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Objective: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with 
oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived 
parameters and an appropriate combination of machine learning methods in patients with OPSCC.
Materials and Methods: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, 
pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 
2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 
patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only 
PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature 
transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test 
the three models that performed best in the internal validation set. The values for area under the receiver operating 
characteristic curve (AUC) were compared between models.
Results: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, 
with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the 
best performance (AUC = 0.78; 95% confidence interval, 0.46–1). Model 3 outperformed Model 1 using PET parameters 
alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status.
Conclusion: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed 
by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher 
performance than the models using either PET or clinical parameters alone.
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INTRODUCTION

The incidence of oropharyngeal squamous cell carcinoma 
(OPSCC), including OPSCC associated with human 
papillomavirus (HPV) infection, has increased in recent 
decades [1,2]. Patients with HPV have a more favorable 
prognosis and longer disease-free- and overall survival than 
OPSCC patients without HPV infection [3,4]. Accordingly, 
the American Joint Committee on Cancer has adjusted 
its staging manuals and classified HPV-associated OPSCC 
as a distinct entity [5]. HPV status in patients with 
oropharyngeal cancer is determined by histopathological, 
immunohistochemical, and molecular diagnoses [4,6]. 
However, these diagnoses are only feasible through biopsy, 
performed using laryngoscopes, or during surgical excision 
[7]. Predicting HPV status preoperatively based on imaging 
may aid in patient counseling and planning treatment 
strategies [8]. Additionally, imaging characteristics may 
provide further insights on the underlying pathophysiology 
of the distinct clinical course of OPSCC. Furthermore, if the 
number of specimens is not sufficient for diagnosis or the 
patient cannot undergo surgery, the HPV infection status 
of patients with OPSCC cannot be determined. Therefore, 
other non-invasive diagnostic methods may be helpful in 
treatment planning.

Many efforts have been made to predict HPV status in 
patients with OPSCC using machine-learning approaches 
based on imaging studies [9]. For example, radiomics-
based investigations have used structural MRI, with 
and without diffusion-weighted imaging [10-12]. Few 
studies have used radiomics from 18F-fluorodeoxyglucose 
(18F-FDG) PET to determine the HPV status [13]. However, 
the radiomics approach is vulnerable to issues related 
to reproducibility and is time-consuming because of 
the multiple preprocessing steps and feature extraction 
processes [14]. Recently, machine learning has become 
indispensable in the development of predictive models. The 
performance of machine-learning models varies depending 
on the combination of various feature transforms, feature 
selection, oversampling, and machine-learning algorithms. 
Thus, there is a need for machine-learning approaches with 
good performance that can be easily applied in real clinical 
situations.

This study aimed to develop and validate a diagnostic 
model for HPV status using 18F-FDG PET/CT-derived parameters 
with an appropriate combination of feature selection, 
oversampling, and machine learning methods in OPSCC.

MATERIALS AND METHODS

Patient Population
This retrospective study was approved by our Institutional 

Review Board of Severance Hospital, which waived the 
requirement for informed consent (IRB No. 4-2021-
1449) between January 2012 and February 2020, patients 
diagnosed with OPSCC who underwent 18F-FDG PET/CT before 
treatment were identified using an electronic medical 
record (EMR) system. Patients with a history of treatment 
were excluded from the study. Patients without contrast-
enhanced-CT or MRI data were excluded to ensure accurate 
tumor localization. Patients with suboptimal 18F-FDG PET/
CT findings, such as those with high blood glucose levels 
(> 150 mg/dL), were excluded [15]. Patients with damaged 
Digital Imaging and Communications in Medicine (DICOM) 
files were excluded from the study. The patient cohort 
was allocated to the internal training and validation sets. 
Patient data regarding age, sex, smoking history (pack-
years [PY]), and tumor subsite were collected from the EMR 
system.

For the external test set, data were collected from 
patients diagnosed with OPSCC using 18F-FDG PET/CT before 
treatment between February 2021 and December 2021 from 
two other tertiary general hospitals (Korea University GURO 
Hospital and Korea University ANAM Hospital). The same 
inclusion and exclusion criteria as for the internal set were 
used. Clinical data were collected from the EMR system of 
each hospital. Just like the interna set, the flowchart of the 
study is presented in Figure 1.

HPV Testing and Immunohistochemistry
Tumor specimens for immunohistochemical analysis were 

obtained from biopsies and surgery. HPV phenotyping was 
assessed in the internal training and validation sets based 
on the overexpression of p16 protein, which is strongly 
correlated with HPV positivity. Immunohistochemical 
analysis was performed using primary antibodies against 
p16 (E6H4; Roche MTM Laboratories AG). p16 positivity 
was defined as the presence of a diffuse staining pattern 
on the p16-stained slide specimens, whereas negativity was 
defined as either negative staining or staining of isolated 
cells or small cell clusters.

In the external test set, p16 immunohistochemistry 
analysis was performed at the Korea University GURO 
Hospital, and both p16 immunohistochemistry and 
polymerase chain reaction for HPV were used at the Korea 
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University ANAM Hospital [16].

18F-FDG PET/CT Image Acquisition and Analysis
In an internal cohort, 18F-FDG PET/CT was performed 

using Discovery PET/CT 600, 690, and 710 (General Electric 
Medical Systems). Before the 18F-FDG injection, all patients 
fasted for at least 6 hours, and their blood glucose levels 
were confirmed to be ≤ 150 mg/dL. The 18F-FDG was 
administered intravenously at a dose of 3.7–4.4 MBq/kg body 
weight. After the initial low-dose CT (Discovery 600, 690, 
710:120 kVp, 30 mA), standard PET imaging was performed 
from the skull base to the mid-thighs, with a 1.5 minutes 
acquisition time per bed position.

For the external test set, PET/CT imaging of OPSCC 
patients from the Korea University GURO Hospital and Korea 
University ANAM Hospital was performed using Discovery MI 
(General Electric Medical Systems). Initial low-dose CT scans 
for attenuation correction (120 kVp, 30 mA) and PET scans 
of the same area were performed from the skull base to the 
proximal thighs with 1.5 minutes acquisition time per bed 
position. All other methods used for image acquisition and 
data analysis were adopted in the same manner as those 
used in the aforementioned institution.

The maximum standard uptake value (SUVmax) was the 
highest metabolic focus in all metabolically active primary 
tumors. Metabolic tumor volume (MTV) was automatically 
calculated by summing the total volume of voxels using 
a percentage threshold of 40% of the SUVmax. SUVmean is 

the mean SUV of the volume of interest (VOI), and SUVpeak 
is defined as the average SUV within a small, fixed-size 
region of interest centered on a high-uptake part of the 
tumor. The total lesion glycolysis (TLG) of each primary 
tumor was calculated by multiplying the SUVmean by the 
voxel number of the lesion. To obtain the tumor SUVmax to 
liver SUVmean ratio (SUVmax-tumor to liver ratio [TLR]), the 
normal background liver SUVmean was measured by drawing 
a 3-cm-sized spherical VOI in the right lobe of the liver. 
According to these definitions, metabolic and volume-based 
parameters such as SUVmax, SUVmax-TLR, SUVmean, SUVpeak, 
MTV, and TLG of the tumor VOI were derived. All semi-
quantitative and volumetric measurements were conducted 
using the volume viewer software (MIM-7.0; MIM Software 
Inc.) by two experienced nuclear medicine specialists with 
> 10 years of experience (Fig. 2). Medical records, including 
the patient’s HPV status, were not recorded during these 
measurements.

Machine Learning and Statistical Analysis
The internal patient cohort was randomly divided into 

the training and validation sets (7:3 ratio). After the 
training set was prepared, three groups of models were 
developed. First, we built Model 1, which used only the 
PET-derived parameters. Second, we built Model 2 with 
clinical features only, including age, sex, smoking history, 
and tumor subsite. Finally, Model 3 was developed using 
the PET-derived parameters and clinical features. A grid 

Inclusion criteria
1) �Patients diagnosed with OPSCC, retrospectively  

(internal: January 2012 to February 2020, external: February 2021 to December 2021)
2) PET/CT had been undergone before treatment

Internal cohort

Excluded (n = 4)
  - �No CT or MRI data  

(n = 1)
  - �Suboptimal PET/CT 

image (n = 2)
  - �Damaged DICOM 

file (n = 1)

Excluded (n = 1)
  - �Suboptimal PET/CT 

image (n = 1)

Eligible patients for analysis
(n = 126)

Eligible patients for analysis
(n = 19)

External cohort

Center A (n = 130) Center B (n = 13)

Training set (n = 88) Validation set (n = 38) External test set (n = 19)

Center C (n = 7)

Fig. 1. Flowchart of patient enrollment. OPSCC = oropharyngeal squamous cell carcinoma
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search was performed using a feature transform, feature 
selection, oversampling methods, and a training model to 
explore high-performance methods. Seven methods were 
used for the feature transform: 1) no transform, 2) standard 
(Z-score) transformation, 3) MinMax transformation, 4) 
power transformer, 5) quantile transformer, 6) normalized 
transformer (L1), and 7) normalized transformer (L2). 

Next, various features were selected using the SelectKBest 
method, based on 1) f-regression and 2) mutual information 
[17]. For oversampling, 1) random-oversampling examples, 
2) synthetic minority oversampling technique (SMOTE), 
3) borderline SMOTE, 4) adaptive synthetic sampling 
approach (ADASYN), 5) SMOTEEN, 6) SMOTETomek, and 
7) no oversampling were investigated [18-21]. Finally, 

Fig. 2. Two representative cases show the different characteristics of HPV-associated OPSCC and HPV-negative OPSCC in 18F-FDG 
PET/CT. 
A, B. A 59-year-old male with HPV-associated OPSCC. Maximum intensity projection (A) and fused PET/CT (B) images. The primary tumor is seen 
in the left tonsil, and cystic nodal metastasis, which is more prevalent in HPV-associated OPSCC, is also present (tumor SUVmax 11.9, SUVmax-TLR 3.7). 
C, D. A 74-year-old male with HPV-negative OPSCC. Maximum intensity projection (C) and fused PET/CT (D) images showing the primary tumor in 
the right tonsil with intense 18F-FDG uptake (tumor SUVmax 17.1, SUVmax-TLR 7.7). 18F-FDG = 18F-fluorodeoxyglucose, HPV = human papillomavirus, 
OPSCC = oropharyngeal squamous cell carcinoma, SUVmax = maximum standard uptake value, SUVmax-TLR = tumor SUVmax to liver SUVmean ratio 

A

C

B

D
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six training models were explored: 1) random forest, 2) 
LightGBM, 3) ExtraTrees, 4) XGBoost, 5) AdaBoost, and 6) 
logistic regression [22-25]. All the possible combination 
models were developed using an internal training set. 
Ten-fold cross-validation was performed internally during 
the training process. After each model was developed, its 
performance was compared by using an internal validation 
set. The models with the three highest performances 
were selected for each group. The selected models were 
tested using an external test set, and the best model was 
chosen based on the area under the receiver operating 
characteristic (ROC) curve (AUC) in the external test set. 
The external test set AUC comparison for the three models 
was conducted using the Delong method. ROC curves for the 
three models were drawn based on the external test set.

To examine which parameter played an important role in 
the best model, we calculated the mean absolute Shapley 

value for each selected input feature using the Shapley 
additive explanations (SHAP) algorithm [26]. Additionally, 
we compared PET-derived parameters between the HPV-
positive and HPV-negative groups. All processes up to this 
point were performed using Python 3 with the ScikitLearn 
library v0.21.2, and R software (version 3.5.1; R Foundation 
for Statistical Computing).

RESULTS

Among the 130 enrolled institutional patients, four were 
excluded (one without CT or MRI data, two with suboptimal 
PET images, and one with a damaged DICOM file). Finally, 
126 patients were included in the analysis. In this internal 
cohort, 118 were men and eight were women (mean age, 60 
years), and 103 (81.7%) and 23 (18.3%) were HPV-positive 
and HPV-negative, respectively. These patients were divided 

Table 1. Patient Characteristics in the Training Set, Internal Validation Set, and External Test Set
Internal Dataset External Dataset

Training Set 
(n = 88)

Validation Set 
(n = 38)

P*
Test Set 
(n = 19)

P†

Age, years 60.0 ± 8.5 60.1 ± 9.5 0.946‡ 65.3 ± 11.8 0.075‡

Sex 1.000§ 0.197§

Male 82 (93.2) 36 (94.7) 16 (84.2)
Female 6 (6.8) 2 (5.3) 3 (15.8)

HPV status 0.975ǁ 0.752§

Negative 16 (18.2) 7 (18.4) 4 (21.1)
Positive 72 (81.8) 31 (81.6) 15 (78.9)

Smoking history, pack-year 15.8 ± 20.6 20.3 ± 20.3 0.262‡ 25.7 ± 16.5¶ (n = 12) 0.102‡

Tumor subsite 0.260ǁ 0.096ǁ

Tonsil 67 (76.1) 30 (78.9) 14 (73.7)
BOT 21 (23.9) 7 (18.4) 4 (21.1)
Soft palate 0 (0) 1 (2.6) 0 (0)
PPW 0 (0) 0 (0) 1 (5.3)

Staging
T stage 0.120ǁ 0.965ǁ

T1 27 (30.7) 5 (13.1) 6 (31.6)
T2 42 (47.7) 19 (50.0) 8 (42.1)
T3 8 (9.1) 7 (8.0) 2 (10.5)
T4 (T4a, T4b) 11 (12.5) 7 (8.0) 3 (15.8)

N stage 0.058ǁ 0.001ǁ

N0 6 (6.8) 8 (21.1) 4 (21.1)
N1 40 (45.5) 13 (34.2) 13 (68.4)
N2 (N2a, N2b, N2c) 42 (47.7) 17 (44.7) 1 (5.3)
N3 0 (0) 0 (0) 1 (5.3)

Data are presented as means ± standard deviation or numbers of patients (%) unless specified otherwise. *Comparing training and 
internal validation set, †Comparing training and external set, ‡Calculated using t tests, §Calculated using Fisher’s exact tests, ǁCalculated 
using chi-square tests, ¶Missing data of smoking history in 7 patients. BOT = base of tongue, HPV = human papillomavirus, PPW = 
posterior pharyngeal wall
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into training (n = 88) and validation (n = 38) sets in a 7:3 
ratio. The external cohort was enrolled from the following 
two institutions: 7 from the Korea University ANAM Hospital 
and 13 from the Korea University GURO Hospital. One 
patient with suboptimal PET images was excluded from the 
Korea University ANAM Hospital. Of the 19 included patients 
(6 from Korea University ANAM Hospital and 13 from Korea 
University GURO Hospital; 16 male and 3 female; mean age, 
65.3 years), 15 (78.9%) and 4 (21.1%) were HPV-positive 
and HPV-negative, respectively. The 19 patients were 
allocated to the external test set (Fig. 1). The proportions 
of each HPV status did not differ significantly between the 
training and internal validation sets or between the training 
and external test sets. Age, sex, and smoking history did 

not significantly differ between the training and external 
test sets. Patient demographics in the training, internal 
validation, and external test sets are presented in Table 1. 
The smoking history of seven patients from the external 
test set was unavailable in the EMR system; therefore, they 
were considered missing values.

A comparison of PET-derived parameters between 
HPV-positive and HPV-negative OPSCC patients showed 
a significant difference in the SUVmax in the internal 
dataset (all patients, n = 126). However, there was no 
statistical difference in the SUVmax in the external test set 
(Supplementary Table 1).

Various models were trained by combining various 
machine learning preprocessing methods and classifiers, and 
their performances in the validation set were calculated. 
Candidate models were drafted using the AUC in the 
internal validation set from each group using PET-derived 
parameters, clinical features, and both. ROC analysis was 
performed to identify the best models with the highest AUC 
in each group (Fig. 3). Regarding the AUC, the best model 
was Model 3, which used both PET-derived parameters and 
clinical features using the ExtraTreesClassifier, MinMaxScaler 
transformation, mutual information-based feature selection, 
and ADASYN oversampling. This model used five features: 
two PET-derived parameters (SUVmax and SUVmax-TLR) and 
three clinical features (age, smoking history, and tumor 
subsite). In the external test set, the area under the curve 
of the model was 0.78 in the external test set. The AUC 
of Model 3 was significantly higher than that of Model 1 
(AUC = 0.48, p = 0.047). The AUC of Model 3 was also 
higher than that of Model 2; however, the difference was 
not statistically significant (AUC = 0.52, p = 0.142). The 
performance of the models for each group is summarized 
in Table 2. The sensitivity, specificity, accuracy, and F1 
score of Model 3 were 100.0%, 50.0%, 83.3%, and 88.9%, 

Table 2. Performance of Models 1, 2, and 3 in the Internal Validation Set and External Test Set

Model ML Method

Internal 
Validation Set

External Test Set

AUC (95% CI) AUC (95% CI) P Accuracy, % Precision, % Recall, %
F1 

Score

Model 1 (PET) RandomForest 0.71 (0.79–0.92) 0.48 (0.05–0.92) 0.047 50.0 (6/12) 62.5 (5/8) 62.5 (5/8) 0.63
Model 2 (clinical) XGBoost 0.81 (0.67–0.95) 0.52 (0.10–0.94) 0.142 50.0 (6/12) 66.7 (4/6) 50.0 (4/8) 0.53
Model 3 
  (PET + clinical)

ExtraTrees 0.77 (0.59–0.94) 0.78 (0.46–1.00) Reference 83.3 (10/12) 80.0 (8/10) 100.0 (8/8) 0.89

Model 1 used PET-derived parameters only, Model 2 used clinical features only, and Model 3 used both PET-derived parameters and 
clinical features. The cut off value of 0.5 was chosen to calculate accuracy, precision, recall, and F1 score. AUC = area under the receiver 
operating characteristic curve, ML = machine learning
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0.2

0.0
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0.0            0.2             0.4            0.6            0.8            1.0

1-specificity

Model 1 (PET): 0.48 [0.05–0.92]
Model 2 (clinical): 0.52 [0.10–0.94]
Model 3 (PET + clinical): 0.78 [0.46–1.0]

Fig. 3. ROC curves for the best Models 1, 2, and 3 in the 
external test set. The values in the box in the lower right corner 
are the area under the ROC curve [95% confidence interval]. ROC = 
receiver operating characteristic
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respectively.
Using the SHAP algorithm, the importance of the five 

parameters was visualized using a bar plot (Fig. 4). Smoking 
history had the most significant effect on prediction, 
followed by tumor subsite, age, SUVmax-TLR, and SUVmax. 
Analysis of the dot SHAP summary plots showed that a low 
PY for smoking history, tonsil location, low age, low SUVmax-
TLR, and low SUVmax predicted HPV-positive OPSCC (Fig. 5).

DISCUSSION

In this study, an extratree-based model was developed 
to predict the HPV status of OPSCC using 18F-FDG PET/
CT-derived metabolic parameters by combining the 
MinMaxScaler feature transform and ADASYN oversampling. 
Our model predicted HPV status by incorporating clinical 
features and easily obtainable PET/CT parameters, and its 
performance in an external test set was comparable to that 
of prior research employing radiomic approaches [13].

Age, smoking history, and tumor site were included as 
clinical predictors of HPV status in our model. Smoking is a 
well-known risk factor for OPSCC. However, smoking is not 
a cofactor for HPV-mediated oropharyngeal carcinogenesis 
[27]. HPV-positive OPSCC is more common than HPV-

negative OPSCC among non-smokers [28]. The prevalence 
of HPV-positive OPSCC decreases with age [29]. Most cases 
involve individuals aged < 65 years [30,31]. In a recent 
systematic review and meta-analysis, Haeggblom et al. [32] 
found considerable variation in HPV prevalence across the 
anatomic locations of the oropharynx. In tonsillar regions, 
the presence of a highly specialized crypt lymphoepithelium 
has been established as a permissive environment for HPV-
driven carcinogenesis.

Various studies have been conducted using CT or MRI to 
determine HPV status. 18F-FDG PET/CT is superior to MRI 
and CT for evaluating locoregional neck node metastasis 
and distant metastasis. The National Comprehensive Cancer 
Network guidelines also highlight the usefulness of 18F-FDG 
PET/CT for head and neck cancer images [33-35]. 18F-FDG 
PET/CT is distinct from CT and MRI in that it allows for 
direct imaging of metabolism. Therefore, it is worthwhile to 
investigate the broader applications of PET/CT, such as HPV 
prediction. 18F-FDG PET/CT, in contrast, has some drawbacks, 
including non-uniformity in processing, difficulties in 
quality monitoring of equipment, and a higher cost than CT.

When comparing PET/CT-derived parameters, HPV-
negative tumors showed a significantly higher SUVmax than 
HPV-positive tumors in our internal dataset, which is 

Smoking (PY)

Subsite

Age

SUVmax-TLR

SUVmax

0.000          0.025           0.050         0.075           0.100           0.125           0.150           0.175           0.200

Mean (|SHAP value|) (average impact on model output magnitude)

SHAP summary plot - external test (Model 3)
Class 0
Class 1

Fig. 4. Bar summary plot of mean absolute Shapley values for five parameters of the best Model 3. PY = pack-year, SHAP = Shapley 
additive explanations, SUVmax = maximum standard uptake value, SUVmax-TLR = tumor SUVmax to liver SUVmean ratio
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consistent with the results of previous literature [36]. The 
different histological characteristics of HPV-positive and 
HPV-negative OPSCC might account for the disparate SUVmax 
values, possibly because of the different distributions 
of hypoxic zones within the tumor [37,38]. Studies on 
the relationship between FDG parameters and glucose 
transporter (GLUT) in malignant tumors are ongoing [39-
41]. Although it is expected that the HPV state, expression 
level of GLUT, and FDG avidity are related, many unknown 
factors remain, demonstrating the complexity of OPSCC 
pathophysiology [42,43]. SUVmax and SUVmax-TLR were the 
PET parameters used in the final model. SUVmax-TLR is a 
standardized method for semi-quantitative measurements 
to compensate for the weakness of the SUV values. This 
method may provide reliable and reproducible data as 
well as improve the PET characterization of tumors [44]. 
Few studies have attempted to classify HPV status using 
the radiomic approach of PET imaging [13]. Radiomics is 
time consuming because of the need for region-of-interest 
mapping, complex preprocessing, and feature extraction. 
This time-consuming and labor intensive process is a major 
disadvantage for clinical applications. Therefore, we only 

included parameters that were simple and generally easy-to-
measure. In our model, which is faster and easier to apply, 
Only SUVmax and SUVmax-TLR were required.

A biopsy of the primary oropharyngeal lesion is required to 
diagnose OPSCC because many cases are treated surgically. 
Even after diagnosis, the process of obtaining tissue is 
inextricably included in the diagnosis and treatment. 
Therefore, the necessity of determining HPV status using 
18F-FDG PET/CT before biopsy and treatment and its clinical 
implications may be questioned. Nevertheless, as with many 
previous studies that used image-based gene prediction, 
this study began with exploratory objectives. Additionally, 
while an acceptable predictive performance to replace 
biopsy was not reached in this investigation, the AUC might 
be improved in our ongoing study, which combines MRI 
and PET. Moreover, the ability to double-check for possible 
biopsy sampling errors might be advantageous. Finally, if 
there is a discrepancy between the HPV status determined 
by actual biopsy and the predicted HPV status using images, 
we believe that future investigations should focus on 
determining the cause of the discrepancy.

Numerous image-based HPV classification studies have 

Smoking (PY)

Age

Subsite

SUVmax

SUVmax-TLR

Feature value
High

Low
-0.4                -0.3                -0.2                -0.1                 0.0                  0.1

SHAP value (impact on model output)

SHAP summary plot - train (Model 3)

Fig. 5. Dot summary plots by SHAP in training set from the best Model 3. PY = pack-year, SHAP = Shapley additive explanations, 
SUVmax = maximum standard uptake value, SUVmax-TLR = tumor SUVmax to liver SUVmean ratio



59

18F-FDG PET/CT-Based Model to Classify HPV Status in Oropharyngeal SCC

https://doi.org/10.3348/kjr.2022.0397kjronline.org

recently been conducted using machine learning, which 
incorporates a diverse set of pre-processing methods and 
classification models. The performance of the model is 
determined by the classifier utilized, as well as the feature 
transformation, selection, and oversampling approaches. 
However, there is a risk of overfitting without sufficient 
external validation. Developing a model that learns and 
makes predictions using non-uniformly distributed data is 
a challenging task. The incidence of HPV-positive cancer 
has recently increased in OPSCC and now accounts for a 
significantly greater proportion than HPV-negative OPSCC 
[45,46]. When dealing with unbalanced data, proper 
oversampling should be used to avoid overfitting in 
directions with higher frequencies. In our investigation, we 
discovered that when the oversampling method was utilized, 
the performance was superior to when no oversampling was 
employed. We selected a tree-based model for the machine 
learning classifier. This finding is consistent with an earlier 
study utilizing PET/CT radiomics, which frequently uses 
XGBoost [13]. The tree-based classifier appeared to be 
appropriate for PET-based HPV predictions. This conclusion 
will be useful in future large-scale studies.

This study had some limitations. First, the model’s 
performance for determining HPV status was insufficient to 
substitute tissue biopsy with a molecular diagnosis. Second, 
although our external test set was enrolled from two 
hospitals, the small number of patients, particularly in the 
external test set, is a major limitation of this investigation. 
In particular, the number of HPV-negative cases in the test 
set is small. This is well demonstrated by the absence of a 
statistical difference between Models 2 and 3, as well as an 
SUVmax difference between HPV-positive and HPV-negative 
cases in the external set. In future research, a larger test 
set size would be desirable to validate the robustness of the 
model. Images were obtained using the same reconstruction 
algorithm with the same settings whenever possible; 
however, using different scanners in different institutions 
was also a limitation. Finally, we used p16 as a surrogate 
marker for HPV positivity. However, p16 and HPV statuses 
can be mismatched [47,48].

In conclusion, using appropriate preprocessing and a 
classifier, we developed and tested an HPV status classifier 
model based on metabolic parameters derived from 18F-FDG 
PET/CT and clinical parameters in OPSCC patients. It 
exhibited higher performance than models using either PET 
or clinical parameters alone. 
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