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Abstract

Assays measuring cell-free DNA (cfDNA) in blood have widespread potential in modern

medicine. However, a comprehensive understanding of cfDNA dynamics in healthy individu-

als is required to assist in the design of assays that maximise the signal driven by pathologi-

cal changes, while excluding fluctuations that are part of healthy physiological processes.

The menstrual cycle involves major remodelling of endometrial tissue and associated apo-

ptosis, yet there has been little investigation of the impact of the menstrual cycle on cfDNA

levels. Paired plasma samples were collected from 40 healthy women on menstruating (M)

and non-menstruating (NM) days of their cycle. We measured total cfDNA by targeting ALU

repetitive sequences and measured endothelial-derived cfDNA by methylation-specific

qPCR targeting an endothelium-unique unmethylated CDH5 DNA region. CfDNA integrity

and endothelial cfDNA concentration, but not total cfDNA, are consistent across time

between NM and M. No significant changes in total (ALU-115 p = 0.273; ALU-247 p = 0.385)

or endothelial cell specific (p = 0.301) cfDNA were observed, leading to the conclusion that

menstrual status at the time of diagnostic blood collection should not have a significant

impact on the quantitation of total cfDNA and methylation-based cancer assays.

Introduction

Cell-free DNA (cfDNA) in blood is a promising source of biomarkers for a range of conditions

such as cancer detection and transplantation [1]. It is generally accepted that cfDNA is released

into the blood due to cells dying via apoptosis and is also linked to inflammation [2]. cfDNA can

be released into the blood in healthy individuals, patients with benign diseases and patients with

cancer, and therefore it is important to distinguish between amounts of cfDNA from different cells

of origin when developing cfDNA based biomarkers. For example there is a rise in pancreatic aci-

nar and ductal cells-derived cfDNA in pancreatic cancer and pancreatic β-cell cfDNA in diabetes

[3] as well as erythroid cfDNA in anaemia [4]. In healthy individuals, cfDNA has been shown to be

predominantly of leukocyte origin however, other tissues such as the liver can also contribute to
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the cfDNA pool [5–7]. Furthermore, levels of cfDNA fluctuate several-fold during exercise [8–10]

but not as part of circadian rhythm [11, 12]. A comprehensive understanding of cfDNA dynamics

in healthy individuals will allow the design of assays that maximise the signal driven by pathological

changes, while excluding fluctuations that are part of healthy physiological processes.

Despite the fact that women comprise 50% of the population and most undergo active men-

struation generally between the years ~12–50, there has been little investigation of the impact

of the menstrual cycle on cfDNA levels. The menstrual cycle involves major remodelling of

endometrial tissue. During the follicular phase, stroma, glands and spiral arteries proliferate in

the outer functional layer of the endometrium, thickening it from approximately 5.4 mm to

9.2 mm [13]. Without fertilisation and implantation of the ovum, this is eventually followed by

menstruation [14], characterised by disintegration of the outer endometrial epithelium layer

via apoptosis, fragmentation of glands and loss of adhesion molecules [15–18]. Associated

with this is extensive angiogenesis that occurs in the basal endothelium for vascular bed repair

[19] as well as inflammation [20]. Leukocytes are known to increase in number and contribute

to matrixmetalloproteinases that break down the endometrium [21].

Given the inflammation, apoptosis and the consequential dramatic changes in tissue vol-

ume and architecture, we anticipated that during menstruation there would be an increase in

total cfDNA, as well as an increase in cfDNA derived from endothelial cells lining the blood

vessels within the endometrium. Two previous studies have examined whether cfDNA levels

are altered during menstruation, however both studies used serum rather than plasma as the

substrate [22, 23]. The majority of cfDNA in serum is derived from leukocytes that lyse during

clotting [24, 25], thus serum cfDNA levels do not reflect physiological levels in blood and are

highly dependent on sample processing time. To eliminate the possibility that changes in

cfDNA were obscured in previous studies by sample artefacts related to serum processing, we

quantitated cfDNA fluctuations during the menstrual cycle using plasma samples and with

tightly controlled processing protocols.

We also examined whether there was a change in the proportion of the different cell types

that contribute to the cfDNA pool during menstruation, specifically, whether there is an

increase in endothelial cell-derived cfDNA. Endothelial cells internally line the blood vessels in

the body, and are in continuous contact with blood [26]. Despite the large interface between

blood and endothelium, initial work suggested that cfDNA from endothelial cells is not pres-

ent in blood plasma [27]. However, this negative result, based on PCR detection of endothe-

lial-specific unmethylated DNA E-selectin region, was due to the primers used spanning the

transcription start site (TSS) of E-selectin. It is now accepted that the TSS of actively tran-

scribed genes is not preserved in cfDNA because it is lacking in nucleosomes that protect it

from degradation [28]. Recent work using Illumina methylation profiling showed that endo-

thelial cell DNA actually comprises around 9% of the total cfDNA pool [5]. We utilised the

principle of tissue-specific methylation to quantify cfDNA derived from endothelial cells and

measure whether it was altered during menstruation. An observed increase would show that

menstruation alters the pattern of tissues that contribute to the cfDNA pool in healthy women,

which may in turn impact methylation-based diagnostic assays.

Materials and methods

Ethics approval and participant recruitment

The recruitment of healthy female volunteers and blood collection was approved by the Uni-

versity of New South Wales Human Research Ethics committee (HC17020). Volunteers were

invited to participate via flyers seeking healthy voluneteer blood donors distributed within the

University of New South Wales. Researchers were contacted by participants at which point
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screening occurred by the exclusion criteria which were pregnancy, lactation, and personal

history of cancer. At the scheduled meeting time, which was within working hours, all partici-

pants were informed of the study design, written consent was obtained, and blood was col-

lected in a dedicated venpuncture room.

Participant cohort

Venous blood was collected from each of 40 women twice, once at menstruating (M) and once

at non-menstruating (NM) phases of their cycle. Collection began in April 2018 and ceased

September 2018. NM samples included both follicular and luteal phases of the cycle. Menstrua-

tion status was self-reported and M-phase blood was collected 1 or 2 days after the start of

menstruation, when endometrial shedding is profuse. 80% of the sample pairs were collected

within the interval of a single menstrual cycle, and no collections were more than three cycles

apart (S1 Table). The shortest and longest interval between the NM and M samples from each

participant was 7 days and 78 days, respectively. The age range of the participants was between

21 and 49 (median: 29.5, average: 30) years old. The majority of women (33/40) fell within nor-

mal body mass index (BMI) range while 2/40 were underweight and 5/40 were overweight.

Additionally, 38/40 were non-smokers while 1/40 was a social, on-off smoker for 6 years and

1/40 was a regular smoker for 3 years (S1 Table). Both smoked on average 1 cigarette per day.

Blood collection

80 mL of peripheral blood was drawn into 8 x 10 mL K2EDTA collection tubes (Becton Dick-

inson) and processed within 3 hours of collection. The blood was centrifuged at 2500 xg for 10

minutes at 4˚C, then the plasma was transferred into a new tube and re-centrifuged at 3500 xg
for 10 minutes at 4˚C to remove residual contaminating cells. Plasma was stored at -80˚C until

cfDNA extraction.

CfDNA extraction and quantification

A total of 80 cfDNA samples were extracted from 5 mL plasma, with 1 μg carrier RNA, using

QIAamp Circulating Nucleic Acid Kit (QIAGEN) as per manufacturer’s instructions and eluted

in 30 μL of elution buffer. Total cfDNA was quantified using qPCR targeting an ALU repetitive

sequence, amplifying a 115 bp product (Forward 5’-CCTGAGGTCAGGAGTTCGAG-3’;

Reverse 5’-CCCGAGTAGCTGGGATTACA-3’) (henceforth denoted as ALU-115) as well as a

247 bp product (Forward 5’-GTGGCTCACGCCTGTTAATC-3’; Reverse 5’-CAGG CTGGAG
TGCAGTGG-3’) (henceforth denoted as ALU-247). Serially diluted (1 in 5) commercial human

genomic DNA purified from buffy coat (Roche) was used as the standard curve. Each 20 μL PCR

reaction contained: 0.01 μL of the eluted cfDNA (1.66 μL of plasma equivalent), 1X PCR Reaction

Buffer (Thermo Fisher Scientific), 0.2 mM dNTP Solution Mix (New England Biolabs), 0.06 U/

μL Platinum Taq DNA Polymerase (Thermo Fisher Scientific), 2.5 μM Syto 9 (Thermo Fisher

Scientific), 3 mM MgCl2 (Thermo Fisher Scientific), and 0.2 μM each ALU forward and reverse

primers (Sigma-Aldrich). The qPCR started with 95˚C for 10 min then for 45 cycles, 95˚C for

30s, 60˚C for 30s and 72˚C for 30s (Thermo Fisher Scientific QuantStudio ViiA 7 Real-Time Sys-

tem). Quantification of total cfDNA was expressed as ng of cfDNA per 1 mL of plasma. The

integrity of cfDNA indicated by the ratio of short to long fragments of ALU was quantified by:

Ratio of ALU :
CfDNA concentration ðALU � 115Þ

CfDNA concentration ðALU � 247Þ
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Positive and negative controls for methylation specific qPCR

The in-vitro Human Methylated and Non-methylated DNA Set (Zymo Research) was used to

establish the qPCR conditions that selectively amplified unmethylated CDH5 DNA. Human

primary aortic endothelial cells and the hCMEC/D3 blood-brain barrier endothelial cell line

(Millipore) were used as positive controls to test the sensitivity and specificity of the unmethy-

lated CDH5 region qPCR primers on biological samples. Cell line and primary cell genomic

DNA was extracted using the ‘Cultured Cells’ protocol of the DNeasy Blood and Tissue Kit

(QIAGEN) as per manufacturer’s instructions. Genomic DNA was eluted in 40 μL and quanti-

fied using nanodrop prior to bisulfite conversion.

Bisulfite conversion

Bisulfite conversion was performed with Epitect Bisulfite Kit (Qiagen) as per manufacturer’s

instructions, without carrier RNA. 24 μL cfDNA elution (equivalent to 4 ml of plasma) of the NM

and M matched samples was converted using the “Fragmented DNA” protocol and eluted in

30 μL. 1 μg of the in-vitro unmethylated and methylated human DNA set, 500 ng human primary

aortic genomic DNA (HPA gDNA), and 500 ng blood brain barrier endothelial genomic DNA

(BBB gDNA) were all converted using the genomic DNA protocol and eluted in 50 μL each.

Methylation specific CDH5 primer design and selection

The human genome CDH5 region, encoding VE-cadherin, was selected from the literature as

specifically unmethylated in endothelial cells [29]. Primers were designed to selectively amplify

unmethylated sequences, with the segment 150 bp upstream to 100 bp downstream of TSS

excluded to avoid the nucleosome depleted region. The amplified product was also restricted

to less than 100 bp in length to maximise assay sensitivity in cfDNA samples. The resulting

primer sequences are Forward 5’-TGTGTTTAAGATGGGAGGGTTT-3’; Reverse 5’-AACC
CAACATACCCTCAAAAA -3’ and produce a 96 bp size amplicon. Bisulfite converted in-vitro
human unmethylated (1 ng per reaction) and methylated (1 ng per reaction) genomic DNA

was used in a qPCR with varying MgCl2 and temperatures to select optimised conditions that

selectively amplify unmethylated DNA, while specifically not amplifying methylated DNA.

Endothelial cfDNA quantification

Endothelial-derived cfDNA was quantified using the methylation status-specific CDH5 qPCR

primers described above against a standard curve generated with bisulfite converted in-vitro
unmethylated human DNA (Zymo Research) serially diluted 1 in 2. The 20 μL PCR reaction

contained: 5 μL of the eluted bisulfite-converted cfDNA (0.667 mL of plasma equivalent), 1X

PCR Reaction Buffer (Thermo Fisher Scientific), 0.2 mM dNTP Solution Mix (New England

Biolabs), 0.15 U/μL Platinum Taq DNA Polymerase (Thermo Fisher Scientific), 2.5 μM Syto 9

(Thermo Fisher Scientific), 2.5 mM MgCl2 (Thermo Fisher Scientific), and 0.2 μM CDH5 for-

ward and reverse each (Sigma-Aldrich). The qPCR started with 95˚C for 3 min then for 45

cycles, 95˚C for 10s, 62˚C for 20s and 72˚C for 30s (Thermo Fisher Scientific QuantStudio

ViiA 7 Real-Time System). The quantification was expressed as ng of endothelial cfDNA per 1

mL of plasma. The relative proportion of the endothelial cfDNA to total cfDNA amount was

calculated by:

Relative proportion :
Endothelial cfDNA amount ðng per 1 mL plasmaÞ

Total cfDNA amount ðng per 1 mL plasmaÞ
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Statistical analysis

Statistical analysis was carried out with GraphPad Prism (version 8.4.3). Data are presented as

mean with standard deviation. To compare between NM and M samples in total cfDNA, endo-

thelial cfDNA, size ratio, and endothelial cfDNA as a proportion of the total cfDNA, paired,

one-tailed, parametric t-test was used. All correlation data used one-tailed Pearson’s correla-

tion test. A p value of< 0.05 was considered significant.

Results

Total cfDNA levels are unaltered by menstruation status

We used qPCR to measure plasma cfDNA levels in matched blood samples from women at M

and NM phases of the menstrual cycle. ALU-115 was used to measure total cfDNA, while

ALU-247 was used to measure long DNA fragments. We observed no statistically significant

difference in the concentration of total cfDNA in both ALU-115 (NM average = 1.79 ± 0.96

ng/mL plasma; M average = 1.68± 0.88 ng/mL plasma) and ALU-247 (NM average = 0.66 ± 0.37

ng/mL plasma; M average = 0.64 ± 0.34 ng/mL plasma) at the two phases of the cycle (Fig 1A).

CfDNA levels fluctuated up to 7.7-fold between the NM and M blood draws, and we found lit-

tle to no correlation in cfDNA concentration between the two phases as measured with either

ALU-115 or ALU-247 (Fig 1B).

We used the ratio of the ALU-115 and ALU-247 concentration as an indicator of cfDNA

size distribution and integrity and found that this also did not change between NM (aver-

age = 2.84 ± 0.85) and M (average = 2.69 ± 0.56) phases of the cycle (Fig 2A). Interestingly, we

did observe a positive correlation between the cfDNA size ratio of M and NM samples, show-

ing that the integrity of cfDNA is more consistent across time than concentration (Fig 2B).

Fig 1. Total cfDNA does not increase during menstruation. (A) Total cfDNA quantification in 40 healthy women at

NM and M phases by qPCR, expressed in ng of cfDNA per 1 mL of plasma (ALU-115 p = 0.273; ALU-247 p = 0.385).

(B) Scatter plot of NM ALU-115 and M ALU-115 (r = 0.262; p = 0.0516) as well as NM ALU-247 and M ALU-247

(r = 0.333; p = 0.0179).

https://doi.org/10.1371/journal.pone.0250561.g001
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Endothelial specific DNA primer design and validation

The CDH5 region downstream of the TSS was found to be suitable for unmethylated DNA-

specific primer design. The primers contain a total of 4 mismatches between methylated and

unmethylated bisulfite-converted DNA (S1A Fig). With the same amount of bisulfite-con-

verted genomic DNA input (1 ng), the primer was able to selectively amplify the in-vitro
unmethylated genomic DNA but not the methylated genomic DNA, which performed the

same as the no template control (NTC) (S1B–S1C Fig). The primer was further validated by

amplifying serially diluted bisulfite-converted HPA gDNA and BBB gDNA. The lower limit of

detection was 111 pg and 125 pg in HPA and BBB dilutions, respectively (S2 Fig).

Endothelial cell-derived cfDNA levels are unaltered by menstruation status

While we did observe considerable increases or decreases in individual matched samples, the

direction of the change was not consistent across the whole cohort and, like the total cfDNA,

no overall change in average endothelial-derived cfDNA concentration was observed at NM

(average: 1.01 ± 0.57 ng/mL plasma) compared to M phases (average: 1.07 ± 0.57 ng/mL

plasma) in 40 matched samples (Fig 3A).

Similarly, no significant difference was observed when the concentration was adjusted

against the total cfDNA ALU-115 concentration to express endothelial cfDNA relative to the

total (Fig 3B). There was a statistically significant (p = 0.0052) positive correlation in endothe-

lial cfDNA between the NM and M phases, showing that the proportion of endothelial cfDNA,

is consistent across time (Fig 3C).

Discussion

We compared a range of cfDNA parameters in matched plasma samples from women at men-

struating and non-menstruating phases of their cycle. Specifically, we measured total cfDNA

concentration and size integrity, and the relative amount of cfDNA contributed by endothelial

cells.

With 40 pairs of matched samples, our study has 90% power to detect a 30% increase, and

>95% power to detect an increase of 35% and over. We found no change in total cfDNA con-

centration during menstruation, and no change in the size distribution as measured by the

ratio of two different amplicon sizes, ALU-115 and ALU-247. The ALU-247 concentration

Fig 2. Integrity of cfDNA does not change during menstruation. (A) CfDNA integrity assessed via the ALU-115/

ALU-247 size ratio in 40 healthy women at NM and M phases (p = 0.0931). (B) Scatter plot of size ratio at NM and M

phases (r = 0.548; p = 0.0001).

https://doi.org/10.1371/journal.pone.0250561.g002
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magnitude was less than the ALU-115, as expected since this amplicon is too long to detect the

shorter cfDNA population. We also found no change in the endothelial-derived cfDNA, for

both amount and when expressed relative to the total.

The ladder pattern of cfDNA when subjected to gel electrophoresis has prompted the

hypothesis that this DNA is derived from apoptotic cells and enters the blood stream as debris

that has bypassed macrophage clean-up mechanisms [30]. In this scenario, we would expect

menstruation to raise cfDNA levels, as it is a process that involves extensive apoptosis and tis-

sue remodelling [16–18]. The lack of increase we observed suggests that menstruation involves

uniquely efficient removal of apoptotic cells, possibly aided by the fact that tissue breakdown

products can be shed into the uterine cavity during menses [23]. An alternative explanation is

that in healthy individuals apoptotic debris is always very efficiently removed, and specific pro-

cesses unrelated to apoptosis, for example erythrocyte enucleation [4, 5] and NETosis [31], are

responsible for the bulk of cfDNA. The latter is consistent with erythrocyte progenitors having

been shown to contribute approximately 27–30% of the cfDNA total [4, 5], with granulocytes,

which are potentially linked to NETosis [31], contributing another 32% [5]. If apoptosis is not

the main source of cfDNA from healthy cells, it may account for the different size distributions

of tumour and healthy cfDNA that have been reported [32], as the two would be released by

different pathways.

It is also possible that we did not observe an increase in cfDNA because menstruation leads

to DNA fragmentation to a size that cannot be amplified by the ALU-115 and the endothelial

cell specific primers, which create 115 bp and 96 bp products respectively. It has been reported

that cancer [33], graft transplants [34], stroke [35] as well as non-disease settings, such as preg-

nancy [36, 37], can lead to more pronounced fragmentation of cfDNA. In the cancer context,

this fragmentation can shorten cfDNA, compared to healthy controls, in both total cfDNA

pool [38–40] and in tumour-specific fragments, from�100 bp down to 57–85 bp [32, 41–43].

In contrast to the variation in total cfDNA and endothelial cfDNA concentrations, we

observed some consistency in cfDNA size ratios, and in endothelial cfDNA between M and

Fig 3. Endothelial cell-derived cfDNA does not increase during menstruation. (A) Measurement of endothelial

cfDNA quantification by qPCR in 40 healthy women at NM and M phases, expressed in ng of cfDNA per 1 mL of

plasma (p = 0.301). (B) Box plot graph showing the proportion of endothelial cfDNA compared to total cfDNA at NM

and M phases (p = 0.3686). (C) Scatter plot of endothelial cfDNA at NM and M phases (r = 0.4008; p = 0.0052).

https://doi.org/10.1371/journal.pone.0250561.g003
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NM phase samples (r = 0.548, p = 0.0001 and r = 0.4008, p = 0.0052, respectively). This sug-

gests that the cleavage rates and cell-sources of cfDNA within healthy individuals are some-

what constant over time, and less susceptible to physiological fluctuations.

An association between endothelial cells and circulating nucleic acids is not novel. The

presence of endothelial cell mRNA is significantly increased along with total cfDNA in burn

patients [44]. This cfDNA elevation is also observed in major trauma [45] and cardiac surgery

with cardiopulmonary bypass patients [46] with a positive correlation with endothelial dam-

age-specific markers.

A limitation of this study is that non-menstruating samples were not differentiated between

ovulation, luteal and follicular phases. It is possible that these influence cfDNA levels, however,

our hypothesis was that the changes that occur during menstruation will increase cfDNA lev-

els, and this was not supported by the data. Measuring changes during non-menstruating

phases was beyond our scope to of our study. Furthermore, we did not exclude women with

current use of oral contraceptive, and while we do not anticipate a cofounding effect from this,

this has yet to be investigated in the literature.

Although in our cohort we did not observe cfDNA changes relating to menstrual status,

individual cfDNA levels did fluctuate over time. We found up to 7.7-fold variation within a

single individual, and no correlation between the two consecutive measurements across the

whole cohort. CfDNA levels are known to be increased by exercise [47], and it is possible that

different levels of physical activity prior to blood donation contributed to the variation we

observed. However, low intensity exercise is not sufficient to measurably change concentration

[48], and even following intense exercise cfDNA has been reported to return to baseline within

about 1 hour [10, 49, 50], so this is not likely to account for all the changes. However, based on

published literature we do note that the vast majority of research into cfDNA and exercise has

been conducted on men and therefore mechanisms of cfDNA release and absorption unique

to women may be unidentified [51]. Our data highlight the lack of knowledge of factors that

drive cfDNA fluctuations in healthy individuals.

Conclusion

Menstruation has little impact on the amount, size distribution and cell type contributions of

cfDNA in blood plasma, suggesting that highly efficient clearance mechanisms operate during

endometrial tissue remodelling. In the context of cfDNA biomarker development and cancer

screening tests, menstrual status at the time of diagnostic blood collection should not impact

on quantity of total cfDNA obtained. However, more research is required into cfDNA release

and absorption in healthy individuals.

Supporting information

S1 Table. Demographic of 40 healthy female volunteers.

(DOCX)

S1 Fig. CHD5 primers are specific for unmethylated DNA. (A) A schematic of primer loca-

tion in the CDH5 region spanning from +122 bp to +218 bp. CpG mismatches are shown as •.

The arrows indicate forward and reverse primers. qPCR amplification (B) and melt curve (C)

plot of CDH5 primer selectivity and specificity in 1 ng of in-vitro unmethylated (green) and

methylated DNA (red) set with NTC (black) as control.

(TIF)

S2 Fig. Reproducible quantification of unmethylated CDH5 in human primary endothelial

cells. qPCR amplification plot of CDH5 in (A) human aortic endothelial cells (3 ng and 111
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pg) and (B) blood brain barrier endothelial cells (2 ng and 125 pg) as primer validation.

(TIF)
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