcinoma (ccRCC) subclasses. (A) Heatmap of the specific stem
cell-associated signatures. (B–E) Box plot of the signature scores for the stem cell-associated signatures distinguished by different subclasses. Box plot of the
stromal (F) and immune (G) scores from estimates of the three subclasses. The p-values are labeled above each box plot with asterisks. ns, no significance. ***p <
0.001, ****p < 0.0001.
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algorithm, the abundance rates of the 28 immune-related cell
types were quantified and presented in a heatmap (Figure 5A).
Subclass C2(SC_A) showed a significantly different immune cell
infiltration compared with the other two subclasses. Stromal
cells, especially fibroblasts, which have an important role in renal
cancer progression, showed different infiltration status in the
three subtypes (Figures 5B, C). Moreover, we explored the
association between subclasses and the expressions of
potentially targetable immune checkpoint genes, which have
been used for drug inhibitors in clinical trials or approved for
specific cancer treatment (Figure 5D). Subclass C2(SC_A) had
the highest expressions of most of these genes.

Correlation of the ccRCC Subclasses With
Mutations and Copy Number Variations
The tumor genomic landscape has been demonstrated to be
associated with antitumor immunity. To investigate whether
Frontiers in Oncology | www.frontiersin.org 5
differences exist in the somatic mutation frequencies across the
ccRCC subclasses and to observe the different patterns of
mutations among the ccRCC clusters, somatic mutation data
from TCGA database were analyzed. Figures 6A–C show the
landscape of the top 20 mutated genes in the three subtypes.
There was no significant difference in the mutation count of the
three subclasses (Figure 6E). However, the tumor mutation
burden (TMB) (Figure 6D) and the fraction genome altered
(Figure 6F) were significantly higher in subclass C1(SC_E)
compared to those in subclasses C2(SC_A) and C3(SC_D).

Transcriptome Features of the ccRCC
Subclasses
To better characterize the three ccRCC subclasses, gene
differential analysis was conducted. Genes with an adjusted p-
value less than 0.01 and an absolute log2 fold change larger than
1 were considered significantly differential. Only those genes
DC
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FIGURE 4 | Expressions of clear cell renal cell carcinoma (ccRCC) stem cell-related genes and pathways. (A, C, E) Expression levels of cancer stem cell marker
genes (A), normal stem cell marker genes (C), and ccRCC cancer stem cell marker genes (E). (B, D, F, G) Box plot of the status of ccRCC cancer stem cell-related
pathways. The p-values are labeled above each box plot with asterisks. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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which showed significant differences in two possible
comparisons were considered subclass-specific genes. Finally,
all of the 1,695 subclass-specific genes were identified,
including 172 specific genes for C1(SC_E), 1,485 specific genes
for C2(SC_A), and 38 specific genes for C3(SC_D).
Subsequently, gene ontology (GO) enrichment analysis of the
subclass-specific genes was performed using clusterProfiler in the
R package. The significantly enriched biological processes are
shown in Figure 7. Subclass C2(SC_A), which was enriched in
extracellular matrix organization and extracellular structure
organization, had significantly different enriched pathways
compared with the other subclasses (Figure 7B).

Prediction of the Therapeutic Response of
the ccRCC Stem Cell Subtypes to Immune
Checkpoint Inhibitors and Target Therapy
Based on the above results, we further evaluated the response of
the three subtypes to immunotherapy. In RCC, the blockade of
PD-1 and CTLA-4 has become the new treatment approach in
patients with intermediate- and high-risk metastatic tumors,
Frontiers in Oncology | www.frontiersin.org 6
whereas monotherapy with the PD-1 inhibitor nivolumab is
the second-line or third-line treatment approach after failure of
VEGF tyrosine kinase inhibitors (16). In 2019, the United States
Food and Drug Administration (FDA) approved the
combination use of PD-1 blockade and anti-angiogenic therapy
for the treatment of patients with advanced RCC (17). To predict
the sensitivity to immunotherapy of the different clusters, we
performed subclass mapping to compare the expression profiles
of the three stem cell subtypes with 47 melanoma patients who
were treated with immunotherapy (18). The subclass mapping
results indicated that the C2(SC_A) subtype might be more
sensitive to anti-CTLA-4 treatments (Figure 8A).

Since VEGF receptor (VEGFR) target therapy is a more
conventional therapy for patients with advanced ccRCC, we
selected five conventional target therapy agents (sunitinib,
sorafenib, axitinib, pazopanib, and rapamycin) and evaluated
the responses of the three subtypes. We constructed a prediction
model on the Genomics of Drug Sensitivity in Cancer (GDSC)
cell line dataset using ridge regression and evaluated the
prediction accuracy using 10-fold cross-validation. We
DCB

A

FIGURE 5 | Immune characteristics of the three subclasses in The Cancer Genome Atlas (TCGA) training set. (A) Heatmap describing the abundance of immune
cell populations in C1, C2, and C3. Box plot of the abundance of endothelial (B) and fibroblasts (C) distinguished by different subclasses. (D) Expression levels (in
fragments per kilobase of transcript per million mapped reads, FPKM) of 17 immune checkpoint genes in the three clear cell renal cell carcinoma (ccRCC)
subclasses. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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estimated the half-maximal inhibitory concentration (IC50) of
each sample in the training set based on the prediction models
for the four target therapy agents. Regarding sunitinib and
pazopanib, subclass C2(SC_A) was the most sensitive
(Figures 8C, E), while for sorafenib, subclass C3(SC_D) had
Frontiers in Oncology | www.frontiersin.org 7
the worst sensitivity. Subclasses C1(SC_E) and C2(SC_A)
showed similar sensitivity values (Figure 8B). Regarding
axitinib, subclass C3(SC_D) was the most sensitive
(Figure 8F), while for rapamycin, subclass C1(SC_E) was the
most sensitive (Figure 8D).
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FIGURE 6 | Association between the clear cell renal cell carcinoma (ccRCC) subclasses and mutations. (A–C) Oncoprint of the mutation status of the top 20 genes
in subclasses C1(SC_E), C2(SC_A), C3(SC_D). (D–F) The tumor mutation burden (D), mutation count (E), and fraction genome altered (F) in the three subclasses.
ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001.
CBA

FIGURE 7 | Enrichment analysis of the differentially expressed genes in three different subclasses: C1 (A), C2 (B), and C3 (C).
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Construction of a Prognostic Model Based
on Key Genes
To better characterize the prognosis of each patient, we
constructed a risk model based on the key genes. The key
genes were extracted from the stem cell-related genes using the
NMF package in R. Twenty key genes were identified. Then, we
applied least absolute shrinkage and selection operator (LASSO)
Cox regression analysis to select the most useful predictive
features and identified four genes (A2M, CFL1, FN1, and
PSME2) with non-zero regression coefficients (Figures 9A, B).
Ultimately, a six-gene risk signature was built, and the risk score
of each patient was calculated using the following formula:

Signature risk core = (−0.00205964493004206 × A2M
expression) + (0.00157204565454328 × CFL1 expression) +
(0.00199772913455084 × FN1 expression) + (0.0181057563160569 ×
PSME2 expression). Increased expressions of PSME2, FN1, and
CFL1 correlated with higher risk scores and worse survival
outcomes (Figure 9C). More importantly, the risk score could
stratify patients into a high- and a low-risk group with significantly
different survival outcomes (Figure 9D). Similar results were
found in TCGA testing set and the ICGC dataset (Figures 9E, F).
DISCUSSION

Although a variety of ccRCC classifications based on gene
expression have been developed in recent years, a consensus in
Frontiers in Oncology | www.frontiersin.org 8
molecular subtype has not yet been achieved. To identify the
ccRCC subgroups associated with CSC and patient prognosis, a
ccRCC classification was developed in this study based on 392
genes retrieved from Molecular Signatures Database. Three
subclasses of ccRCC with different prognosis were identified.
Subsequently, the stem cell signature, immune infiltration,
mutation landscape, and clinicopathological characteristics of
the subclasses and their sensitivity to immunotherapy were
investigated. The results showed that three subclasses were
distinct, with significantly different stem cell and immune cell
infiltration signatures. Drug sensitivity analysis demonstrated
that subclass C2(SC_A) was sensitive toward CTLA-4 inhibitors
and sunitinib. In addition, based on the marker genes of each
cluster, we constructed a risk model to predict the prognosis of
patients. This risk model could stratify patients with different
prognosis, and it was validated in an external cohort.

The progression of cancer was accompanied by the gradual
loss of differentiation ability and the gain of stem cell-like
characteristics (12). Inhibiting the self-renewal capacity and the
tumorigenicity of ccRCC significantly suppressed tumor growth
and metastasis (19, 20). Given that a relapse in ccRCC has been
attributed to the maintenance of ccRCC stemness cells,
possessing stem cell properties that lead to therapy resistance
(21), there is an urgent need for the development of prognostic
biomarkers associated with stem cell properties. Malta et al.
developed a novel transcriptome stemness index called mRNAsi
(mRNA expression-based stemness index) to evaluate the
stemness based on the one-class logistic regression machine
D
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FIGURE 8 | Immunotherapy and target therapy response prediction in the clear cell renal cell carcinoma (ccRCC) subclasses. (A) Response of the three ccRCC
subclasses to PD-1 and CTLA-4 immunotherapy. (B–F) Sensitivity of the three ccRCC subclasses to sorafenib (B), sunitinib (C), rapamycin (D), pazopanib (E), and
axitinib (F). ****p < 0.0001.
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learning algorithm (22). However, the mRNAsi was higher in
normal renal tissue compared with that in renal tumor and
showed no correlation with the survival outcomes of patients.
This contradicts usual biological experiment results that
demonstrate CSC properties to indicate worse prognosis. A
novel stem cell-related prognostic evaluation model is needed.

Based on stem cell-related genes, three subtypes with different
survival outcomes were identified. The results showed that
subclass C1(SC_E) was distinct with the negative regulation of
stem cell maintenance; however, subclasses C2(SC_A) and C3
(SC_D) displayed distinct stem cell signatures and were
characterized by positive regulation of stem cell maintenance.
Frontiers in Oncology | www.frontiersin.org 9
Moreover, subclass C2(SC_A) was also highly correlated with
stem cell division and differentiation. The signature differences
between subclasses C2(SC_A) and C3(SC_D) may be caused by
the dormancy of CSCs (23, 24). Renal CSC surface markers, such
as CD44, CXCR4, and CD105(ENG), were highly expressed in
subclasses C2(SC_A) and C3(SC_D) (10, 11). BMP2 and CXCL8,
which could promote the self-renewal of RCSCs, also had higher
expressions in subclasses C2(SC_A) and C3(SC_D) (15, 25). The
HIF, Notch, Wnt, and Hedgehog signaling pathways were
reported to promote renal cancer progression by regulating the
self-renewal and stemness maintenance of RCSCs (14, 26–28).
Hence, we also investigated their status in the different
C
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FIGURE 9 | Construction of a risk prediction model based on the key genes in the three subclasses. (A) Tuning parameter (l) screening in the least absolute
shrinkage and selection operator (LASSO) regression model. (B) LASSO coefficient profiles of the common genes. (C) From top to bottom are the risk score
distribution, survival overview, and heatmap analysis of six genes. (D–F) Kaplan–Meier plots of overall survival (OS) according to the risk scores in The Cancer
Genome Atlas (TCGA) training set (D), TCGA testing set (E), and the International Cancer Genome Consortium (ICGC) cohort (F).
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subclasses. Compared to that in subclass C1(SC_E), these
pathways were significantly activated in subclasses C2(SC_A)
and C3(SC_D). These results demonstrated the validity of this
classification. Moreover, these signaling pathways were also
differently expressed in subclasses C2(SC_A) and C3(SC_D).
These results indicated that these pathways were not only
implicated in stemness maintenance but also associated with
the proliferation and differentiation of RCSCs.

A recent study has demonstrated that stem cell properties are
microenvironment defined during tumor progression (29, 30).
Hence, we analyzed the stromal and immune infiltration levels in
the three subtypes using R package ESTIMATE. The C2(SC_A)
subtype had higher stromal and immune scores. Subsequent
analysis further corroborated the C2(SC_A) subtype as
possessing distinct stromal and immune features, including
high infiltration of fibroblasts, T cells, and macrophages.
Heterogeneous stromal cells in the tumor microenvironment
can profoundly boost cancer progression (31). Carcinoma-
associated fibroblasts (CAFs) form the chief components of the
tumor microenvironment in multiple types of malignancies (32).
By providing a supporting niche for CSCs, CAFs could facilitate
tumor formation and induce chemoresistance (31). This may
partly be explained by the concurrence of a high stem cell
maintenance score and fibroblast infiltration. Macrophages
abundantly exist in the immune milieu, where they share the
microenvironment with CSCs. Macrophage-initiated WNT
signaling could contribute to the maintenance of stemness,
leading to the characteristics of chemoresistance and
invasiveness in ovarian cancer (33). A similar phenomenon
was found in lung cancer. A positive feedback interaction
between macrophages and cancer cells could promote the
stemness of cancer cells (34). Tumor-associated macrophages
have been demonstrated to contribute to the maintenance of
breast CSC populations through triggering the production of the
inflammatory cytokines interleukin 1 (IL-1), IL-6, and IL-8,
which, in turn, reinforce the CSC states (35). Interestingly,
previous studies proved that IL-8 could boost the CSC-like
properties of ccRCC (15). Besides, the activation of the Notch
signaling pathway could promote the expansion of ccRCC-
derived CSCs and induce chemotaxis simultaneously (27).
Th17 cells are another type of immune cells that appear to
support CSCs. Th17 cell-associated cytokines could transform
dormant stem cells into an active state (36). This is consistent
with our finding that subclass C2(SC_A) had a higher infiltration
of Th17 helper cells. Tumor-specific antigens are usually
generated by somatic mutation and can influence the response
of patients to immunotherapy (37, 38). Hence, we
comprehensively analyzed the mutation status of the three
subclasses. Although there was no significant difference in the
TMB among the three subtypes, C1(SC_E) had higher mutation
counts and fraction genome altered than the other subclasses.
These differences might influence their response to
immunotherapy. VHL mutation is the most common mutation
in ccRCC (39). However, evidence of the relationship between
the mutation status of the VHL gene and ccRCC remains few and
contradictory. Some studies suggested that VHL mutation could
Frontiers in Oncology | www.frontiersin.org 10
activate effector T cells and promote the secretion of cytokines
(40). However, a recent study has proposed that wild-type VHL
positively correlated with the expression of programmed death-
ligand 1 (PD-L1) (41). In the present study, we found that
subclass C2(SC_A) had a relatively lower VHL mutation
frequency. PBRM1 is another commonly mutated gene in
ccRCC. A previous study indicated that CD8+ T-cell-infiltrated
tumors had relatively fewer PBRM1mutations (42). Similarly, we
found that the mutation frequency of PBRM1 was significantly
lower in subclass C2(SC_A), which had the highest immune cell
infiltration. Moreover, the mutation landscape showed that
subclass C1 had the highest mTOR mutation frequency.
Correspondingly, patients in subclass C1 were most sensitive
to the mTOR inhibitor rapamycin. This demonstrated the
reliability of the present study. More studies are needed to
investigate the relationship between somatic mutations and
immune infiltration.

Considering the close interactions between CSCs and the
immune system, developing therapeutic strategies that target
immune checkpoints might pave the way to eradicating CSCs. At
present, immunotherapy has obtained global attention in cancer
management. The efficacy and safety of PD-1 immune
checkpoint inhibitors and CTLA-4 inhibitors have been
applied clinically and have shown promising outcomes (43,
44). Due to the interaction between PD-1 and PD-L1 in
tumor-infiltrating lymphocytes and tumor cells, T-cell
exhaustion, tumor-specific T-cell dysfunction, and immune
evasion by tumor cells were triggered. Exhausted T cells could
produce additional inhibitory molecules to promote the
progression of cancer; however, this process could be reversed
by a combined PD-1 and CTLA-4 blockade. Treating a mouse
tumor model with PD-L1 and CTLA-4 inhibitors could promote
the elimination of CSCs (45).

Redirecting immune suppression by targeting checkpoints
has brought about clinical response in some RCC patients, and a
combination treatment involving checkpoint blockade is now the
standard of therapy in advanced RCC patients. However, a
substantial subset of patients is not sensitive to checkpoint
blockade. The identification of a reliable evaluation system to
predict the response to checkpoint blockade is essential to
improve the clinical efficacy of these therapies (46). Moreover,
the immune checkpoint gene CXCR4, which is also a marker of
RCSC, was highly expressed in subclass C2(SC_A). Targeting the
tumor microenvironment may provide a promising therapeutic
avenue as the eliminated CSCs could be replenished by non-
CSCs for the existence of a survival niche (47). The highest
expressions of immune checkpoint genes indicated the sensitivity
of subclass C2(SC_A) to immunotherapy. The results
demonstrated that anti-CTLA-4 therapy and sunitinib are
promising for patients in subclass C2(SC_A). The results of
our study provide a novel insight into the combination of anti-
CTLA-4 therapy and sunitinib, which requires further validation
in future research.

Besides, to better characterize the prognosis of each patient,
we constructed a risk model based on the key genes (A2M, CFL1,
FN1, and PSME2). The risk scores could classify patients into the
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high- and low-risk groups with significantly different survival
outcomes. In addition, the effectiveness of this risk model was
validated in TCGA testing set and the ICGC dataset.

In summary, in this study, we explored the stem cell-related
process landscape of ccRCC and identified three subclasses with
different stem cell activities. We systematically analyzed the
differences of these subclasses in the tumor microenvironment,
immune cell infiltration, immunotherapy/target therapy
response, and the corresponding pathways and constructed a
risk model. The results of this study provide a basis and reference
for the treatment and prognostic prediction of ccRCC.

With the development of target therapy and immunotherapy,
various drugs have been used for the clinical treatment of
advanced ccRCC. The VEGFR inhibitor, anti-checkpoint
therapy, and the combination of both showed promising
efficacy (48, 49). However, few references were established for
the selection of a proper treatment plan. The novel developed
stem cell subtypes are critical for selecting suitable therapies for
ccRCC patients. Patients in the stem cell activated subtype (SC-
A) could benefit more from anti-CTLA-4 and sunitinib
treatment. For those in the stem cell excluded subtype, an anti-
PD-1 therapy might be more suitable. However, there are
limitations in the present study. This study was conducted
based on an existing public dataset. These findings need to be
validated in larger ccRCC patient cohorts with immunotherapy
and target therapy experience.
MATERIALS AND METHODS

Patients and Samples
The RNA sequencing data (raw counts) of 530 and 91 ccRCC
patient samples with corresponding clinical information were
download from The Cancer Genome Atlas (TCGA; http://
cancergenome.nih.gov/) and the International Cancer Genome
Consortium (ICGC; www.icgc.org), respectively. Patients with 0
day overall survival (OS) were removed; 526 TCGA samples were
retained for further analysis. Subsequently, the dataset from
TCGA was randomly divided into a training set and a testing
set. The gene expression data of 91 ccRCC samples from the
ICGC were used for external validation. In total, 662 ccRCC
patients were enrolled in the present study. The gene somatic
mutation data (MAF files) of ccRCC were retrieved from TCGA.

Identification of ccRCC Subclasses
Human stem cell-related biological processes were downloaded
from the Molecular Signatures Database (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). A total of 392 genes from
19 stem cell-related biological processes were obtained
(Supplementary Table S1). These genes were FPKM
(fragments per kilobase of transcript per million mapped
reads) normalized and used for subsequent non-negative
matrix factorization (NMF) analysis using the R NMF package
in the training set. NMF is an unsupervised learning technique
that has been used to extract meaningful information from high-
dimensional data (50). In detail, the best k-value was defined
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according to the cophenetic correlation coefficients, dispersion,
and silhouette. The iteration was set as nrun = 100. This method
was also applied to the testing and external validation sets using
the same candidate genes. The first value of k for which the
cophenetic coefficient starts decreasing was chosen as the
optimal number for clustering. A t-distributed stochastic
neighbor embedding (t-SNE)-based approach was then used to
validate the sample clustering using the mRNA expression data
of the above stem cell-related genes.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) is a non-parametric and
unsupervised gene set enrichment method that can estimate the
scores of certain pathways or signatures based on transcriptomic
data. Using the GSVA R package, each sample received 19 scores
corresponding to 19 stem cell-related signatures. Subsequently,
differences in the signatures of the different clusters were
calculated using the t-test in R.

Estimation of Immune Infiltration
The microenvironment cell populations counter (MCP-counter),
a method based on transcriptomic data, was used to assess the
absolute abundance of two stromal cell populations (endothelial
cells and fibroblasts) (51). Furthermore, another approach
applied for the qualification of the immune infiltration of 28
immune cells used in this research was single-sample gene set
enrichment analysis (ssGSEA), which calculated an enrichment
score (ES) representing the variations of the pathway activities
within a single sample (51). In addition, immune scores and
stromal scores were calculated using the ESTIMATE algorithm,
which can reflect the infiltration level of stromal and
immune cells.

Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment and Gene Ontology (GO) analysis were performed
with the R package “clusterProfiler.”

Target Therapy and Immunotherapy
Sensitivity Prediction
The sensitivity of patients to target therapy drugs was evaluated
based on the GDSC database (https://www.cancerrxgene.org/)
(52). IC50 values were estimated using the R package pRRophetic
(53). In detail, the IC50 was calculated by ridge regression and the
prediction accuracy was evaluated using 10-fold cross-validation
based on the GDSC training set. The response to anti-PD-1 and
anti-CTLA-4 therapy was predicted by comparing the expression
profiles of three subtypes with 47 melanoma patients who
respond to the immunotherapy using subclass mapping
(https://www.genepattern.org/).

Construction of a Prognostic Model
Univariate Cox regression was used to screen the mRNAs
affecting the OS of patients (p < 0.05). Thereafter, survival-
related genes were screened with the LASSO multivariate Cox
regression algorithm using the R package “glmnet” (version 3.0).
Finally, the signature genes and coefficients in the risk score
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signature were constructed based on the most proper penalty
parameter l. The risk score formula used was:

Risk score = Sn
i=1   Coef i ∗Expi

where Coefi is the coefficient and Expi is the normalized
expression of each gene in the signature. The risk score system
was constructed using the training set and evaluated in the
testing set. Patients were stratified into a high-risk group and a
low-risk group based on the median risk score.

Statistical Analysis
All statistical analysis was performed using R programming
(https://www.r-project.org/). Unpaired Student’s t-test was
used to compare two groups with normally distributed
variables. For the comparison of three groups, one-way
analysis of variance and the Kruskal–Wallis test were used as
parametric and non-parametric methods, respectively.
Contingency table variables were analyzed with the chi-square
test or Fisher’s exact tests. Survival analysis was carried out using
the Kaplan–Meier method and compared using the log-rank test.
A p-value less than 0.05 was considered as statistically significant.
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