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Liver cancer incidence has tripled since the early 1980s, making this disease

one of the fastest rising types of cancer and the third leading cause of cancer-

related deaths worldwide. In the US, incidence varies by geographic location

and race, with the highest incidence in the southwestern and southeastern

states and among racial minorities such as Hispanic and Black individuals.

Prognosis is also poorer among these populations. The observed ethnic

disparities do not fully reflect differences in the prevalence of risk factors,

e.g., for cirrhosis that may progress to liver cancer or from genetic

predisposition. Likely substantial contributors to risk are environmental

factors, including chemical and non-chemical stressors; yet, the paucity of

mechanistic insights impedes prevention efforts. Here, we review the current

literature and evaluate challenges to reducing liver cancer disparities. We also

discuss the hypothesis that epigenetic mediators may provide biomarkers for

early detection to support interventions that reduce disparities.
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Introduction

Primary liver cancer incidence has tripled since the early 1980s, with most cases

(~75%) classified as hepatocellular carcinoma (HCC). Liver cancer is among the fastest

increasing cancers, and is the third leading cause of cancer-related deaths worldwide and

in the US (1). While the incidence increased until 2015, it appears to have plateaued
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among Asians/Pacific Islanders. Among non-Hispanic Blacks

and American Indians/Alaska Natives, the incidence of HCC

continues to increase (2).

In the US, over 40,000 primary liver cancer cases are

diagnosed annually, but the incidence not only varies by race/

ethnicity, but also by geographic location. The highest liver

cancer incidence is in the Western and Southern US and

among ethnic minorities. Data from 2005 to 2014 suggest that

the US age-adjusted incidence rate was 6–7.7/100,000 overall;

yet, in Non-Hispanic Black individuals the rate was 10–13/

100,000 and in Hispanics was 13–17/100,000 during the same

period (3–6). Moreover, two-year survival is approximately 50%,

and prognosis is poorer in minority populations (7–10). While

deaths related to other malignancies such as lung, breast, and

colorectal cancer declined over 40% from 1990–2016, liver

cancer mortality is rising among both men and women (11).

Consequently, liver cancer is projected to surpass breast and

colorectal cancer by 2030 to become the leading cause of cancer-

related death in the US (12). The underlying causes of this rapid

increase that disproportionately affects racial minorities are

poorly understood.

The majority of HCC (over 90%) occurs in the background

of chronic liver disease with cirrhosis of any etiology being the

strongest risk factor (13). HCC has traditionally been driven by

chronic liver disease from viral infections such as chronic

hepatitis B virus (HBV) and hepatitis C virus (HCV).

Increased vaccine rates and successful treatments have been

associated with major declines in the incidence of HCC from

these etiologies. However, the prevalence of these risk factors

cannot fully explain the ethnic disparities observed. More recent

data support a shifting of the underlying etiologies of HCC

primarily due to the high prevalence of metabolic conditions

that include obesity and diabetes, which increase the risk of non-

alcoholic fatty liver disease (NAFLD) and its progression to

NASH and cirrhosis. (14, 15). NAFLD represents a spectrum of

chronic liver disease associated with obesity and insulin

resistance that includes simple accumulation of fat in the liver

(i.e., simple steatosis), to more severe non-alcoholic

steatohepatitis (NASH) in which steatosis is complicated by

necroinflammation and fibrosis, to cirrhosis, the end stage of

fibrosis and scarring of the liver (16, 17). Although the potential

for NAFLD to progress to fibrosis, cirrhosis and HCC is well
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established, progression, and thus HCC risk varies substantially

by age and obesity status (Figure 1).

The prevalence of metabolic conditions such as obesity and

type II diabetes (but not NAFLD) is also higher in Non-Hispanic

Black, Hispanic, and Native American individuals. In the US, 31%

of adults are overweight and approximately 10% are severely obese

(18). National Health and Nutrition Examination Survey

(NHANES) data from 2017–18 suggest that the age-adjusted

prevalence of overweight/obesity varies by race among adults,

with the highest incidence among Non-Hispanic Black (50%),

followed by Hispanic (45%), Non-Hispanic white (42%), and

Asian (17%) individuals. Similar race/ethnic prevalence patterns

were reported for type II diabetes mellitus: among Non-Hispanic

Black and Hispanic individuals, the prevalence is 13.2% and 12.8%

respectively, whereas in Asian individuals it is 7.6% and in non-

Hispanic white individuals it is 9% (19). Addressing disparities in

liver cancer incidence and mortality requires rigorous

investigation of upstream factors that give rise to metabolic

derangement and progression to NAFLD, fibrosis, and cirrhosis

that eventually leads to liver decompensation, liver cancer, and

death. Advances in (epi)genomic sequencing technologies may

help identify molecular mechanisms and events that promote liver

deterioration. Molecular markers of liver cancer, that include

genetic variants in genes such as PNPLA3, and epigenetic shifts

largely identified from array data, are being developed into early

detection tools aimed at reducing HCC risk and inherent ethnic

disparities. Here, we review clinical and lifestyle risk factors for

liver disease, the potential role of environmental exposures in liver

cancer development, and the emerging role of epigenetics as a

marker of past exposure to environmental contaminants, and

contributor to liver cancer risk.
Epidemiologic and lifestyle risk
factors for liver disease

The Centers for Disease Control and the National Academy of

Sciences estimates that environmental exposures account for at

least 70% of variation in many chronic diseases risk, including

liver diseases. Exposure to aflatoxin B1–lysine, cigarette smoking,

mycotoxins, HBV and HCV infection, and poor access to

treatment modalities increase liver disease risk including liver
FIGURE 1

Conceptual model for progression from metabolic dysfunction, NAFLD, NASH, Cirrhosis and HCC.
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cancer. These findings now inform clinical practice to prevent

these exposures and/or reduce the risk of progression. Conversely,

habitual coffee intake and long-term statin and metformin use

have protective effects on the liver. Indeed, much of this

information is included in public health education. Association

between comorbidities and drugs used to treat them, lifestyle

factors such as diet, physical activity, and non-chemical stressors/

social stressors and liver cancer are poorly characterized.

Analgesics, such as acetaminophen, may also be linked to liver

cancer. Together, data accumulated over the last two decades

indicate that the prevalence of these risk factors disproportionately

affects ethnic minorities, though data regarding risk factors among

these populations remain sparse. Nonetheless, the prevalence of

viral hepatitis infections, NAFLD, alcohol use, and exposure to

mycotoxins, do not fully explain the continued HCC increase,

especially the ethnic or geographic variation in liver disease.

Co-morbidities and the drugs used to treat them may also

alter HCC risk. Prenatal acetaminophen exposure in mice results

in loss of fetal liver stem cells, altering immune function (20, 21)

and in adults, acetaminophen is the leading cause of acute liver

injury/failure. Acetaminophen targets the liver and may interact

with environmental contaminants such as cadmium that

naturally target the liver, to increase risk of liver damage.

Acetaminophen is used routinely by ~56% of the US

population (22). Conversely, metformin and statins reduce

HCC risk (23, 24). Accurate retrospective assessment of

pharmaceuticals taken routinely for common ailments e.g.,

colds, or pain, is challenging. Another challenge is the lag in

statistical methods development to investigate the effects of

exposure to multiple drugs (i.e., drug mixtures).

Mounting evidence including high-quality randomized trials

link anti-inflammatory diets, such a Mediterranean-style diet, to

improvement in chronic diseases including cardiovascular

diseases (25), reduced breast cancer incidence (26), and reduced

metabolic diseases (27, 28). Coffee consumption is associated with

lowered HCC risk while processed meat high in nitrates increases

liver cancer risk and may also support liver cancer progression

and mortality due to carcinogens released from nitrates that

accelerate tumor growth. Diets rich in fruits, vegetables, and

antioxidants reduce liver cancer risk, severity, and mortality

(29–34). Certain dietary patterns (e.g., Mediterranean, glycemic

index/load, or dietary inflammation index) decrease other biliary

cancer risk (35–37), but little is known about the effects of diet on

HCC prognosis. Moreover, non-pregnant minority adults report

less adherence to these diets (38, 39). Mechanistically, anti-

inflammatory diets reduce systemic free radicals and oxidative

stress, leading to decreased circulating pro-inflammatory

cytokines and chemokines (40–43).

Physical activity may reduce liver cancer risk and severity

and improve outcomes in human studies and animal models.

Inconsistent evidence supports the association between light,

moderate, or vigorous physical activity and low liver cancer risk

(44–47). Lack of consistency in findings is likely because physical
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activity tends to benefit subsets of populations, likely with other

risk factors, such as smokers or obese individuals. However, a

recent meta-analysis found that physical activity helped reduce

liver cancer risk and mortality in a dose-dependent manner. At a

minimum, two hours/week of physical activity was associated

with reduced risk of liver cancer mortality (48).

Cigarette smoking is a source of non-occupational exposure

to multiple exogenous chemicals, including cadmium, a

chemical with oncogenic potential, and alcohol is associated

with alcoholic cirrhosis such that these lifestyle factors may

either modify or directly interact to increase HCC risk.

Conversely, meta-analyses using data accumulated over the

last two decades suggest that coffee intake reduces HCC and

other liver cancer risk (49–54). However, the mechanisms

underlying these connections are unclear.
Social stressors

Social stressors captured at the neighborhood level are

persistent risk factors for disparities in a range of cancer

outcomes (55). In the US, neighborhood ethnic composition is

a strong predictor of hazardous toxicant exposure (56–58). Early

data suggests that the racial distribution of the geographic cluster

with the highest cadmium exposure is 2% white, 78% Black, and

14% Hispanic (59). Neighborhood disadvantage scores revealed

that disadvantage is associated with elevated exposure to

environmental contaminants such as cadmium, a probable

carcinogen, in adults (59).
Gender differences in HCC

HCC risk is higher in males and mortality varies by sex, as do

competing risk factors, e.g., moderate/heavy alcohol intake while

overweight status is more common in men and obesity is more

common in women. Conversely, women have higher

concentrations of contaminants in their bodies, such as

cadmium, compared to men who experience similar exposure

levels. This may result from higher gastrointestinal absorption of

cadmium (60) in women or from competitive binding of

cadmium to transporters that are typically bound by nutritive

elements such as iron and selenium and may be depleted (60).

Moreover, poor cadmium excretion leads to bioaccumulation

and increased urinary cadmium with age.
Toxic environmental chemicals and
liver diseases

Chronic environmental contaminant exposure is

understudied yet may contribute substantially to metabolic

dysfunction, fatty liver, fibrosis, and HCC. Increased industrial
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applications of toxic metals such as cadmium, arsenic, and lead

as well as per- and poly-fluoroalkyl substances (PFAS) (e.g.,

perfluoro-octanoic acid; PFOA, or perfluoro-octane sulfonic

acid; PFOS) coupled with their slow degradation has increased

these environmental pollutants in atmospheric, terrestrial, and

aquatic systems. Their persistence in the environment provides a

stable exogenous source for human exposure. Once in the body,

slow excretion leads to bioaccumulation in primary organs of

metabolism, including the liver (61), with a half-life in the body

of 30–45 years for cadmium (59, 62) and up to 5 years for PFOA

(63–65). Toxic metals such as cadmium and arsenic are classified

as probable human carcinogens by the International Agency for

Research on Cancer (66) and ranked in the top ten

environmental chemicals of concern by the Agency for Toxic

Substances and Disease Registry (ATSDR) (67), while PFOA is

classified as a possible carcinogen. Whereas hepato-toxic effects

of contaminants such as cadmium at high levels characteristic of

occupational settings are well-documented (reviewed in 66),

data are limited regarding exposure at levels experienced by

the general population.

PFAS are widely used in food packaging, flame-retardants,

scratch-resistant coating, fire-fighting foam, and metal plating.

Notably, PFAS were identified as drinking water contaminants

throughout the US, with roughly 6 million Americans drinking

water that exceeds EPA guidelines for safe levels of PFOA and

PFOS (64). When all PFAS are considered or more stringent

guidelines are used, the estimate is much higher. Additionally,

metal exposure is also widespread; arsenic is naturally present in

some water supplies and cadmium is a constituent of tobacco

smoke and is present in some commercial fertilizers (68–71)

such that ingestion of dietary staples contributes to exposure. In

the US, dietary cadmium intake is estimated at ~1 µg/day (72,

73). In pregnant women in Durham, NC, cadmium and PFOA

were found to co-contaminate house dust that can be ingested or

inhaled (59). Serum PFAS levels are also higher in non-Hispanic

white and Hispanic than in non-Hispanic Black pregnant

women (74, 75). Further, among all adults, rural African

Americans have higher concentrations (76). In contrast,

cadmium body burden is highest in African American and

Hispanic individuals (62, 77, 78)—populations with a higher

HCC incidence. The US National Toxicology Program has called

for further research on the effects of these environmental

chemicals on organ dysfunction, including liver cancers (79).

Multiethnic cohort investigations are needed to determine the

impact of toxic metals and PFAS exposure on liver fibrosis

and HCC.

Data linking environmental contaminants to NAFLD or

HCC are limited. Data from in vitro and in vivo models

accumulated over the last decade support the hypothesis that

exposure to PFAS or toxic metals such as cadmium and arsenic

induces NAFLD/NASH and liver carcinogenesis (66).

However, doses used to induce liver diseases in experimental

settings were orders of magnitude higher than those
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experienced by the general population. The hypothesis that

exposure to chemicals such as cadmium increases fatty liver

risk and progression to fibrosis, cirrhosis, and HCC is

supported by weak evidence in humans. These data include

autopsy data that demonstrate that concentrations of both

toxic metals such as cadmium, and PFAS such as PFOS and

PFOA, are higher in the liver than other organs sites with

increasing cancer incidence (e.g., pancreas, ovary) (80–82),

indicating that the liver is a main repository for these organic

and inorganic chemicals. These autopsy data are supported by

murine models data that have demonstrated significantly

higher liver fat fractions consistent with fatty liver disease

and hepatic neoplastic lesions, found in mice exposed to

cadmium at concentrations equivalent to non-occupational

exposure (83). In human populations, consistent with

geographic information systems (GIS) data (59), findings

based on a representative sample of Americans (NHANES)

(84) suggest that urinary cadmium—an established dosimeter

for long-term exposure, is higher in African American and

Hispanic than in white individuals, and is associated with

overall liver cancer risk, mortality, and the HCC precursors,

NAFLD and NASH. However, there was a limited number of

Afr ican Americans in the study and the data are

cross-sectional.

Although these findings support higher body burdens of at

least one toxic metal individually contributing to HCC and

precursors such as NAFLD, NASH, and cirrhosis, multiple

challenges to defining the link between environmental

exposures and liver cancer remain. First, HCC incidence

requires a population-based case–control design, relying on

cancer registries for case identification. However, cancer

registry-based rapid case ascertainment systems for case

identification are ill-suited for studying HCC, since most

(80%) cases are diagnosed solely based on radiographic

imaging. Thus, case-control studies that rely on rapid case

ascertainment systems may be biased toward the ~20% of cases

whose identification relies on biopsy tissue from transplant

patients. Consequently, ethnic minorities at higher risk of liver

diseases are likely under-represented. Further, advances in

mass spectrometry (MS) (e.g., liquid or gas chromatography

(LC/GC) for PFAS and inductively coupled plasma mass

spectrometry (ICP-MS) for metals, human data from

NHANES, and from our group support environmental co-

occurrence of PFAS, such as PFOA and PFOS, and toxic

metals, such cadmium, arsenic, and lead (85). These toxins

also co-occur in the blood or urine of Americans (86–89).

Interaction profiles from in vitro models of the ATSDR (67)

also support that at least for toxic metals, the effects of toxic

metals such as cadmium, lead, and arsenic are synergistic. Yet,

statistical methods to identify chemical mixtures contributing

to health outcomes are limited and may require large sample

sizes. Studies that focus on surmounting these challenges will

greatly benefit the field.
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Epigenetic marks as biomarkers for
early detection

Perhaps one of the biggest challenges in investigating the

role of environmental contaminants in liver disease and cancer

risk, in general, is the need for retrospective exposure assessment

and comparing exposure odds in individuals with and without

cancer. Indeed, case–control design is most efficient and is

sufficient to investigate exposures such as urinary cadmium, an

established dosimeter estimating the cumulative body burden

over the life course, to investigate liver cancer etiology. However,

the body burden of contaminants such as lead, arsenic, PFOA,

and PFOS measured at cancer diagnosis are unlikely to reflect

the body before diagnosis. This temporal ambiguity between

environmental contaminant assessment and HCC is one of the

main complications for causal inference. One way of

circumventing this challenge requires molecular profiling that

mediates exposure and outcomes.

While twin and familial studies estimate cancer heritability

and its precursors such as obesity from 40 to 70%, cancer etiology

is complex. Genetic loci contribute to less than 10% of obesity

variation. Rather, heritable environmentally induced-epigenetic

adaptation, including dysregulation of growth regulating genes,

drives heritability, although the regions of the epigenome that

contribute to liver diseases are undefined. Epigenetic marks act as

exposure archives that approximate past exposure (90, 91). This is

in part because epigenetic regulation, a means by which gene

expression is altered in response to environmental exposures, can

cause long-term changes in expression in mechanistic pathways

contributing to liver injury, dysmetabolism, nutrient acquisition,

fat deposition, appetite, and satiety. Both covalent DNA

methylation at cytosines of CpG dinucleotides and histone

modifications regulate chromatin structure and gene expression.

The value of DNA methylation as an assay target is its stability.

This enables its measurement from nearly any sample type,

regardless of handling, by utilizing both targeted and high-

throughput bisulfite sequencing methods.
Future research direction
using epigenetics

Human epigenetic data linking liver cancer and its

precursors to epigenetic dysregulation has three main

challenges that hamper identification of epigenomic regions

mechanistically involved in cancer development. First,

clinically accessible peripheral cells (e.g., blood or buccal cells)

may not be appropriate surrogates for tissue types of etiologic

significance to liver cancer. Second, epigenetic marks respond to

environmental cues throughout the life course such that without

serial samples, inference of cause-and-effect between obesity and

any epigenetic alterations is difficult. Additionally, epigenetic
Frontiers in Oncology 05
marks associated with obesity are often identified from known

regions or genes, targeted by function. Moreover, agnostic

approaches use array technology (e.g., Golden Gate, 14K, 27K,

450K, or EPIC), but there are physical limitations such as the

limited number of CpGs per array, and these approaches are

selected based on predetermined criteria of likely significance.

For example, while target regions have been selected to cover

gene promoters and bodies, as well as CpG islands, with >28

million CpG sites in the genome, less than 5% are covered. Thus,

the scope of affected regions is unknown. Another genome-wide

tool, meDIP, covers ~40% of the genome, but is dependent on

antibody precipitation of methylcytosine, and is thus more

effective in CG-rich regions. Also, because meDIP captures

only methylated sites, accurate quantitation of methylation

percentage is not feasible. Reduced representation bisulfite

sequencing is genome-wide but covers ~10% of CpG sites due

to technological dependence on endonuclease recognition of

specific sites. While these methods are all highly informative for

measurable regions, many epigenetic regions occur at long (>10-

20kb) distances from gene bodies, and in areas of low CG

content. Thus, the coverage has selection/sequence bias.

Addressing these challenges in epidemiologic settings requires

multiple approaches to identify epigenomic regions of functional

relevance that link environmental exposures and liver

dysfunction. These include using agnostic genome scale

approaches such as whole-genome bisulfite sequencing or

agnostic arrays (e.g., EPIC850 methylation array) and case and

control specimens to identify genomic regions that differ between

cases and controls in a cell type accessible for both cases and

controls, e.g., blood. This step is followed by determination of the

relevance of the marker, in affected cancer tissues. Among regions

with a high likelihood of being functionally important, follow-up

investigation determining if the epigenetic marks with case–

control differences that are also found in relevant tissues are

stable over time, and thus unlikely to be caused by disease, is

performed to establish cause-and-effect. Finally, the biological

significance in cancer is determined. Because these approaches

have limitations to identifying epigenetic markers for liver cancer

risk overtime, circumventing these challenges requires inclusion

of molecular profiling that mediates exposures and outcomes in

large cohorts with long-term follow up, such us the All of Us study

(https://allofus.nih.gov/news-events-and-media/announcements/

all-us-research-program-initial-protocol).

Another limitation of epigenetics studies is that

environmental exposures affecting the epigenome may cause

temporary changes in methylation that could be reverted after

the exposure is no longer present. Thus, it is important to focus on

CpG methylation marks that are stochastically established before

specifications that control metastable epiallele expression (92) and

imprinting control regions (ICR) that regulate imprinted gene

monoallelic expression (93, 94). Methylation marker stability with

age also makes them long-term ‘records’ of early exposures that

are difficult to obtain through questionnaires or other exposure
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assessment assays (93). CpG methylation of metastable epialleles

and ICRs is established before gastrulation and are mitotically

heritable. Thus, epigenetic marks are similar across tissues and cell

types throughout the individual’s life. Unlike metastable epialleles,

however, ICRs are defined by parent-of-origin specific

methylation marks that are important gene dosage regulators

based on the allele’s parental origin. Consequently, in contrast to

epigenetic marks controlling metastable epiallele expression,

methylation marks regulating imprinted genes are similar across

individuals (95, 96). Importantly, changes in ICR methylation

patterns are implicated in adult-onset diseases suspected to have

fetal origins, including neurological disorders, cancers, and

metabolic diseases stemming from abnormal growth and

nutrient acquisition disorders (97, 98). With the recent

publication mapping the complete repertoire of human ICRs

(99), examining the effects ICR dysregulation on liver diseases,

including cancer, should yield new insights.

Chronic exposure to environmental contaminants

characteristic of non-occupational settings results in subtle

molecular adaptive responses detectable as methylation marks at

epigenetically labile CG dinucleotides (100–102). Targeted

methylation sequencing approaches demonstrated that cadmium

alone or in a mixture with arsenic is associated with

hypermethylation of the DLK1/MEG3 imprinted domain in

leukocyte-derived DNA (103). Conversely, untargeted whole

genome bisulfite sequencing revealed that cadmium exposure

was associated with differential methylation, at ~2,000 loci (104).

Recent studies using Illumina Beadchip arrays also support that

DNA methylation of two CG dinucleotides, measured in cell-free

DNA, can distinguish HCC from cirrhosis with both sensitivity

and specificity in excess of 90% (105). Intriguingly, these CG

dinucleotides map to two genes that are key components of the

extracellular matrix, epithelial to mesenchymal transition, and

signaling (106). This is consistent with dying hepatocytes

contributing to the pool of circulating DNA in plasma (107) and

the observation that up to 70% of cell free DNA in HCC cases is

contributed by the liver (107–109). While these data suggest

methods for etiologic investigations and early detection using

accessible cells of relevance circulating in plasma, the role of

environmental contaminants in methylation alterations has not

been examined. Further, racial minorities have not been included

in case–control design, hampering causal inference.

Similarly, circulating cell-free RNA is comprised of different

classes of RNA, including messenger, micro, circular, long-coding,

transfer, ribosomal, and mitochondrial RNAs. RNA pools reflect

physiological and pathophysiological insight into human health

and have the potential for diagnostic and prognostic markers of

disease and monitoring (110, 111). The most studied group of cell

free RNAs are miRNAs that can target and regulate genomic

output through multiple mechanisms (112) and are an emerging

class of effector molecules regulated by diet (113). These miRNAs

circulate throughout the body and due to their size and stability

are found in most bodily fluids including blood, urine, saliva,
Frontiers in Oncology 06
breast milk, and tears (114, 115). The epigenome regulates

miRNAs and in turn, miRNAs reciprocally regulate DNA

methylation by inhibiting DNA-modifying enzymes (116).

However, inclusion of racial minorities under-represented in

epidemiological research studies remains low, which challenges

the interpretation of existing data. Better representation of these

groups is needed to understand disparities in liver cancer and in

the development of early detection methods.
Summary

Racial/ethnic disparities in the incidence of cancers such as

HCC is paralleled by increased prevalence of environmental

contaminants. The inflammatory effects of environmental

exposures may be modulated by disparities in lifestyle factors,

comorbidities, and higher body burden of environmental

contaminants. Resilience factors such as anti-inflammatory diets

may mitigate exposure effects and are linked with a lower liver

cancer prevalence among ethnic minorities. However, establishing

the effects of risk factors in epidemiologic studies is complicated

by retrospective exposure assessment. These shortcomings may be

circumvented by a more detailed knowledge of epigenetic

responses linking environmental exposures to cancer outcomes.
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