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ABSTRACT
The ongoing pandemic of a novel coronavirus (SARS-CoV-2) leads to international
concern; thus, emergency interventions need to be taken. Due to the time-consuming
experimental methods for proposing useful treatments, computational approaches
facilitate investigating thousands of alternatives simultaneously and narrow down
the cases for experimental validation. Herein, we conducted four independent
analyses for RNA interference (RNAi)-based therapy with computational and
bioinformatic methods. The aim is to target the evolutionarily conserved regions in
the SARS-CoV-2 genome in order to down-regulate or silence its RNA. miRNAs
are denoted to play an important role in the resistance of some species to viral
infections. A comprehensive analysis of the miRNAs available in the body of humans,
as well as the miRNAs in bats and many other species, were done to find efficient
candidates with low side effects in the human body. Moreover, the evolutionarily
conserved regions in the SARS-CoV-2 genome were considered for designing novel
significant siRNA that are target-specific. A small set of miRNAs and five siRNAs
were suggested as the possible efficient candidates with a high affinity to the
SARS-CoV-2 genome and low side effects. The suggested candidates are promising
therapeutics for the experimental evaluations and may speed up the procedure of
treatment design. Materials and implementations are available at: https://github.
com/nrohani/SARS-CoV-2.
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INTRODUCTION
Recently a new coronavirus (CoV) named severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has emerged from China and globally outbreak (Saini et al., 2020)
with over 48 million cases and over 1 million deaths (as the last update in November
5, 2020). World Health Organization (WHO) has warned that this outbreak is pandemic
and demands for emergency researches and studies to find efficient treatment strategies
against it.

COVID-19 infection causes multiple frequent symptoms such as fever, dry cough,
difficulty breathing or shortness of breath, dyspnea, fatigue, headache, diarrhea, and
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lymphopenia (Rothan & Byrareddy, 2020; Wu et al., 2020a). Individuals with severe
infection are at the risk of the severe acute respiratory syndrome, kidney failure,
pneumonia, and, unfortunately, death (Wu et al., 2020a). SARS-CoV-2 is in the
taxonomy of Betacoronavirus. This family includes seven species, namely HCoV-HKU1,
HCoV-229E, HCoV-NL63, HCoV-OC34, SARS-CoV, MERS-CoV, and SARS-CoV-2
(Khan et al., 2020). Humans and vertebrates are susceptible to infections of coronavirus.
Nevertheless, no vaccine has been approved for SARS-CoV-2 or other human coronavirus
(Wu et al., 2020a). SARS-CoV-2 genome is a single-stranded positive-sense of 29,903
nucleotides (nt) length (Ahmed, Quadeer & McKay, 2020), which has 89.1% and 60%
of sequence in common with SARS and MERS, respectively (Khan et al., 2020).
The SARS-CoV-2 sequence contains ten open reading frames (ORFs) (Khan et al., 2020)
and encodes for structural (spike, envelope, membrane, and nucleocapsid) proteins as well
as non-structural proteins (nsp) (Ahmed, Quadeer & McKay, 2020).

Because of the recent outbreak of COVID-19, our knowledge about its pathogenesis,
molecular mechanisms, prevention, and treatment strategies is deficient (Ahmed,
Quadeer & McKay, 2020). Besides the hectic efforts for proposing vaccines against this
disease, numerous approaches for its treatment are used. These approaches can be
categorized into four groups: viral replication and translation inhibition, impeding
viral-host receptor binding, improving the innate immunity of the host, and blocking
specific enzymes or receptors in host (Han & Král, 2020). Providing new insights about the
molecular mechanism of SARS-CoV-2 and its conserved regions can give a clue to propose
efficient treatment.

We aim to prevent virus activities through inhibiting viral replication and translation,
or by prohibiting the viral-host binding. To this aim, we target the most functional
regions that are responsible for viral replication and translation, or viral-host binding.
The evolutionarily conserved regions in SARS-CoV-2 have more potential to play critical
roles in viral replication and translation because these regions were selected and conserved
during evolution. Therefore, these regions are promising candidates for targeting by
antiviral and oligonucleotide therapies (Rangan, Zheludev & Das, 2020). Moreover, the
viruses may be disinclined to reveal resistance against the treatments that target the
conserved regions since these regions are probably vital for the functionality of the virus
(Rangan, Zheludev & Das, 2020). Among the conserved regions, unstructured parts are
more compelling since they had more inclination to bind to oligonucleotide therapies
via hybridization. Thus, the unstructured conserved regions are more favorable targets
due to its conservation, disinclination to develop resistance, high affinity to bind by
hybridization and more accessibility to therapeutic interventions (Rangan, Zheludev &
Das, 2020).

RNA interference (RNAi) is an alternative therapeutic strategy when current treatment
technologies fail to obtain a promising result (Bobbin & Rossi, 2016). RNAi-based
therapy is especially proficient for the treatment of viral infections, which escape other
strategies due to their mutations (Bobbin & Rossi, 2016). Nowadays, big pharmacology
companions consider RNAi-based therapy in their clinical trial trends (Chakraborty et al.,
2017). RNAi delivers small RNA duplexes such as microRNA (miRNA) or short
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interfering RNA (siRNA) in the body to start inhibiting specific genes (Hannon, 2002;
Setten, Rossi & Han, 2019). siRNAs are completely complementary to their targets,
while miRNAs are partially complementary; therefore, miRNAs repress the translation of
their targets, whereas siRNAs lead to Argonaute 2-mediated degradation (Bobbin & Rossi,
2016).

miRNAs are small non-coding RNAs with usually 22 nt lengths, which have vital
functions in post-transcriptional regulation of target genes (Witkos, Koscianska &
Krzyzosiak, 2011). They play a role in cell cycle progression, cell differentiation, cell
proliferation, apoptosis (Tabas-Madrid et al., 2014), and numerous cellular processes
that are vital for triggering or adaptive immunity (Drury, O’Connor & Pollard, 2017).
miRNAs are primarily used to decline the mRNA level of their targets. This mechanism
is done through imperfect binding to the target sites and causing either inhibition in
translation or RNA cleavage (Witkos, Koscianska & Krzyzosiak, 2011; Muniategui
et al., 2012). miRNAs made a paradigm shift in our insights about gene regulation and
therapeutic strategies. miRNAs are one of the efficient approaches in designing therapies
for silencing or downregulating pathogenesis mRNAs (Witkos, Koscianska & Krzyzosiak,
2011). Utilizing miRNAs in clinical interventions for combating infectious viruses has
initiated 24 years after discovering the first miRNA (Drury, O’Connor & Pollard, 2017).
Nowadays, numerous novel vaccines are curated using miRNAs that targeted viral
genomes (Drury, O’Connor & Pollard, 2017; Shen et al., 2015; Heiss, Maximova & Pletnev,
2011; Tan et al., 2016; Brostoff et al., 2016; Perez et al., 2009). The virus attenuation is
done by downregulating the mRNA levels of the virus, which is a highly efficient approach
and reduces the harm (Drury, O’Connor & Pollard, 2017).

siRNA has high specificity and is an efficient strategy for suppressing specific genes
(Tai & Gao, 2017). Since siRNAs can target and silence essential genes in the virus
survival, using siRNAs has been approved as a promising therapeutic against viral
infections (Li et al., 2005). Currently, several siRNAs have been proposed for inhibiting
viral replication for poliovirus and Rous sarcoma (Gitlin, Karelsky & Andino, 2002;
Hu et al., 2002), human immunodeficiency virus (HIV) (Coburn & Cullen, 2002;Martnez,
Clotet & Esté, 2002; Jacque, Triques & Stevenson, 2002; Park et al., 2002), hepatitis C
(HCV) (Kapadia, Brideau-Andersen & Chisari, 2003; Yokota et al., 2003) and
hepatitis B (HBV) (Shlomai & Shaul, 2003; McCaffrey et al., 2003) viruses. Previous
studies on cultured cells with SARS-CoV have revealed promising results of using siRNA
in therapies for inhibiting viral replication (He et al., 2003; Zhang et al., 2004; Lu et al.,
2004; Li et al., 2005).

Nevertheless, suggesting candidate miRNAs and siRNAs that potentially have high
affinities to interact with the SARS-CoV-2 genome is a promising idea that requires
significant attention. One of the challenges in using RNAi-based treatments is the
competition between the body mRNAs and SARS-CoV-2 RNA for binding to the
miRNA/siRNA (Demirci, Yousef & Allmer, 2019). If miRNA/siRNA tends to bind body
mRNAs instead of SARS-CoV-2 RNA, this issue may lead to a decline in treatment
efficiency or to develop side effects. Therefore, it is essential to investigate the interactions
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between miRNAs and human mRNAs and analyze the affinity of binding the suggested
miRNAs with other mRNAs instead of SARS-CoV-2 RNA.

Several databases have gathered the experimentally-validated miRNA-mRNA
interactions (Tabas-Madrid et al., 2014; Helwak et al., 2013; Licatalosi et al., 2008;
Dweep et al., 2011). Moreover, computational approaches have sped up miRNA-mRNA
interaction prediction by facilitating the rapid analysis of thousands of data (Al-Khafaji,
AL-DuhaidahawiL & Taskin Tok, 2020). The important elements in the efficient
interaction between miRNA and its targets are free binding energy, site accessibility, seed
match, and evolutionary conservation (Peterson et al., 2014). All of these constraints are
incorporated in this study.

Besides the miRNAs available in the human body, the miRNAs available in other
species can have a promising mechanism against SARS-CoV-2. Among all species,
bats (Chiroptera) are the most favorable, since bats are the most probable origin of
SARS-CoV-2 and some other CoVs (Lai et al., 2020; Zhou et al., 2020). Moreover, bats host
numerous pathogenic viruses such as paramyxo, rhabdo-, filoviruses (such as Ebola
and Marburg viruses), lyssaviruses, coronaviruses, and henipaviruses (e.g., Hendra and
Nipah viruses) (Hoffmann et al., 2013; Slater, Eckerle & Chang, 2018). Meanwhile, bats
have shown high resistance to viral infections and reveal no symptom or mild symptoms
to this deadliest diseases (Slater, Eckerle & Chang, 2018). Therefore, the miRNAs in the
bat body may give us a clue to find efficient options for the treatment of COVID-19.
In addition to bats, many other species may contain miRNAs that may be competent
candidates.

This study aims to target the unstructured conserved regions (UCRs) of SARS-CoV-2
using the available miRNAs or novel siRNAs. In this study, some candidate miRNAs
from human, bat, and other species are suggested that potentially inhibit SARS-CoV-2
replication and translation while having less affinity to bind other human body
mRNAs. Using these miRNAs aids in maximizing treatment efficiency and minimizing
side effects. The affinity binding of miRNAs to the UCRs of SARS-CoV-2 is computed to
ensure a high potential treatment. To further investigate the effects of using suggested
miRNAs, the biological functions of their targets in UCRs of SARS-CoV-2 are analyzed.
Moreover, the potential side-effects are investigated by examining the functionalities of
mRNAs that may computationally interact with the suggested miRNAs. In addition to
recommending efficient miRNAs, five efficient and target-specific siRNAs are proposed for
silencing SARS-CoV-2 genes. The suggested siRNAs satisfy in the required sequence
constraints (as described in Ui-Tei et al. (2004)), have low off-target effects due to their
thermodynamic stability, and are not likely to target other mRNAs in the human body.
The suggested miRNAs and siRNAs are promising candidates for experimental
validations.

MATERIALS AND METHOD
Datasets
The complete genome sequence of SARS-CoV-2 was obtained with accession No.
NC045512.2 from the GenBank database (Benson et al., 2012; Wu et al., 2020b).
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The complete genome of betacoronavirus sequences from the NCBI database and
sequences compiled by Ceraolo & Giorgi (2020) were considered for finding evolutionarily
conserved regions.

In this study, we conducted three independent analyses for suggesting candidate
miRNAs and one analysis for designing efficient siRNAs. The miRNAs and their
interaction information in theses analysis are obtained from the following sources:

� In the first analysis (Analysis #1), the list of miRNAs and their interactions were
collected from CLASH (Helwak et al., 2013). This database comprises 7,390
experimentally validated interactions between 270 miRNAs and 7,390 mRNAs
(Plotnikova, Baranova & Skoblov, 2019). This database contains the free binding energy
of interactions as well as the sequences of miRNAs and mRNAs involving in the
interactions.

� In the second analysis (Analysis #2), the sequences of 539 bat-specific miRNAs were
obtained from the previously published article by Huang, Jebb & Teeling (2016). Since
the interaction between bat-specific miRNAs and human mRNAs are not provided
experimentally, we extracted the human mRNA targets for bat-specific miRNA using
mirDB (Chen & Wang, 2020) tool.

� In the third analysis (Analysis #3), the known miRNAs of 286 species were downloaded
from the miRNA registry, mirBase (Kozomara, Birgaoanu & Griffiths-Jones, 2019).
mirBase is the most comprehensive database for miRNAs (Drury, O’Connor & Pollard,
2017) and comprises 6,133 miRNAs. However, it does not contain the miRNA-
mRNA interactions. We used mirDB (Chen & Wang, 2020) tool for obtaining the
human mRNA targets for candidate miRNAs from mirBase.

� The fourth analysis (Analysis #4) is conducted for proposing new potential siRNAs, for
which siDirect 2.0 (Naito et al., 2009) tool is used.

Methodology
All analyses in this study are conducted with the aim of either recommending potential
miRNAs or proposing efficient siRNAs. These two procedures are described in the
“Recommending Potential miRNA” and “Proposing Efficient siRNA”. The overall
workflow is shown in Fig. 1. In recommending efficient miRNAs and siRNAs, we aim to
target UCRs. Thus, the UCRs of SARS-CoV-2 must be determined.

Extracting the UCRs in SARS-CoV-2
The conserved regions were obtained by Rangan, Zheludev & Das (2020). They conducted
multiple sequence alignments (MSAs) on three sets of sequences to identify potentially
conserved RNA regions. In the first MSA, they align the sequences gathered by Ceraolo &
Giorgi (2020), including betacoronavirus whole-genome sequences. Then, 100%
conserved continuous regions were extracted. The second MSA was done by executing the
BLAST with highly similar sequences to SARS-CoV-2. The continuous regions with at
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least 98% conservation were identified. In the last MSA, a broad set of 180 complete
betacoronavirus from the NCBI with 99% similarity to SARS-CoV-2 was considered.
The continuous regions with at least 54% conservation in the MSA were extracted.
The identified potentially conserved regions were filtered to consider only the regions with
at least 15 nt. Furthermore, the potentially unstructured regions were determined by
computing the unpaired probabilities. The base-pair probability matrix was calculated
for the SARS-CoV-2 genome in the windows of length 120 nt (sliding by 40 nt) using
Contrafold 2.0 (Do, Woods & Batzoglou, 2006). Then, the paired probability for every
position is the average of base-pair probabilities in all windows that the position is
included. Consequently, the positions with paired probability less than 0.4 were considered
as the unpaired positions. UCRs of SARS-CoV-2 are denoted as the continuous stretches of
unpaired positions with at least 13 nt. Fifty-eight unstructured conserved regions with
lengths 13–26 nt were found. The entire list of UCRs in SARS-CoV-2 is provided in
Supplemental Materials.

Figure 1 The overall workflow. (1, 2) The unstructured conserved regions in the SARS-CoV-2 genome
are found. (3) The miRNAs available in the CLASH database, mirBase, and bat-specific miRNAs are
collected. (4) The most efficient miRNAs were selected based on their high binding affinity to the
unstructured conserved regions of SARS-CoV-2. (5) Besides the selected miRNAs, several siRNAs are
designed, which specifically target the desired regions in SARS-CoV-2. (6) The most potent rival targets
for the selected miRNAs/siRNAs are analyzed. (7) Most efficient candidate miRNAs and siRNAs are
introduced as potential therapeutics for COVID-19. Full-size DOI: 10.7717/peerj.10505/fig-1
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Recommending potential miRNA
Investigation for promising miRNAs is conducted according to the following steps:

� Computing the free binding energy for the hybridization of miRNAs of each dataset
and UCRs of SARS-CoV-2: Binding energy is one of the important factors for measuring
the affinity of binding (Khan et al., 2020). Effective binding between miRNA and its
target is assessed using IntaRNA 2.0 (Mann, Wright & Backofen, 2017) in ViennaRNA
library (Lorenz et al., 2011). The parameters were set to the default value. It considers
both the interaction site accessibility and seed constraints in computing the free binding
energy. The seed interactions must be genetically favorable, which is enforced in
IntaRNA. Thus, analyzing minimum free energies (MFEs) computed by IntaRNA also
incorporates site accessibility and seed match factors.

� Analyzing the efficiency of utilizing the suggested miRNAs by investigating the
biological functions related to the target UCRs of SARS-CoV-2.

� Finding the most probable target mRNA in the human body that is a rival for target
UCR and analyzing its GO terms and pathways.

Proposing efficient siRNA
Providing efficient and target-specific siRNA design for mammalian RNAi is done by
siDirect 2.0 (Naito et al., 2009), which have the following steps to propose siRNA:

� We considered a window of length 23-mer and slide it on the target UCR in
SARS-CoV-2. In this way, all possible 23-mer subsequences in the target sequence
are considered, and the corresponding siRNA is designed with a 21 nt complementary
guide and a passenger strand with two nt overhang at the 3’ end. Then, the list of all
possible siRNAs was refined to the siRNAs that have the following three sequence
conditions (Ui-Tei et al., 2004):

– with “A” or “U” nucleotide at the 5′ end of the guide strand

– with “G” or “C” nucleotide at the 5′ end of the passenger strand

– with more than 4 “A” or “U” residues in the 5′ terminal seven bp of the guide strand

– without contiguous substring of G/C of length larger than four bp

– with less than 30% GC content

� Calculating melting temperature (Tm) for the seed-target duplex located at 2–8 from the
5′ end of the siRNA guide strand and its target (Ui-Tei et al., 2008). Tm calculation is
done using the nearest neighbor model and the thermodynamic parameters for the
formation of the RNA duplex (Naito et al., 2009).

� Removing siRNAs that have near-perfect complementary to other human mRNAs,
rather than the selected target location. siDirect analyzed 19 nt lengths from 2 to 20
positions in both strands via BLAST and pre-computed hits to find near-perfect match
candidates (Yamada & Morishita, 2005). Finally, the selected siRNAs must have at least
two mismatches with all non-targeted transcripts.
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RESULTS
Analysis #1: Suggesting candidate miRNAs from the human body for
the treatment of COVID-19
To evaluate the efficiency of available miRNAs in the human body for targeting UCRs,
we analyzed the CLASH database. CLASH is a gold standard dataset that contains
experimentally validated interactions between human miRNAs and human mRNAs.

The goal of this analysis was to find appropriate available miRNAs that have efficient
interactions with UCRs and low-affinity to human mRNAs. For each miRNA (M) in
CLASH and each UCR (U) in SARS-CoV-2, the free binding energy of the hybridization
ofM andU is denoted by EðM;UÞ and computed by IntaRNA (Mann, Wright & Backofen,
2017). Moreover, the free binding energy of targeting each human mRNA (R) by
miRNA (M) is denoted by EðM;RÞ is retrieved from CLASH and computed by IntaRNA.
Among all mRNAs in human, the mRNA with the highest affinity to bind with
miRNA is considered as the most potent rival in competition with UCR to be bound by
miRNA. The efficiency score for targeting UCR by miRNA (denoted by SðM;UÞ) is
calculated as (1).

SðM;UÞ ¼ EðM;UÞ �min
R

fEðM;RÞg (1)

The negative efficiency score suggests that the affinity of miRNA to target that UCR is
greater than targeting any mRNA in the body. Whereas the positive efficiency score
denotes that there is at least one mRNA in the body that the miRNA has more propensity
to target that mRNA, rather than targeting the UCR. Therefore, the lower the efficiency
score is, the more favorable candidate the miRNA is. The analyzed miRNAs were
sorted based on their efficiency scores, and the top 10 were considered as the candidate
miRNAs. Using either the energies reported in CLASH or energies computed by IntaRNA
result in the same list of candidate miRNAs.

Table 1 represents the most favorable candidate miRNAs. This table includes the
information of candidate miRNAs, the information about target UCRs in SARS-CoV-2,
and the most potent rival mRNAs. It can be seen that the candidate miRNA has more
propensity to bind to UCR, rather than the rival mRNA. The entire report of this analysis,
containing the interaction information for all miRNA in CLASH and all UCRs are
presented in Supplemental Materials.

The efficiency score of top 4 candidate miRNAs are less than -2. Thus, we conducted
further analyses on these four miRNAs to investigate their targets in SARS-CoV-2.
The hybridization of targeting UCRs by candidate miRNAs are shown in Fig. 2.

Among the potential efficient miRNAs, both hsa-miR-374a-5p and hsa-miR-1-3p
have the most affinity to bind nsp11 in SARS-CoV-2. Protein nsp11 is an endoribonuclease
that inhibits the production of IFN-β (Shi et al., 2011). The first essential factor of
innate immune response to the viral infections is IFN-β (Weber, Kochs & Haller, 2004).
Defeating the viral infection by host cells becomes more difficult due to the interferon
antagonist property of nsp11 (Weber, Kochs & Haller, 2004; Bowie & Unterholzner, 2008).
Hence, targeting nsp11 facilitates the immune response against SARS-CoV-2.
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The second candidate miRNA is hsa-miR-548b-3p, which binds to ORF6 with low free
binding energy. ORF6 is an accessory protein with key functions in viral pathogenesis
(Yoshimoto, 2020; Kumar et al., 2007; Zhao et al., 2009). This protein has the most
powerful suppression of interferon production and interferon signaling (Yuen et al., 2020).
Moreover, it plays role in promoting RNA polymerase activity by interacting with
nsp8 (Kumar et al., 2007). Consequently, silencing ORF6 is a promising approach in
designing live-but-attenuated vaccines against SARS-CoV-2 (Yuen et al., 2020).

The fourth candidate miRNA, hsa-miR-224-5p, has the best binding with nsp6
region. Protein nsp6 produces autophagosomes, which assists in the assembly of
replicase proteins (Yoshimoto, 2020). In addition, the function of nsp6 in limiting
autophagosome/lysosome expansion, which leads to both inducing autophagy of host
cells and preventing the autophagy of viral components (Lippi et al., 2020). By this way,
nsp6 impedes the degradation of the viral components in lysosomes by prohibiting
autophagosomes expansion (Yoshimoto, 2020; Cottam, Whelband &Wileman, 2014). As a
result, down-regulating nsp6 improves host immunity by saving host cells from autophagy
and degrading viral components.

Moreover, the most probable target genes for these miRNAs were obtained from
CLASH (Helwak et al., 2013), and their related gene ontology (GO) and pathways were
obtained from Uniprot (Apweiler et al., 2004). Figure 3 represents the GO biological
process (BP), molecular function (MF), and cellular component (CC) of the target genes
related to the top 4 miRNAs, as well as their corresponding pathways.

Suggesting candidate miRNAs from the bats for the treatment of
COVID-19
Bats are one of the most probable sources of SARS-CoV-2, and previous studies have
shown that bats are more resistant to CoV infections (Hoffmann et al., 2013).
Therefore, this idea comes up that maybe the bat-specific miRNAs have a functional role in
their resistance against CoVs. The bat-specific miRNAs were investigated for efficient

Table 1 The candidate miRNAs interactions. The first column represents the mirBase ID of miRNAs. The three next columns contain infor-
mation about target UCRs. The fifth column includes the UniProt ID of the most potent rival mRNA. The two next columns represent the free
binding energy to target UCR and the most potent rival mRNA, respectively. The last column shows the efficiency score of the candidate miRNA.

miRNA UCR sequence UCR
location

UCR region rival mRNA ID EðM;UÞ minRfEðM;RÞg SðM;UÞ

hsa-miR-374a-5p UUACAAACAAUUUGAUACUU 19569–19588 ORF1ab, nsp11 ENSG00000186184 −15.27 −10.9 −4.37

hsa-miR-548b-3p GAAGAGCAACCAAUG 27361–27375 ORF6 ENSG00000109572 −10.05 −6.1 −3.95

hsa-miR-1-3p CACAUGCUUUUCCA 18681–18694 ORF1ab, nsp11 ENSG00000100485 −10.86 −8.4 −2.46

hsa-miR-224-5p UUUACUCAACCGCUACUUUAGAC 11659–11681 ORF1ab, nsp6 ENSG00000113273 −9.47 −7.1 −2.37

hsa-miR-98-5p UUUACUCAACCGCUACUUUAGAC 11659–11681 ORF1ab, nsp6 ENSG00000205250 −11.7 −10.7 −1

hsa-miR-26a-
2-3p

UCAAGAAAUUCAAC 28853–28866 ORF9,
nucleocapsid
protein

ENSG00000171772 −6.98 −6.3 −0.68

hsa-miR-192-3p UCUUGUCUGUUAAUC 16361–16375 ORF1ab, nsp13-
ZBD

ENSG00000185658 −6.98 −6.7 −0.28
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binding to UCRs to evaluate this hypothesis. The free binding energy for the hybridization
of UCRs and bat-specific miRNAs were computed by IntaRNA (Mann, Wright &
Backofen, 2017) tool. Since there is no gold standard for the interactions and free binding
energy of bat-miRNAs and human mRNAs, the candidate miRNAs were selected
based on the energy ratio. The energy ratio for each pair of miRNA M and UCR U is
computed as formula (2).

ERðM;UÞ ¼ EðM;UÞ=EðM; �MÞ (2)

where EðM; �MÞ is the free binding energy of the miRNA to its completely complement
sequence. The bat-specific miRNAs were sorted based on their energy ratio, and the top
20 were selected as candidate miRNAs. The human mRNA targets for the candidate
miRNAs were predicted using mirDB (Chen & Wang, 2020) tool. Table 2 represents the
most favorable candidate miRNAs in bat, as well as their target UCR and their most
probable predicted human mRNA by mirDB. The complete list of energy ratios for all
bat-specific miRNAs and UCRS, as well as the entire list of predicted target genes for the
selected bat-specific miRNAs are provided in Supplemental Materials.

Figure 4 displays the hybridization of targeting UCRs by candidate bat-specific
miRNAs. The first three suggested bat-specific miRNAs target UCRs in nsp3, nsp4, and

Figure 2 Hybridization of top candidate miRNAs with target UCRs. Hybridization of top candidate
miRNAs with target UCRs. (A) miRNA: hsa-miR-374a-5p,UCR location: 19569-19588,
EðM;UÞ ¼ �15:27 kcal=mol. (B) miRNA: hsa-miR-548b-3p, UCR location: 27361–27375, EðM;UÞ ¼
�10:05 kcal=mol. (C) miRNA: hsa-miR-1-3p, UCR locatoion: 18681–18694, EðM;UÞ ¼
�10:86 kcal=mol. (D)miRNA: hsa-miR-224-5p, UCR locatoion: 11659–11681, EðM;UÞ ¼ �9:47 kcal=mol.

Full-size DOI: 10.7717/peerj.10505/fig-2
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nsp6. These three proteins have transmembrane domains (Sakai et al., 2017). There is
a fundamental relation between CoV infections and the nsp3 association (Khailany,
Safdar & Ozaslan, 2020). Protein nsp3 is the most extended protein in SARS-CoV-2
with multiple domains, which plays crucial roles in forming the replication/transcription
complex (RTC) (Lei, Kusov &Hilgenfeld, 2018). Due to essential protease activity for releasing
proteins with viral activity, down-regulating nsp3 can be a desirable goal for antiviral
activity (Báez-Santos, John &Mesecar, 2015). Protein nsp4 has an important interaction with
nsp3, which induces membrane rearrangement and viral replication (Yoshimoto, 2020).
This interaction is a critical factor in viral replication via the rearrangements of host-derived
membranes. Elucidating this interaction leads to terminate SARS-CoV-2 replication
(Sakai et al., 2017). Another transmembrane protein, nsp6, together with nsp3 and nsp4
proteins, configure the organelle-like replicative structures (double-membrane vesicles)
(Cárdenas-Conejo et al., 2020). Making use of three first suggested miRNAs that
target nsp3, nsp4, and nsp6 may strongly down-regulates the viral replication.

The next three suggested miRNAs have favorable affinities to bind the spike protein
(surface glycoprotein). The entry of SARS-CoV-2 into cells is mediated by spike (S)
glycoproteins, which binds to human angiotensin-converting enzyme 2 (ACE2) for cell

Figure 3 The GO terms and Reactome pathways related to the most probable targets of each candidate miRNAs from all species. The first
column shows the mirBase ID of the selected miRNAs. The three next columns show the GO terms for molecular function, biological process, and
cellular component, respectively. The last column contains the related Reactome pathways. Full-size DOI: 10.7717/peerj.10505/fig-3

Table 2 The candidate bat-specific miRNAs interactions. The first column represents the sequence of bat miRNAs. The three next columns
contain information about target UCRs. The two next columns represent the free binding energy to target UCR and the energy ratio, respectively.
The last column includes the UniProt ID of the most potent rival mRNA.

Bat miRNA sequence UCR sequence UCR
location

UCR region EðM;UÞ ERðM;UÞ rival mRNA ID

UGGCAAGUAGGUGAUAGGAUGU UAUUCUGUUAUUUACUUGUAC 9578–9598 ORF1ab, nsp4 −21.37 0.5397 ENSG00000198964

UGAGGUAGUAGAUUGUAUAGU UUGUACUAAUUAUAUGCCUUAUUUCUU 6757–6783 ORF1ab, nsp3 −12.63 0.388615385 ENSG00000206557

ACAAUUCUGUGUAUCUGAUC UUAGAUAUAUGAAUUCA 11724–11740 ORF1ab, nsp6 −11.33 0.380328969 ENSG00000106153

CGGGGGGUGGCGGGGAGGU ACUCAAUUACCCCCUGCA 21626–21643 Surface glycoprotein −19.23 0.411777302 ENSG00000141905

AGAGGUAAAAAUUUGAUUUGACU CACAAGUCAAACAAAUUUACAAA 23910–23932 Surface glycoprotein;
spike protein, S2
glycoprotein

−11.42 0.37689769 ENSG00000133121

GGGGCCGGGGGUGGGGGU ACUCAAUUACCCCCUGCA 21626–21643 Surface glycoprotein;
Spike protein

−16.46 0.374857663 ENSG00000127588
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entry (Hoffmann et al., 2020; Yoshimoto, 2020). The spike protein identifies the ACE2
protein on the surface of the host cell (Lan et al., 2020; Shang et al., 2020;Walls et al., 2020).
The transmembrane spike (S) glycoprotein forms the homotrimers protruding from
the viral surface (Tortorici & Veesler, 2019). This glycoprotein contains two subunits S1
and S2 that are essential for receptor binding and membranes fusion, respectively (Walls
et al., 2016; Park et al., 2016; Kirchdoerfer et al., 2016). The S2 subunit is fusion machinery
that facilitates the viral and cellular membranes fusion (Gui et al., 2017; Song et al.,
2018; Yuan et al., 2017; Hoffmann et al., 2020). Since the surface glycoprotein S intervenes
the virus entry into host cells, there is a major focus on this protein in therapeutic strategies
and vaccine design (Walls et al., 2020; Hoffmann et al., 2020). Thus, the suggested
miRNAs may have great antivirus activities via down-regulating the surface glycoproteins.

Figure 4 Hybridization of top 4 candidate bat-specific miRNAs with target UCRs. (A) UCR location:
9578–9598, EðM;UÞ ¼ �21:37 kcal=mol. (B) UCR location: 6757–6783, EðM;UÞ ¼ �12:63 kcal=mol.
(C) UCR location: 11724–11740, EðM;UÞ ¼ �11:33 kcal=mol. (D) UCR location: 21626–21643, EðM;UÞ ¼
�19:23 kcal=mol. (E) UCR location: 23910–23932, EðM;UÞ ¼ �11:42 kcal=mol. (F) UCR location:
21626–21643, EðM;UÞ ¼ �16:46 kcal=mol. Full-size DOI: 10.7717/peerj.10505/fig-4

Rohani et al. (2021), PeerJ, DOI 10.7717/peerj.10505 12/24

http://dx.doi.org/10.7717/peerj.10505/fig-4
http://dx.doi.org/10.7717/peerj.10505
https://peerj.com/


To analyze the possible side effect of using the candidate bat miRNAs in human
body, we enriched their predicted targets in GO using UniProt (Apweiler et al., 2004).
Figure 5 demonstrates the GO terms and Reactome pathways related to the most probable
target mRNAs for the candidate bat-specific miRNAs.

Analysis #3: Suggesting potential miRNAs from 286 species for the
treatment of COVID-19
The previous analyses suggested the favorable candidate miRNAs from human and bat
that have a potential role in the treatment of COVID-19. Nevertheless, other species
may contain miRNAs that reveal promising antiviral activities against SARS-CoV-2.
To investigate this idea, we considered the miRNA sequences of all species available in
mirBase (Kozomara, Birgaoanu & Griffiths-Jones, 2019). To choose the most effective
miRNAs, we conducted the same analysis as the previous section, but on the miRNAs of

Figure 5 GO terms and pathways for genes targeted by candidate bat miRNAs. The first column shows the bat miRNA sequences. The three next
columns show the GO terms for molecular function, biological process, and cellular component, respectively. The last column contains the related
Reactome pathways. Full-size DOI: 10.7717/peerj.10505/fig-5

Table 3 The candidate miRNAs from all species. The first column shows the species name. The second column represents the sequence of
miRNAs. The three next columns contain information about target UCRs. The two next columns represent the free binding energy to target UCR
and the energy ratio, respectively. The last column includes the UniProt ID of the most potent rival mRNA.

Species
scientific
name

miRNA ID UCR sequence UCR
location

UCR region EðM;UÞ ERðM;UÞ rival mRNA ID

Tribolium
castaneum

tca-miR-
6014-3p

GCUCUCACUCAACAUGG 28436–28452 ORF9ab, NAR region −19.24 0.627323117 ENSG00000154447

Monodelphis
domestica

mdo-miR-
7284b-5p

UUGUACUAAUUAUAUGCCUUAUUUCUU 6757–6783 ORF1ab, nsp3 −16.03 0.585891813 ENSG00000169855

Ciona
intestinalis

cin-miR-
4020b-5p

UCUUUACCAACCACCACAAACCUCUAU 10009–10035 ORF1ab, nsp4 −21.98 0.584885577 ENSG00000213593

Gallus gallus gga-miR-
1603

ACCAAACCAACCAUAUCCAA 6010–6029 ORF1ab, nsp3, NAR region −22.23 0.581784873 ENSG00000185621

Homo sapiens hsa-miR-
4500

AUAAGAAACCUGCUUCAA 6105–6122 ORF1ab, nsp3, NAR region −13.99 0.570554649 ENSG00000206557

Lotus
japonicus

lja-
miR7535

CCAUACCCACAAAUUUUAC 23700–23718 Surface glycoprotein; spike
protein, Corona S2 glycoprotein

−19.98 0.566326531 ENSG00000134954
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numerous species. The selected miRNAs from all species are represented in Table 3.
The entire list of analyzed miRNAs, as well as the list of the predicted targets for miRNAs
are provided in Supplemental Materials.

The first candidate miRNA is for the red flour beetle (Tribolium castaneum) and
targets a UCR in ORF9ab, which encodes nucleocapsid protein in SARS-CoV-2. It binds
to the viral genome and provides stability for virus (Yoshimoto, 2020). It also has high
expression during infection, which enables antibody responses (Peng et al., 2006).
This protein is essential in viral RNA transcription and replication (Kang et al., 2020).
Therefore, it is a promising target in UCRs for reducing viral transcription and replication.

Figure 6 Hybridization of top candidate miRNAs with target UCRs. (A) miRNA: tca-miR-6014-3p,
UCR location: 28436–28452, EðM;UÞ ¼ �19:24 kcal=mol. (B) mdo-miR-7284b-5p, UCR location:
6757–6783, EðM;UÞ ¼ �16:03 kcal=mol. (C) miRNA: cin-miR-4020b-5p, UCR location: 10009–10035,
EðM;UÞ ¼ �21:98 kcal=mol. (D) miRNA: gga-miR-1603, UCR location: 6010–6029, EðM;UÞ ¼
�22:23 kcal=mol. (E) miRNA: hsa-miR-4500, UCR location: 6105–6122, EðM;UÞ ¼ �13:99 kcal=mol.
(F) miRNA: lja-miR7535, UCR location: 23700–23718, EðM;UÞ ¼ �19:98 kcal=mol.

Full-size DOI: 10.7717/peerj.10505/fig-6
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Other candidate miRNAs are from gray short-tailed opossum (Monodelphis domestica),
sea vase (Ciona intestinalis), red junglefowl (Gallus gallus), human (homo sapiens),
and Lotus japonicus. These miRNAs target UCRs in nsp3, nsp4, and spike protein. As it is
mentioned in “Suggesting Candidate miRNAs from the Human Body for the Treatment
of COVID-19”, these regions are of high importance for viral transcription, replication,
and binding to host cells. The suggested miRNAs from various species are potentially

Figure 7 The GO terms and Reactome pathways related to the most probable targets of each candidate miRNAs from all species. The first
column shows the mirBase ID of the selected miRNAs. The three next columns show the GO terms for molecular function, biological process, and
cellular component, respectively. The last column contains the related Reactome pathways. Full-size DOI: 10.7717/peerj.10505/fig-7

Table 4 The selected UCRs for designing siRNA. The length of these UCRs are at least 21 nt, for which
significant siRNAs have been found.

UCR sequence UCR location UCR region

UUGUACUAAUUAUAUGCCUUAUUUCUU 6757–6783 ORF1ab, nsp3

CUGUCUUUAUUUCACCUUAUAAUU 17762–17785 ORF1ab, nsp13

UCUUUACCAACCACCACAAACCUCUAU 10009–10035 ORF1ab, nsp4

CACAAGUCAAACAAAUUUACAAA 23910–23932 spike protein

Table 5 The designed siRNAs for the selected UCRs. The first column indicates the location in SARS-CoV-2 that the designed siRNAs target these
regions. The two subsequent columns contain the guide and passenger strands of the designed siRNAs. The next column shows the melting
temperature for the seed-target duplex forming in the guide and passenger strands of the designed siRNAs. The next column denotes the satisfaction
status of proposed siRNAs in the constraint of not containing more than 3 continuous “C”s or “G”s. The last column shows the “GC” content in the
designed siRNAs.

UCR location siRNA guide sequence siRNA passenger sequence Seed-duplex stability Contiguous
(G/C)

GC content (%)

6760–6782 AAAUAAGGCAUAUAAUUAGUA CUAAUUAUAUGCCUUAUUUCU (10.9 �C, − 8 �C) yes <30

6757–6779 UAAGGCAUAUAAUUAGUACAA GUACUAAUUAUAUGCCUUAUU (30.5 �C, 6.3 �C) yes <30

17762–1774 UAUAAGGUGAAAUAAAGACAG GUCUUUAUUUCACCUUAUAAU (18.5 �C, 6.9 �C) yes <30

10009–10031 AGAGGUUUGUGGUGGUUGGUA CCAACCACCACAAACCUCUAU (25.4 �C, 30.5 �C ) yes <30

23910–23932 UGUAAAUUUGUUUGACUUGUG CAAGUCAAACAAAUUUACAAA (−0.3 �C, 19.2 �C ) yes <30
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promising alternatives for targeting these important regions in SARS-CoV-2 and lowering
its functionality and spread.

The hybridization of UCRs and selected miRNAs are displayed in Fig. 6. Furthermore,
an investigation for possible side effects of using these miRNAs in human body was
conducted by checking the GO terms and Reactome pathways of the rival mRNAs.
The list of GO terms and Reactome pathways were obtained from Uniprot (Apweiler et al.,
2004) and are exhibited in Fig. 7. Among the candidate miRNAs, tca-miR-6014-3 and
hsa-miR-4500 are more favorable choices, since their molecular functions and pathways
are related to defeating virus and improving immunity.

Analysis #4: Proposing efficient siRNA for the treatment of COVID-19
An efficient RNA-intervention technique is designing new efficient siRNAs. Since the
length for siRNA is 21 nt, we considered all UCRs with minimum length of 21 nt.
Then, the selected UCR sequences were given to the siDirect tool (Naito et al., 2009) for
designing efficient siRNA to target these regions. Five siRNAs targeting four UCRs were
found. The information of UCRs that are targetted by the designed siRNA is presented
Table 4. The designed siRNA are listed in Table 5

The minimum free energy (MFE) foldings of these five siRNAs were obtained by
RNAfold in the ViennaRNA package (Lorenz et al., 2011). The obtained foldings are
depicted in Fig. 8. Moreover, the hybridization of the designed siRNA with the target UCR
is gained using IntaRNa tool (Mann, Wright & Backofen, 2017) and shown in Fig. 9.
In order to investigate the potential side effects, the most potent target mRNAs were
calculated using the mirDB tool (Chen & Wang, 2020). The most likely targets for
siRNA#1, siRNA#2, siRNA#3, siRNA#4, and siRNA#5 are ENSG00000213047,
ENSG00000169241, ENSG00000070882, ENSG00000118263, and ENSG00000157106,
respectively. The retrieved genes were inquired into Unitprot (Apweiler et al., 2004) for
analyzing the Go terms and Reactome pathways. The GO terms and pathways related to
the target genes of each siRNA are presented in Fig. 10.

Figure 8 The MFE folding of the designed siRNAs. (A–E) Folding of potential siRNAs #1, #2, #3, #4,
and #5, respectively. Full-size DOI: 10.7717/peerj.10505/fig-8

Rohani et al. (2021), PeerJ, DOI 10.7717/peerj.10505 16/24

http://dx.doi.org/10.7717/peerj.10505/fig-8
http://dx.doi.org/10.7717/peerj.10505
https://peerj.com/


Figure 9 The hybridization of designed siRNAs with target UCRs. (A) The hybridization of the
potential siRNA #1 and the UCR in location 6760–6782 with free binding energy = −25.5 kcal/mol.
(B) The hybridization of the potential siRNA #2 and the UCR in location 6757–6779 with free binding
energy = −28.18 kcal/mol. (C) The hybridization of the potential siRNA #3 and the UCR in location
17762–1774 with free binding energy = −29.57 kcal/mol. (D) The hybridization of the potential siRNA
#4 and the UCR in location 10009–10031 with free binding energy = −38.97 kcal/mol. (D) The hybri-
dization of the potential siRNA #5 and the UCR in location 23910–23932 with free binding
energy = −24.4 kcal/mol. Full-size DOI: 10.7717/peerj.10505/fig-9

Figure 10 The GO terms and Reactome pathways corresponding to the most probable targets of the deigned siRNAs. The first column shows
the proposed siRNA. Molecular function, biological process, and cellular component, are represented in the three next columns and Reactome
pathway is shown in the last column. Full-size DOI: 10.7717/peerj.10505/fig-10
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CONCLUSION
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
became pandemic and international concern. Currently, no vaccine or specific drug has been
proposed for SARS-CoV-2 or other zoonotic coronaviruses. Therefore, it is essential and
emergency to look deeper into potential treatments. RNA interference (RNAi) is a
therapeutic strategy that is profitable in the treatment of viral infections when other
conventional approaches fail to obtain promising results. This approach is based on
delivering small RNA duplexes, including miRNA or siRNA, to the body for triggering the
inhibition of specific genes. In this study, we investigated the potential RNAi-based therapy
that may help in the treatment of COVID-19. We analyzed the efficiency of the available
miRNAs as well as newly designed siRNAs for downregulating and silencing the regions in
SARS-CoV-2 that are both conserved and unstructured with high probability. To this
aim, the unstructured conserved regions in SARS-CoV-2 were obtained using multiple
sequence alignment and computing the unpaired probability using a computational method.
Fifty-eight unstructured conserved regions were obtained and considered as the desirable
regions for targeting by miRNA/siRNA, due to their evolutionary conservation,
disinclination to develop resistance, high affinity to bind by hybridization and more
accessibility to therapeutic interventions (Rangan, Zheludev & Das, 2020).

Four independent analyses were conducted to investigate the application of RNAi-
based therapies in the decline of SARS-CoV-2 survival. Three analyses aim to suggest
potential miRNAs that exist in human, bat and 286 other species for downregulating the
unstructured conserved regions of SARS-CoV-2. The investigation of efficient miRNAs
was done using computing the free binding energy of the hybridization of miRNAs and
the regions in SARS-CoV-2. The ones with the least free binding energy were considered as
the candidate miRNAs. Among the investigated miRNAs, four human miRNAs, six
bat-specific miRNAs, and six other miRNAs from other species were extracted that
have a high affinity to bind essential and functional regions in SARS-CoV-2 genome.
The candidate miRNAs were further examined to check their possible side effects. In order
to do this, the most probable human mRNA targets for the candidate miRNAs were
obtained from experimentally validated databases or computational tools. Moreover,
the Go terms (containing molecular function, biological process, and cellular component),
as well as Reactome pathways related to the most probable targets, were extracted.
Among the recommended miRNAs, tca-miR-6014-3 is very promising because its side
effects prevent viral activity in the body and reduce viral infections.

In addition to three mentioned analyses for suggesting potential miRNAs, another
analysis was conducted to design efficient siRNAs for silencing the unstructured conserved
regions of SARS-CoV-2. Five efficient siRNAs were identified for targeting four critical
regions in SARS-CoV-2. These regions play essential roles in viral replication and the
attachment of the virus to host cells. Therefore, the application of proposed siRNAs may
inhibit the replication and entry of SARS-CoV-2. Moreover, the most potent human
mRNA targets of these siRNAs were obtained using computational tools, and their
GO terms and pathways were analyzed for investigating their possible side effects.
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All in sum, this study recommends 16 potential miRNAs and five efficient siRNAs that
may help in the treatment of COVID-19. The candidate miRNAs and siRNAs are
promising cases to be validated experimentally in cultured cells, or mouse models can
reduce the time and costs of trying non-promising cases.
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