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ABSTRACT We report the complete genome sequence of Mucilaginibacter strain 21P,
which was isolated from estuarine soil contaminated with mine tailings from the Samarco
disaster, which occurred in 2015 in Brazil. The genome sequence comprised 4,739,655 bp,
with a G1C content of 43.2%, and harbors multiple antibiotic and metal resistance genes.

The genusMucilaginibacter belongs to the family Sphingobacteriaceae, which are nonmo-
tile, rod-shaped, and exopolysaccharide-producing (EPS) bacteria (1, 2). Members of this

genus are widespread in the environment (3–5) and usually contain resistance to potential
toxic metal(loid)s and antimicrobials (6–8).

Here, we report the complete genome sequence of Mucilaginibacter strain 21P, isolated
from an estuarine soil contaminated with iron mine tailings from the Samarco disaster,
which occurred in 2015 in Minas Gerais State, Brazil. The soil core was collected in December
2018 (24 months after the disaster) from the Rio Doce Estuary, Brazil (19°239280S,
40°049200W). For isolation, 5 g of the core soil (5 to 10 cm depth) was homogenized; se-
rial dilutions were plated onto 10% tryptic soy (TS) agar (Merck) supplemented with nys-
tatin (1 mg/ml) and Mn (1.6 mg/ml) and incubated at 30°C for 24 h, as previously described
(9). The separated colonies were isolated onto new plates, and pure isolates were cultivated in
TS broth (Merck) with agitation at 150 rpm for 24 h for DNA extraction using the Wizard
genomic DNA purification system (Promega, The Netherlands). Genomic DNA was sequenced
using the MiSeq (Illumina, Inc., San Diego, CA, USA) and MinION (Oxford Nanopore
Technologies [ONT], UK) platforms. The Illumina library was prepared using the Nextera XT
DNA library prep kit (Illumina, Inc.) and sequenced using the paired-end method, with an
average read size of 350 bp in a 2� 150-bp sequencing run, for a total of 500,636 Illumina
reads. The MinION library was prepared using the rapid barcoding kit (SQK-RBK004;
Oxford Nanopore Technologies); the sequencing was performed using MinKNOW software,
followed by base calling and conversion of the raw data to FASTQ format using Guppy
v.3.6.0 (https://staff.aist.go.jp/yutaka.ueno/guppy/). The recovered data resulted in 39,386 ONT
reads with a mean read length of 4,217 bp and an N50 value of 7,217 bp.

Low-quality ONT reads and adapters (Phred score, ,10; length, ,5,000) were trimmed
using Porechop v.0.2.4 and NanoFilt v.2.8.0, respectively (10). The Illumina reads were filtered
using Fastp v.0.20.1 (11) with default parameters and checked using FastQC (7). Hybrid de
novo genome assembly was performed using Unicycler v.0.4.8 software (12), which includes
removal of overlapping sequences using the SPAdes optimizer (13), genome polishing using
Pilon, a final circularization by connecting its end to its start, and a rotation where the dnaA or
repA alleles were found using TBLASTN (12). The annotation was performed using the Prokka
v.1.14.6 tool (14). Default parameters were used for all software unless otherwise specified.
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The genome comprised 4,739,655 bp, with a G1C content of 43.2% in a unique contig
with 4,334 coding sequences, including 53 rRNA genes and antibiotic/metal resistance genes,
including arsCM, zraR, mnmACEG, corA, gyrA, blc, ampGH, and folPA. The average nucleotide
identity (ANI) was calculated against the available genome sequences from Mucilaginibacter
(32) using the JSpeciesWS online server (15). The results were below the species threshold
(.95%), with a maximum of 74.1% for Mucilaginibacter rigui (6), suggesting that this isolate
might be a new species.

Data availability. The complete genome sequence of Mucilaginibacter sp. strain 21P
can be found in NCBI GenBank under the accession number GCF_019331605.1. The raw
Illumina and MinION reads are available under the SRA accession numbers SRX11522297
and SRX11522298, respectively.
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