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Objective: An enlarged cup-to-disc ratio (CDR) is a hallmark of glaucomatous optic neuropathy. Manual
assessment of the CDR may be less accurate and more time-consuming than automated methods. Here, we sought
to develop and validate a deep learningebased algorithm to automatically determine the CDR from fundus images.

Design: Algorithm development for estimating CDR using fundus data from a population-based observational
study.

Participants: A total of 181 768 fundus images from the United Kingdom Biobank (UKBB), Drishti_GS, and
EyePACS.

Methods: FastAI and PyTorch libraries were used to train a convolutional neural networkebased model on
fundus images from the UKBB. Models were constructed to determine image gradability (classification analysis)
as well as to estimate CDR (regression analysis). The best-performing model was then validated for use in
glaucoma screening using a multiethnic dataset from EyePACS and Drishti_GS.

Main Outcome Measures: The area under the receiver operating characteristic curve and coefficient of
determination.

Results: Our gradability model vgg19_batch normalization (bn) achieved an accuracy of 97.13% on a vali-
dation set of 16 045 images, with 99.26% precision and area under the receiver operating characteristic curve of
96.56%. Using regression analysis, our best-performing model (trained on the vgg19_bn architecture) attained a
coefficient of determination of 0.8514 (95% confidence interval [CI]: 0.8459e0.8568), while the mean squared
error was 0.0050 (95% CI: 0.0048e0.0051) and mean absolute error was 0.0551 (95% CI: 0.0543e0.0559) on a
validation set of 12 183 images for determining CDR. The regression point was converted into classification
metrics using a tolerance of 0.2 for 20 classes; the classification metrics achieved an accuracy of 99.20%. The
EyePACS dataset (98 172 healthy, 3270 glaucoma) was then used to externally validate the model for glaucoma
classification, with an accuracy, sensitivity, and specificity of 82.49%, 72.02%, and 82.83%, respectively.

Conclusions: Our models were precise in determining image gradability and estimating CDR. Although our
artificial intelligenceederived CDR estimates achieve high accuracy, the CDR threshold for glaucoma screening
will vary depending on other clinical parameters.
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Primary open-angle glaucoma is one of the most common
glaucoma subtypes, with a global prevalence of 2.4%.1

Accurate detection of glaucoma is essential to prevent
irreversible damage to the optic nerve head (ONH), and
this often involves clinically assessing the cup-to-disc ratio
(CDR). The CDR is a morphological characteristic of the
ONH that can estimate the risk of developing glaucoma.2 A
larger CDR or interocular asymmetry >0.2 is one of the key
risk factors for the development and progression of
glaucoma.3e5 In patients with advanced glaucoma, even
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
small alterations in CDR may lead to considerable loss of
retinal ganglion cells.6 Furthermore, many genetic variants
are associated with CDR, with a subset of these variants
also associated with primary open-angle glaucoma
risk.7e10 Therefore, accurate assessment of CDR is impor-
tant for glaucoma screening and tracking progression in a
clinical setting.

Fundus photography is a noninvasive imaging technique
frequently used in glaucoma practice for documenting the
condition of the optic nerve and retina, including CDR,
1https://doi.org/10.1016/j.xops.2024.100540
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neuroretinal rim, disc hemorrhages, and longitudinal moni-
toring of the optic nerve and surrounding retinal structures.
Manual assessment of the CDR is also possible but may be
challenging and time-consuming for clinicians. Even among
glaucoma specialists, CDR measurement is subject to inter-
observer and intraobserver variability.11e13 Advanced im-
aging technologies, such as OCT and confocal scanning laser
ophthalmoscopy, have been observed to provide different
CDR values for an individual due to distinct imaging tech-
nologies and analysis methodologies.14,15 To overcome these
difficulties, CDR estimation can be automated through
leveraging advances in artificial intelligence (AI) and
computer vision.16

Several studies have precisely segmented the optic disc
and cup with deep learningebased techniques for calculating
CDR using shape-based methods (circular or elliptic ONH)
or appearance-based approaches (texture, color, and intensity
of the optic disc).17e19 Accurately and precisely segmenting
the optic cup and disc is challenging because of the vari-
ability in ONH morphology, which can be influenced by the
patient’s ethnicity, age, disease conditions, and image qual-
ity.20e22 Additionally, segmentation techniques that require
masking for both optic disc and cup can be more time-
consuming and costly.23 In contrast, nonsegmentation
techniques automatically learn the features (disc and cup)
from the images. A limited number of studies have used
convolutional neural network (CNN)ebased regression
analysis to estimate CDR using fundus image data.24e26

Therefore, we developed and validated a CNN-based
regression model on a large cohort of retinal images to
compute CDR without applying the segmentation techniques
for diagnosing glaucoma in clinical and community settings.
This selection was primarily driven by the novel application
of CNNs for regression analysis in CDR determination,
diverging from their common use in image classification due
to the considerable amount of resources needed to accurately
grade a large dataset in terms of time and costs.
Figure 1. Overview of our study design used for model development. A model fo
to-disc ratio quantification was generated based on gradable images (model 2)
glaucoma in 2 separate cohorts. CDR ¼ cup-to-disc ratio; QC ¼ quality contr
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Methods

Study Design

A comprehensive overview of this study is shown in Figure 1. An
extensive dataset from the United Kingdom Biobank (UKBB) was
used, with each retinal image in the study independently assessed
and graded by 2 ophthalmologists (A.W.H. and J.E.C.). We
utilized CNN-based models for classification, and regression ana-
lyses to determine the gradability and estimate the CDR from
80 225 and 68 695 colored fundus images, respectively.

The UKBB study received ethical approval from the local
research ethics boards, and all participants gave informed written
consent. This study’s procedures were performed in accordance
with the ethical guidelines for medical research as described by the
World Medical Association Declaration of Helsinki.

Participants and Imaging Modality

Training Dataset. All the participants’ data were from the UKBB
dataset, which is a large population-based observational study in
the United Kingdom that began in 2006 and recruited >500 000
participants aged between 40 to 69 years at the time of recruitment;
67,040 participants had �1 gradable retinal image.27,28 The images
were available from both left and right eyes from baseline and
repeat assessment visits. The retinal images were obtained with a
Topcon 3D OCT 1000 Mark II (Topcon Corp).29 This study
included both eyes of the participants during 2 visits, irrespective
of ancestry.

As described previously, a total of 80 225 fundus images from
the UKBB fundus dataset were evaluated and had CDR assessed.28

Of these images, 68 695 (82.73%) were gradable, and 2812
(3.38%) duplicate images were removed. Two independent
graders exhibited a strong positive correlation (Pearson
correlation coefficient [R] ¼ 0.70) and high consistency
(intraclass correlation coefficient, 3k ¼ 0.82) on a shared set of
2812 images (Fig S1).

External Validation. The models were externally validated on
the EyePACS datasetdan excellent and reliable resource for
creating AI-powered tools to diagnose glaucoma.30 This collection
of 101 442 fundus images represents a diverse population of
r gradability assessment was developed (model 1), and then a model for cup-
. These 2 models were then combined to assess the utility of diagnosing
ol; UK ¼ United Kingdom.
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60 357 individuals who visited various centers across the
EyePACS network in the United States.31 This dataset is of
exceptional quality and accuracy, given a team of 20 expert
graders thoroughly graded the complete dataset, with �2 graders
reviewing each image. These graders have demonstrated
excellent proficiency in detecting glaucoma from fundus
photographs, with a minimum sensitivity of 80% and a
specificity of 95%. Our models underwent additional validation
using the Drishti dataset from India,32 allowing us to assess the
consistency and effectiveness of our models across different
geographical populations. It includes 70 images from people
diagnosed with glaucoma and 31 normal images, all with a
resolution of 2047 � 1760 pixels in portable network graphics
format.

Image Grading and Preprocessing

In our previous study, 2 fellowship-trained ophthalmologists
independently viewed and graded the retinal images.28 All the
fundus images were cropped to a pixel ratio of 1080 � 800
before the training or validation of the gradability assessment.
However, for regression analysis, we further cropped and
removed the noninformative areas, background, or margin
around the main content of the images based on their pixel
intensity using the OpenCV library.33 The final downsized
images were 512 � 512 pixels. As undertaken previously, retinal
photographs with low-quality images (ungradable and artifacts)
were removed.34,35

Model Selection

Twelve pretrained models from the FastAI (TorchVision)36,37 were
utilized and tested on grader “A” data (larger dataset) for CDR
estimation using regression analysis. The potential model
(vgg19) with batch normalization (bn) layers was selected based
on the model’s performance (Fig S2) for both classification and
regression analyses. The vgg19_bn pretrained model was initially
trained on ImageNet.38 This pretrained model automatically
learns high-level features from a large variety of images; thus, it
offers a robust feature extractor for classification and regression
tasks. We trained and fine-tuned the CNN regression model on a
combined dataset of 68 695 images to estimate CDR. The models
for detecting glaucoma, using the overall cut-off CDR (�0.60),39

were extensively validated on 2 publicly available datasets
including different ethnicities.

Deep Learning Algorithm and Training

All the models were trained via the FastAI Frameworkda deep
learning library built on PyTorch that provides a high-level
application programming interface and allows deep learning ar-
chitectures to be trained quickly to achieve state-of-the-art re-
sults.40 We used 2 separate CNN-based models from the FastAI
library for the gradability assessment of CDR and regression
analysis for estimating CDR using fundus images. The binary cross
entropy was utilized for the loss function for the gradability task,
and the mean squared error loss function was used for regression
analysis.

Image gradability was defined as binary classification (gradable
or ungradable) based on the CDR that clinicians can obtain. Two
experienced fellowship-trained ophthalmologists (A.W.H. and
J.E.C.) independently assessed the gradability of the images. Im-
ages were randomly (80:20) separated into 2 groups, to train and
validate the models for classification and regression analyses. The
classification model was trained on a dataset of 64 180 fundus
images, while the regression model was trained on a dataset of
48 734. The validation sets for the classification and regression
model comprised 16 045 and 12 183 images, respectively.

The class weights were balanced for the gradability task, and in-
built data augmentation techniques were implemented for both
classification (softmax probability >0.5 was designated as grad-
able) and regression analysis to improve the accuracy for gener-
alizing the models’ utility.41 The augmentation parameters are
illustrated in Table S1. Model training was completed in 2 steps:
in the first step, we used fine-tuning with frozen layers of the
pretrained weights (transfer learning) for 5 to 10 epochs using the
Fastai library “valley” function to find the optimal learning rate,
validation loss was monitored, and the task was executed until it
reached the point where validation loss stopped decreasing. After
this, the model unfroze all their layers and used a 1-cycle policy for
10 epochs with the “slice” function to implement a strategy known
as discriminative learning rates during the model training.40,42 The
callback function was employed to monitor the validation loss
during the training and stop training if the loss failed to improve
by �0.1 (minimum delta) at patience 2 for a maximum of 10
epochs. The regularization technique (weight decay ¼ 1e-3) was
also operated to prevent overfitting. This was repeated 10 times
with data shuffling, whereby the images were randomly
separated into training and validation datasets, and prior to each
iteration the top 1% of images found to be in the “top losses”
category were removed.

The experiment was conducted on virtual Ubuntu (22.04)
desktop with NVIDIA A100 with 40GB of graphics processing
unit RAM at Nectar Research Cloud43 using Python (3.10.6)
programming language with PyTorch (2.0.0þcu117), FastAI
(2.7.12), TorchVision (0.15.1þcu117), Matplotlib (3.5.1), and
Scikit-learn (1.2.2) libraries.44e46

Model Evaluation

Models were evaluated on their area under the receiver operating
characteristic curve (AUROC), sensitivity, specificity, precision,
recall, and F1-score for gradability assessment. Mean absolute
error, mean squared error, R, and coefficient of determination (R2)
were used for regression analysis with a 95% confidence interval
(CI) for each outcome.47 These metrics assessed model
performance by quantifying the difference between actual
(graded by clinicians) and predicted CDR by the models.
Furthermore, the classification metrics were measured by setting
a tolerance bin around each regression point and seeing if the
truth value fell within tolerance.
Results

Gradability Assessment

Our classification model obtained a high accuracy of
97.13% on the internal validation set of 20% (16 045) of the
total data (80 225) for gradability assessment: gradable and
ungradable. The CI with 95% for each metric was estimated
through Bootstrap resampling48 with 4000 iterations to
ensure the reliability of the results (Table 1). The model
underwent testing on random images from the validation
3



Table 1. Performance of Our Classification Model (Model 1) for
Both Gradable and Ungradable Fundus Images in the Validation

Dataset

Classification
Metrics

Gradable (n [ 13 717)
Mean [95% CI]

Ungradable (n [ 2328)
Mean [95% CI]

AUROC 0.9656 [0.9614, 0.9697] 0.9656 [0.9613, 0.9699]
Accuracy 0.9713 [0.9688, 0.9738] 0.9712 [0.9687, 0.9738]
Sensitivity (recall) 0.9736 [0.9710, 0.9763] 0.9575 [0.9499, 0.9652]
Specificity 0.9574 [0.9491, 0.9657] 0.9736 [0.9709, 0.9763]
Precision 0.9926 [0.9912, 0.9941] 0.8605 [0.8471, 0.8738]
F1-score 0.9830 [0.9815, 0.9846] 0.9063 [0.8981, 0.9145]

AUROC ¼ area under the receiver operating characteristic curve; CI ¼
confidence interval; n ¼ number of fundus images.
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set, and the outcome from the classification model is
visualized in Fig S3.

Regression Analysis

Our regressing model achieved an R2 of 0.71 on the vali-
dation set. To further enhance its performance, we excluded
7780 images from the “top losses” category as predicted by
the model using the ImageClassifierCleaner from the FastAI
library.49 We then retrained the regression model on the
final dataset of 60 917 images, with 80% used for training
and 20% for validation, resulting in a 19.92%
improvement in the R2. The Bland-Altman plot displays
the accuracy of the CDR estimation on a validation dataset.
The plot includes the corresponding CDR ground truth,
which ranges from 0 to 0.95 with 0.05 intervals. Figure 2A
exhibits the mean offsets, agreement limits with a 95% CI.

The mean CDR values from graders A and B were 0.36
and 0.31, respectively, but the final mean and standard de-
viation for the analyzed data were 0.33 and 0.18. Figure 2B
visualizes the distribution of CDR from the final analyzed
Figure 2. Comparative analysis and final dataset distribution. The Bland-Altm
dataset with the corresponding CDR ground truth shown in (A). The mean d
terval: 0.009e0.034). The red dashed line represents the mean difference, while
difference for upper and lower limits. The distribution of the CDR in the final
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dataset, while Fig S4 shows the random images taken
from the validation set to estimate CDR by the regression
model.

The classification metrics were also assessed using a
tolerance-based approach, wherein a predefined tolerance
bin was established around each regression point. Subse-
quently, the true value was evaluated to determine if it fell
within the established tolerance bin. Thus, we examined the
model’s classification metrics using 4 tolerance thresholds
(0.05, 0.10, 0.15, and 0.20) around the ground truth values
(Table S2). The regression point was converted into
classification metrics with a tolerance of 0.2 for 20
classes, and the classification metrics achieved an
accuracy of 99.20%. This approach facilitated the rigorous
evaluation of the model’s accuracy in correctly assigning
class labels; these 20 classes are displayed in the
confusion matrix in Figure 3A.
Glaucoma Screening

Our models were externally validated on EyePACS and
Drishti datasets with promising results for screening glau-
coma. On EyePACS, our models achieved 82.49% accu-
racy, 72.02% sensitivity, and 82.83% specificity. On
Drishti, the models achieved 79.21% accuracy, 78.87%
sensitivity, and 80.65% specificity. These models predicted
<1% and 0% ungradable images on the EyePACS and
Drishti datasets, respectively, as shown in Table S3. Our AI
system completed gradability, CDR estimation, and
classification within 0.3 seconds, which is approximately
10 times faster with more accurate and consistent results
than experienced human graders. We also found our
regression model could accurately estimate the CDR even
from poor-quality retinal images (Fig S5).

After analyzing the EyePACS and Drishti datasets, the
optimal CDR threshold for detecting glaucoma was 0.56
(Figs S6 and S7) as based on receiver operating
an plot displays the cup-to-disc ratio (CDR) estimation on the validation
ifference between true and predicted CDR was 0.022 (95% confidence in-
the yellow dashed lines represent the 95% confidence interval for the mean
analysis data is graphically presented in (B).
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Figure 3. The confusion matrix for cup-to-disc ratio classification is illustrated in (A). In contrast, (B) presents the conversion of regression points into
classification metrics utilizing a particular threshold. Publicly available datasets were used for external validation of the glaucoma screening at the globally
accepted cut-off threshold, as shown in (C).
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characteristic curve analysis.50 At this threshold, AUROC
was 0.87, suggesting this model can appropriately
distinguish fundus images with and without glaucomatous
optic discs.
Discussion

In this study, we conducted a regression analysis on fundus
images utilizing deep learning architectures to estimate the
CDR without employing segmentation techniques from im-
age gradability to glaucoma screening in a single study. Our
classification model was first trained for the gradability task
and successfully predicted gradable fundus images based on
CDR with remarkable accuracy, precision, and recall.

Deep learning-based models to directly estimate CDR are
a more efficient and reliable method than clinical assess-
ment. Our results are comparable to Yuen et al’s fundus
image quality assessment study, which reported an accuracy
of 92.5%, a sensitivity of 92.1%, and a specificity of 98.3%
on internal validation with 11.6 times fewer validation data
than ours.51 However, both studies demonstrate that the
deep learningebased model has the potential to grade
fundus images accurately.

Accurate estimation of the CDR is useful in diagnosing
and monitoring glaucoma. Conventionally, AI-based CDR
estimation relies on segmentation techniques.22,52e55 This
technique can be computationally expensive, particularly
when dealing with a large volume of medical images. While
advancements in graphics processing units have improved
computational efficiency, training deep learning models on a
significant number of images can still be resource-intensive
and costly. Aljazaeri et al reported that a CNN-based
regression model performs better than the standard seg-
mentation technique for calculating CDR.25 Our study
utilized a deep learning-based model to directly estimate
CDR from the fundus images using feature extraction by
pretrained weights (vgg19_bn) without applying segmenta-
tion techniques. This approach provides a more efficient and
reliable method for estimating CDR.

Interestingly, Hemelings et al also used CNN regression
analysis to estimate CDR from fundus images, and their
findings were notable. However, our results surpassed theirs
with an R2 value of 86% compared with their 77% [95% CI
0.77e0.79] on the test set of 4765 for CDR estimation. We
observed that their mean of CDR was 0.67, approximately
twice our dataset’s CDR mean.24 Their different regression
model exhibited a strong Pearson’s R of 0.88 when
predicting the CDR against expert grader.26 Another study
reported that the model achieved an R of 0.89 on a
dataset of 2115 fundus images from the UKBB cohort.56

In contrast, our model achieved a higher R of 0.93,
indicating a strong correlation between the predicted and
expert-graded CDR.

It is important to note that our present model is not
trained to detect glaucoma but to estimate the CDR, which
5
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is just one of several features that can be used to predict the
presence of glaucoma. Further to this, screening of glau-
coma on a global scale poses challenges due to the vari-
ability of optic disc sizes among different ethnic
groups.57,58 This creates obstacles in standardizing
screening techniques using computer vision based on
CDR. Hemelings et al reported an impressive AUROC for
external validation but altered in both sensitivity and
specificity values across the different datasets when using
a fixed threshold (0.7) for glaucoma.26 The highest
specificity was observed in the Retinal Fundus Glaucoma
Challenge 1 dataset at 0.99 [0.98e0.99], whereas the
PAPILA dataset exhibited the lowest specificity at 0.70
[0.63e0.76]. Regarding sensitivity, the Gutenberg Health
Study, PAPILA, and Artificial Intelligence for Robust
Glaucoma Screening datasets achieved the highest value
of 0.94, with the Online Retinal Fundus Image Database
for Glaucoma Analysis and Research dataset presenting
the lowest sensitivity at 0.68 [0.61e0.75]. They also
validated the model externally on the EyePACS dataset;
sensitivity was achieved 0.68 and 0.89, with thresholds
set at 0.82 and 0.72, respectively. Bhuiyan et al noted
80.11% of sensitivity and 84.96% of specificity on the
Online Retinal Fundus Image Database for Glaucoma
Analysis and Research dataset for screening glaucoma
suspects using retinal images, with a cut-off point of
CDR >0.5.59 Consequently, depending exclusively on
CDR for glaucoma screening may overlook the
complexity of glaucoma (Table S3). A robust and
comprehensive screening model for glaucoma at a
population level requires integrating glaucomatous
phenotypic and genotypic information with advanced AI
algorithms.

This research has some important limitations. Firstly, the
dataset used in the training of the models was mainly from
the healthy White populationdthe mean of CDR was
0.37dpotentially biased for glaucomatous discs; the
6

distribution of CDR can be seen in Figure 2B. The sample
we used to train our models may not represent other age
groups or populations from different ethnic or
geographical backgrounds. Second, we downsized the
input images (224 � 224 � 3) to train the regression
model, which could lose some meaningful information for
accurately estimating the CDR. Finally, dropping poor-
performing images (i.e., the top 1% categorized as “top
losses” during each of 10 rounds) during model construction
could have led to imbalance classes. Nevertheless, these
exclusions were made when our initial model’s predictions
of CDR values exhibited high errors, indicating substantial
deviations from the ground truth values.

In summary, we developed a fully automated end-to-end
computer vision model for estimating CDR from the fundus
images using CNN regression analysis for glaucoma care.
The models were externally validated on 2 publicly avail-
able databases for glaucoma screening based on CDR. Deep
learningebased models to directly estimate CDR are a more
efficient and reliable method than clinical assessment.60

However, a generalized model for screening glaucoma
based on CDR is challenging because of uncertainty in
what the optimal CDR cut-off should be for diagnosing
glaucoma.
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