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The ecology and life history of wild animals influences their potential to
harbour infectious disease. This observation has motivated studies identify-
ing empirical relationships between traits of wild animals and historical
patterns of spillover and emergence into humans. Although these studies
have identified compelling broad-scale patterns, they are generally agnostic
with respect to underlying mechanisms. Here, we develop mathematical
models that couple reservoir population ecology with viral epidemiology
and evolution to clarify existing verbal arguments and pinpoint the con-
ditions that favour spillover and emergence. Our results support the idea
that average lifespan influences the likelihood of an animal serving as a
reservoir for human infectious disease. At the same time, however, our
results show that the magnitude of this effect is sensitive to the rate of
viral mutation. Our results also demonstrate that viral pathogens causing
persistent infections or a transient immune response within the reservoir
are more likely to fuel emergence. Genetically explicit stochastic simulations
enrich these mathematical results by identifying relationships between the
genetic basis of transmission and the risk of spillover and emergence.
Together, our results clarify the scope of applicability for existing hypotheses
and refine our understanding of emergence risk.
1. Introduction
We now live in a world where the consequences of viral emergence are woven
into the day to day fabric of our lives. Remarkably, even while confronting this
new reality on a daily basis, we have made little measurable progress develop-
ing the understanding we need to stop the next pandemic before it begins.
A fundamental challenge we must confront is improving our ability to antici-
pate which viruses are likely to emerge and from which reservoir species
(e.g. [1–4]). Recent progress in this direction has used statistical and machine
learning methods to associate reservoir life-history traits or phylogenetic pos-
ition with the presence of known viral pathogens (e.g. [2,5]). Similar methods
have been used to learn which geographical regions are most likely to produce
novel emerging viral infectious diseases (e.g. [6–8]). Hard-won progress has
also been made by studying the detailed ecology of reservoirs and their viruses
and using this information to generate more fine-scale predictions for when and
where a particular virus is likely to spillover or emerge (e.g. [9–13]). Where we
have made considerably less progress, however, is in understanding how evol-
ution and genetic variation within viral populations shape the probability that
spillover and/or emergence will occur.

One way viral evolution can shape the likelihood of spillover and emer-
gence is by enabling adaptation to a novel host. The roots of this idea can be
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traced back (at least) to work in ecology studying how
species can expand their geographical range and colonize a
new niche [14,15]. Here, a central challenge is for evolution
to increase the growth rate of the population within
the new environment to self-sustaining levels before extinc-
tion occurs. At least in some circumstances, this process
can be facilitated by repeated colonization events that
introduce genetic variation capable of fuelling adaptation
[14–16]. More generally, these ideas are captured by the
idea of ‘evolutionary rescue’, where extinction of a poorly
adapted population can be prevented by sufficiently rapid
evolution [14,17]. Within infectious disease biology, these
ideas were popularized and formalized in the paper by
Antia et al. [18] which studied how spillover of an initially
poorly adapted pathogen (R0 < 1) could lead to emergence
if evolution was sufficiently rapid to reach self-sustaining
levels of transmission (R0 > 1) before the pathogen population
‘stuttered’ to extinction. Although these ideas have been
immensely helpful in understanding the process of emer-
gence once spillover has occurred, they provide little
guidance with respect to the viral pathogens most likely to
evolve or the changes in reservoir ecology that might
promote emergence.

Although much less well-explored, evolution may also act
on viral pathogens within the reservoir in a way that predis-
poses them to successfully spillover and emerge [3]. This
process of exaptation [19] may be linked to epidemiological
dynamics within the reservoir population itself and may
thus be sensitive to reservoir population ecology and life his-
tory. For instance, reservoir species with low population
densities may support smaller and less genetically diverse
viral populations that harbour fewer mutations capable of
infecting humans. Alternatively, reservoir species with
short lifespans and rapid population turnover may support
larger and more genetically diverse viral populations that—
by chance alone—include variants capable of infecting
humans. Many other possibilities exist, and understanding
the conditions that favour each requires that we understand
how reservoir ecology and life-history influence viral epide-
miology and evolution and, ultimately, the likelihood that
human exapted viral genotypes are sampled by the human
population through spillover [16].

Here, we develop a simple mathematical model that
allows us to study how changes to reservoir population
ecology and life-history influence viral epidemiology and
evolution and the likelihood of viral spillover and emergence.
Our model is predicated upon the assumption that adap-
tation to the human population requires genetic changes in
the virus that are deleterious within the reservoir and
is thus similar in spirit to the model analysed by Geoghegan
et al. [3]. This assumption would hold if, for instance, the
conformation of a coronavirus spike protein optimal for
infection of the reservoir differs from the conformation
optimal for infection of humans. We use this model to
develop analytical predictions describing how reservoir life-
span alters the balance between mutation and selection
within the reservoir and thus the frequency of mutations
exapted to the human population and capable of sustained
transmission and emergence. These analytical models are
complemented by genetically explicit stochastic simulations
that allow us to understand how the genetic basis of exapta-
tion to the human host influences the likelihood of spillover
and emergence.
2. The model
We model the epidemiological and evolutionary dynamics
of viral spillover and emergence using a genetically explicit,
multi-species extension of the classical susceptible (S),
infected (I), recovered and immune (R) framework [20]. Our
approach is similar to that used by others to study joint epi-
demiological and evolutionary dynamics [21–23]. We assume
the virus circulates within a reservoir population living in
sympatry with a human population and that these popu-
lations are well mixed. This scenario is inspired by
infectious diseases such as Lassa virus that circulate within
populations of rodents that regularly inhabit human dwell-
ings where viral spillover into the human population is
thought to occur [9,24,25]. Transmission is assumed to be
density dependent within the reservoir and within the
human population but allowed to be either density or fre-
quency dependent from reservoir to human. Many forms of
transmission other than these are, of course, possible [26].

(a) Viral epidemiology and evolution within
the reservoir

We assume the reservoir population has per capita rates of
density-independent birth and death equal to b and d, respect-
ively. Density dependence acts on both birth and death rates
with strength defined by the parameters α and ρ, respectively.
For simplicity, we assume the virus is avirulent within the
reservoir and has no impact on mortality rate, although this
need not always be the case [27]. The virus population is
assumed to consist of G genotypes (indexed by g), each of
which is characterized by a genotype-specific transmission
rate within the reservoir/wildlife population (subscript w),
βw→w,g, and a genotype-independent recovery rate, γ. Recov-
ered individuals acquire immunity to the virus with this
immunity waning at rate, δ. Mutation within the virus popu-
lation is treated implicitly and assumed to occur within
infected hosts and result in the wholesale conversion of a
host infectedwith genotype g0 to a host infectedwith genotype
g at a rate μg0→g. With these assumptions, the population
dynamics of the wildlife reservoir population and the epide-
miological dynamics of the virus within the reservoir can be
described by the following system of differential equations:

dS
dt

¼ bNð1� aNÞ þ dR� S
XG
g¼1

bw!w,gIg � ðrN þ dÞS, ð2:1aÞ

dIg
dt

¼ bw!w,gSIg þ
XG
g0¼1

mg0!gIg0 �
XG
g0¼1

mg!g0 Ig � ðgþ d

þ rNÞIg ð2:1bÞ

and
dR
dt

¼ gI� � ðdþ dþ rNÞR, ð2:1cÞ

where N ¼ SþPG
g¼1 Ig þ R defines the total density of reser-

voir individuals within the population, I� ¼ PG
g¼1 Ig defines

the total density of infected reservoir individuals, and the
subscript w→w indicates transmission is from one animal
(‘wildlife’) to another.

(b) The genetic architecture of spillover and emergence
A central assumption of our approach is that some subset of
virus genes have pleiotropic effects on infection of reservoir
hosts and infection of human hosts. Specifically, we assume
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Figure 1. The genetic architecture of transmission, spillover and emergence for an example where three loci control transmission within and among species and
three ‘1’ alleles are required to achieve levels of transmission within the human host sufficient for R0 > 1 and thus emergence. (Online version in colour.)
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that alleles favourable for efficient transmission within the
reservoir tend to be disfavourable for infection of humans
and transmission among humans. This might occur, for
instance, if the optimal conformation of a glycoprotein used
for cell entry in the reservoir binds only poorly to human
cells. We model this trade-off by assuming that the pathogen
genome consists of n diallelic loci, where each locus carries
either a ‘0’ or a ‘1’ allele. We assume that ‘0’ alleles improve
the viruses’ ability to infect the reservoir but that ‘1’ alleles
improve the viruses ability to infect humans. Thus, a viral
genome consisting of primarily ‘0’ alleles will be good at infect-
ing the reservoir but poor at infecting humans whereas a viral
genome consisting of primarily ‘1’ alleles will be good at infect-
ing humans but poor at infecting the reservoir (figure 1). Using
the indicator variable Xg,i to define the allelic state of genotype
g at locus i allows us to formalize these assumptions as
expressions for the transmission rates within the reservoir,
from reservoir to human and from human to human:

bw!w,g ¼ b0

Yn
i¼1

ð1� cw,iXg,iÞ, ð2:2aÞ

bw!h,g ¼ vb0

Yn
i¼1

ð1� ch,ið1� Xg,iÞÞ ð2:2bÞ

and bh!h,g ¼ kb0

Yn
i¼1

ð1� ch,ið1� Xg,iÞÞ, ð2:2cÞ

respectively. The products in these expressions are taken over
the n genetic loci involved in transmission (e.g. cell binding,
tissue tropism, shedding, etc.), with the terms cw,i and ch,i quan-
tifying the multiplicative loss in transmission to an animal or
human host, respectively, that accrues to the virus for each
maladaptive allele it carries. Tuning these parameters allows
us to consider scenarios ranging from an absolute trade-off
between performance in animal and human hosts to the com-
plete absence of a trade-off. Adjusting these parameters also
allows us to consider scenarios where trade-offs are driven
by a single locus of major effect or where many loci contribute
weakly. Finally, the parameters ω and κ scale the baseline trans-
mission rate, β0, defined within the reservoir, to account for
differences in encounter rates between reservoir and human
populations and within the human population, respectively.
(c) Quantifying the risk of spillover and emergence
We quantify the risk of spillover by defining the force
of infection from the reservoir population into the human
population:

lSpill ¼ I�

Nk

XG
g¼1

bw!h,gxg, ð2:3Þ

where I* is the total number of reservoir individuals infected
with the virus, xg is the frequency of virus genotype g among
infected reservoir individuals, k determines whether spillover
is density (k = 0) or frequency (k = 1) dependent and the
summation is taken over all virus genotypes. The extent to
which the virus is able to infect humans is captured by the
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summation which explicitly calculates the expected trans-
mission rate of the virus population into the human population.

We quantify the riskof emergence similarly to spillover, but
restrict the summation to include only the subset, E, of virus
genotypes for which R0 > 1 within the human population:

lEmerge ¼ I�

Nk

X
g[E

bw!h,gxg: ð2:4Þ

Restricting the summation to those virus genotypes with
R0 > 1 within the human population quantifies the force of
infection for the subset of virus variants capable of generating
self-sustaining epidemics, or emergence, within the human
population. Results derived in the electronic supplementary
material, appendix S1 demonstrate that the risk of emergence
quantified by equation (2.4) is directly proportional to the
probability that a sustained epidemic will develop within
the human population in any period of time. Because this
definition of emergence ignores the stochastic loss of many
emergence-capable viruses, however, the rate at which spil-
lover seeds an epidemic is only a fraction 1� ð1=�R0Þ of this
quantity where �R0 is the average value of R0 within the
human population for the subset of mutations with R0 > 1
(electronic supplementary material, appendix S1).
3. Results
(a) Reservoir population ecology and life history drive

the risk of viral spillover
Webegin ouranalyses by studying how thepopulation ecology
and life history of the reservoir species defines the risk of spil-
lover into the human population in the absence of evolution.
Our goal is to develop the ecological backdrop against which
the influence of evolution can be better understood. To this
end, we study equations (2.1) in the limiting case of a geneti-
cally uniform virus capable of infecting humans and quantify
the force of spillover into thehumanpopulationwhen the reser-
voir population is at steady-state.We focus our attention on the
rate of population turnover within the reservoir species, T, and
how changing this rate—and thus the average lifespan of the
reservoir—influences the risk of spillover. Formally, the rate
of population turnover within our model can be found by
solving for the per capita birth (or death) rate of the reservoir
population when it is at its equilibrium population size,
yielding the following expression:

T ¼ bðdaþ rÞ
baþ r

: ð3:1Þ

As the rate of population turnover increases, average lifespan
(1/T ) decreases. Because we are interested in comparing
species with different lifespans that are otherwise equally
affected by the virus (in terms of recovery or waning immunity
rates, i.e. epidemiologically interchangeable), we present key
results in terms of a re-scaled rate of recovery from viral infec-
tion G ¼ g=T and a re-scaled rate at which immunity to viral
infection wanes over time Δ = δ/T. These definitions, in con-
junction with the equilibrium solutions to equations (2.1),
allow us to quantify the force of infection from the reservoir
population into the human population using equation (2.3):

lSpill ¼ vT
ðR0 � 1Þð1þ GÞð1þ DÞ

1þ Gþ D

� �
1

N̂

� �k

, ð3:2Þ
where k is equal to 0 if spillover into the human population is
density dependent and 1 if frequency dependent, N̂ is the
steady-state population size of the reservoir, and R0 is
the expected number of new viral infections caused by a
virus infected reservoir individual when introduced into
a completely susceptible reservoir population (electronic
supplementary material, appendix S2). Here, R0 is equal to:

R0 ¼ bðb� dÞ
rðbþ gÞ þ abðgþ dÞ : ð3:3Þ

Unsurprisingly, the risk of spillover increases with R0.
As demographic turnover increases and average reservoir

lifespan (1/T) decreases, result (3.2) shows that the force of
spillover increases (figure 2). There are multiple explanations
for this effect, the most important of which depends on what
else is held constant. For instance, if we wish to compare
across species with different rates of turnover but identical
population sizes, the effect can be attributed to increased
levels of pathogen transmission within the reservoir popu-
lation. This necessitates, however, that either the density-
independent death rate, d, or density dependent death rate
ρ rises with turnover. If, by contrast, we wish to compare
species with identical values of d and ρ, the effect can be
attributed to the association between rapid rates of popu-
lation turnover and increases in total reservoir population
size. No matter the precise underlying mechanism at play,
however, the result is consistent with the ‘pace of life’
hypothesis and supports the idea that short-lived species
with rapid population turnover may be particularly potent
sources of spillover into the human population [5,28–30].

The terms G ¼ gð1=TÞ and Δ = δ(1/T ) that appear in
equations (3.2) and (3.3) measure the recovery rate from
virus infection (G) and the rate at which immunity wanes
(Δ) relative to the expected lifespan of the reservoir, 1/T.
Thus, a value of G ¼ 2, for instance, indicates that the average
recovery time from virus infection is half the average reser-
voir lifespan. As long as R0 is held constant, the force of
spillover increases as a function of both recovery rate and
the rate at which immunity is lost, suggesting that infections
generating short-term acute infections with short-term immu-
nity provide the greatest opportunities for spillover (figure 2).
(b) Viral evolution modulates the risk of emergence
Before diving into more complex evolutionary and genetic
scenarios using simulations, we illustrate several key factors
influencing the likelihood of viral emergence using a single
locus model and analytical approximations. Specifically,
we assume the rate of viral transmission from reservoir
to reservoir, from reservoir to human and from human to
human depends on only a single diallelic genetic locus (e.g. a
change in a single nucleotide that alters the conformation of
a coronavirus spike protein) with possible alleles H or h. We
further assume that only one of these two alleles (the H
allele) is capable of generating sustained human-to-human
transmission (R0 > 1) and thus emergence. This assumption
greatly simplifies the model and allows evolutionary change
within the reservoir to be described by

dp
dt

¼ �cwb0pð1� pÞSþ mð1� 2pÞ, ð3:4Þ

where μ is the rate of (symmetric) mutation between H and h
alleles, cw is the reduction in transmission experienced by
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Figure 2. The force of spillover into the human population as a function of reservoir population turnover rate and the relative recovery rate from viral infection (a)
and as a function of reservoir population turnover rate and the relative rate at which virus immunity wanes (b). In (a) Δ was set to 5 and in (b) G was set to 25.
Viral R0 was held constant at a value of 2.0 in both panels, ω was set equal to 1, and spillover was density dependent such that k = 0. The figure was generated by
plotting equation (3.2) using Mathematica. (Online version in colour.)
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viral pathogens carrying the human exaptedH allelewithin the
reservoir, and p is the frequency of the H allele that
is maladaptive for transmission within the reservoir popu-
lation but exaptive for transmission to and among humans
(electronic supplementary material, appendix S3). Although
simplistic, equation (3.4) demonstrates that the strength of
selection acting against the human exapted allele within the
reservoir population is cwβ0S such that selection increases as
the density of susceptible individuals within the reservoir
population grows. This occurs because a large pool of suscep-
tible individuals increases opportunities for transmission
within the reservoir and thus the relative increase in growth
rate experienced by the reservoir adapted allele. From
the perspective of viral emergence, this simple result has
an important consequence: the weaker selection against
the human adaptive allele within the reservoir population,
the greater its frequency when a balance between selection
and mutation is reached. Thus, we expect that reservoir popu-
lations with a low density of susceptible individuals
will harbour a greater frequency of human exapted mutations
than reservoir populations with a high density of susceptible
individuals.

Solving for the equilibrium frequency of the human
exapted allele when it is rare within the reservoir population
(electronic supplementary material, appendix S3), yields the
following approximate expression for its frequency:

p̂ � m

cwðð1þ GÞT þ mÞ : ð3:5Þ

Result (3.5) illuminates how reservoir ecology and life history
interact to shape the frequency of the human exapted
mutation and thus opportunities for viral emergence. Specifi-
cally, we see that the frequency of the allele conferring the
ability to transmit well within the human population falls
as the rate of demographic turnover within the reservoir, T,
rises. This occurs because as population turnover increases,
so too does the density of susceptible individuals within
the reservoir population. This, in turn, strengthens selection
for the allele which increases transmission within the reser-
voir. By contrast, low population turnover reduces the
density of susceptible individuals and opportunities for
transmission within the reservoir, thus weakening selection
against the allele exapted for human transmission. As a con-
sequence, the balance between mutation and selection within
the reservoir shifts, and the frequency of the allele conferring
efficient transmission within the human population rises
(figure 3). In addition to the rate of turnover within the reser-
voir population, result (3.5) demonstrates that the frequency
of the allele conferring efficient transmission within the
human population increases as the duration of the viral
infectious period increases (figure 3). This occurs prima-
rily because prolonged infections increase opportunities
for mutation from the allele conferring high transmission
within the reservoir population to the exapted allele that con-
fers high transmission to and within the human population.
Finally, result (3.5) confirms the easily anticipated results
that the frequency of the allele conferring high performance
within the human population rises with the viral mutation
rate μ and falls with the selective cost this allele imposes on
transmission within the reservoir population cw. Comparing
these results with those from the previous section reveals
that the rate of turnover within the reservoir population
and the recovery rate from virus infection have qualitatively
different impacts on ecological and evolutionary risk (com-
pare figures 2 and 3). In the next section, we integrate
ecology and evolution to resolve the net impact of turnover
and recovery rates on the force of emergence for the simple
diallelic model we have considered here.
(c) Emergence risk depends on the balance between
spillover and evolution

To derive the most transparent results possible, we again
focus on the simple scenario described in the previous section
where a single diallelic locus controls transmission within
and among species and only the human exapted allele H is
capable of sustained human to human transmission (R0 > 1
within the human population) and thus emergence. For sim-
plicity, we assume the human exapted allele H is maintained
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at a low frequency within the reservoir population at a
balance between selection and mutation. This assumption
should hold anytime the allele conferring improved trans-
mission to and among humans is strongly deleterious with
respect to transmission within the reservoir population and
mutation rates are not extreme. With this assumption, the
steady-state solution for the force of emergence is

lEmerge � v
1þ D

1þ Dþ G

m

cw
ðR0 � 1Þ

� �
1

N̂

� �k

, ð3:6Þ

where k is equal to 0 if spillover into the human population is
density dependent and 1 if frequency dependent and N̂ is
the steady-state population size of the reservoir (electronic
supplementary material, appendix S4). Equation (3.6) is an
accurate approximation as long as the strength of selection,
cwTð1þ GÞ, is much larger than the rate of mutation:
cwTð1þ GÞ .. m. The more cumbersome exact result is pro-
vided within the electronic supplementary material,
appendix S4.

Five important findings emerge from approximation (3.6).
First, the rate of population turnover within the reservoir
does not influence emergence risk as long as the approxi-
mation holds (figure 4a). This occurs because the impact of
population turnover on the ecology of spillover precisely can-
cels with the impact of turnover on viral evolution. Thus,
although rapid population turnover increases the force of
spillover, it also increases selection against the human
exapted mutation by increasing the importance of trans-
mission within the reservoir population. As the mutation
rate rises and the human exapted allele begins to reach
appreciable frequencies, this approximation begins to break
down and the ecological impacts of population turnover
begin to outweigh the evolutionary impacts (figure 4a). As
a consequence, high rates of mutation set the stage for
increasing rates of population turnover to increase emergence
risk through its impact on viral prevalence.

Second, viral pathogens that cause acute short-term infec-
tions (large values of G ) within the reservoir are less likely to
lead to emergence (figure 4b). This occurs because rapid
recovery decreases the prevalence of infection within the
reservoir population and reduces opportunities for mutation
to occur within the reservoir host. Third, viruses for which
immunity within the reservoir population is short-lived
(large values of Δ) are more likely to seed emergence
(figure 4c). This occurs because increasing the rate at which
immunity wanes increases the prevalence of the virus
within the reservoir population. Fourth, the force of emer-
gence increases with mutation rate (μ) and decreases with
the strength of selection within the reservoir population
(cw). Finally, the force of emergence always increases with
virus R0 within the reservoir.
(d) Emergence risk depends on the genetic basis
of host adaptation

To evaluate the generality of our single locus results, we devel-
oped and analysed stochastic simulations of our model for
scenarios where virus transmission rates depend on more
than a single locus. These simulations allow us to compare
cases where a single nucleotide substitution is sufficient for
emergence to cases where multiple nucleotide substitutions
are required. In addition, these simulations allow us to inte-
grate stochastic effects that may be particularly relevant for
the rare deleterious mutations we study here, and which
we assume fuel emergence through chance exaptation to
the human host. Our simulation approach makes use of the
Gillespie algorithm with a tau leaping approximation to
rapidly simulate model (2.1) for scenarios in which trans-
mission within the reservoir, from reservoir to human and
among humans depends on up to 10 diallelic genetic loci. We
assume perfect pleiotropy such that all loci involved in deter-
mining virus transmission within the reservoir are also
involved in determining virus transmission to humans and
among humans. Mutation is modelled by assuming reservoir
hosts infected with strain g convert to one of the n
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material, appendix S4 (solid lines), as a function of reservoir population turnover (a), virus recovery rate within the reservoir (b) and rate at which immunity wanes
within the reservoir population (c). Background parameters used in common across all panels were R0 = 3, cw = 0.9 and ω = 1. Parameters specific to each panel
were G ¼ 2, and Δ = 2 in the top panel, T = 0.002 and Δ = 2 in the middle panel and T = 0.002 and G ¼ 2 in the bottom panel. All plots were performed
using Mathematica. Note that the poor fit of the approximation in panel (a) was expected for the high rate of mutation shown.
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neighbouring strains with genotype g0 at rate μ. Our approach
ignores the complexities of recombination within the viral
genome.

Simulations were run for a burn-in period of five years
and all spillover and emergence events were then tracked
over the following five years for a broad range of parameter
combinations. The burn-in and study periods of five years
correspond to between 200 and 3333 lifespans for the range
of population turnover rates we considered. Initial simulation
testing demonstrated this was sufficient to reach a quasi-
steady state. Spillover events occurred at rate λSpill ×H
where H is the density of the human population and λSpill
was calculated using equation (2.2b) for cases where between
1 and 10 loci determined transmission rates. Emergence
occurred in the subset of spillover events where the virus gen-
otype that spilled over had an R0 > 1 within the human
population calculated using equation (2.2c). Because this defi-
nition of emergence ignores the stochastic loss of many
emergence-capable viruses, the rate at which spillover seeds
an epidemic is only a fraction 1� ð1=�R0Þ of this quantity
where �R0 is the average value of R0 within the human popu-
lation for the subset of mutations with R0 > 1 (electronic
supplementary material, appendix S1). Spillover and
emergence events were then averaged over the five years
post-burn-in and the average number of spillovers and
emergence events per day used in all analyses.
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Figure 5. The average number of daily emergence events as a function of population turnover (left column) and the frequencies of human exapted alleles as a
function of population turnover (right column) for the case where a single genetic locus mediates transmission (blue), two loci mediate transmission (green) and
three loci mediate transmission (yellow). Each dot represents the average number of emergence events per day for a single stochastic simulation. The grey dashed
line shows the analytical approximation for the predicted number of emergence events each day (equation (3.6)) and the blue dashed line the exact prediction for
daily emergence events. In the first row, the mutation rate is weak (μ = 0.0001) and our approximation performs well. In the second row, the mutation rate is
tenfold larger (μ = 0.001) than in the first row and, as expected, the approximation begins to break. Parameter values were R0 = 2.0, G ¼ 5:0, Δ = 1.0, cw = 0.9,
ch = 0.5. The human population size was set to 2000 and the value of κ set such that the most transmissible virus genotype within the human population had an
R0 = 1.2 within the human population. Transmission from reservoir to human was assumed to be density dependent such that k = 0. Figure panels were generated
by plotting equation (3.6) and simulated data using Mathematica. (Online version in colour.)
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We investigated how the genetic basis of transmission
influenced the risk of spillover and emergence by assuming
the difference in transmission rate between the worst and
best genotypes was identical for scenarios involving different
numbers of loci. Thus, we assume that the effect of each locus
on transmission is reduced as the number of loci is increased.
Under these conditions our simulations demonstrate that
increasing the number of loci reduces the risk of emergence
(figure 5).

This result arises because emergence requires sampling a
virus genotype carrying human exapted alleles at an increas-
ingly large number of loci. Because the human exapted alleles
are deleterious within the reservoir—and thus rare—the
greater the number of loci, the lower the probability of draw-
ing the required combination of human exapted alleles.
Although important, this result is rather intuitive. If the
mutation rate becomes appreciable, however, a less easily
anticipated relationship develops between the genetic basis
of transmission and the influence of population turnover on
emergence risk. Specifically, if mutation rates are appreciable
but only a single locus determines rates of transmission,
increasing the rate of population turnover increases the risk
of emergence (figure 5c; blue dots). As the number of loci
determining transmission increases, however, this relation-
ship reverses and increasing rates of population turnover
result in decreased emergence risk (figure 5c; orange and
green dots). The reason for this shift is the increasing impor-
tance of the evolutionary component of emergence risk as the
number of loci increases.
4. Discussion
We have developed and analysed simple mathematical
and computational models that couple epidemiological and
evolutionary dynamics within a reservoir population to the
risk of spillover and emergence into the human population.
Our models rest on the biologically plausible assumption
that viral genotypes optimized for transmission within the
reservoir are unlikely to be simultaneously optimized for
transmission into and within the human population [31].
Thus, virus genotypes that are exapted to the human popu-
lation will persist within the reservoir population at
relatively low frequencies determined by the balance between
selection and mutation. Because the strength of selection
acting against human exapted genotypes depends on
epidemiological dynamics within the reservoir as well as
reservoir ecology and life history, our results allow us to for-
malize existing verbal arguments and clarify the conditions
under which they apply. Perhaps most importantly, our
results show that blanket arguments for reservoir character-
istics associated with emergence risk greatly oversimplify
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the complex relationships that determine when and where
spillover and emergence are most likely to occur.

Numerous studies have pursued the idea that the life-
history traits of a species can be used to assess the likelihood
that they serve as reservoir for viral pathogens capable of spil-
lover and emergence [2,29,32]. One particularly popular and
common argument is that reservoir species with a fast-paced
lifestyle are more likely to seed spillover and emergence
events [28,29]. Our mathematical solutions demonstrate that
this argument holds rigorously anytime virus genotypes are
epidemiologically interchangeable. Specifically, our results
show that in such cases, the risk of spillover rises as the rate
of population turnover increases. Because the rate of popu-
lation turnover is the reciprocal of realized lifespan, these
results support arguments that short-lived species are more
likely to serve as reservoirs for emerging infectious disease.
When virus genotypes are not epidemiologically interchange-
able and instead differ with respect to rates of transmission,
however, our results show that this appealingly simple argu-
ment crumbles. The reason this occurs is that, once virus
genotypes differ with respect to their rates of transmission,
evolutionary dynamics begin to contribute to the risk of spil-
lover and emergence. In general, our results show that
increasing rates of population turnover cause evolution to
reduce the risk of spillover and emergence. Thus, population
turnover increases the risk of spillover but decreases the fre-
quency of virus genotypes that are capable of successfully
infecting and transmitting among humans. Ultimately, then,
the consequences of population turnover for spillover and
emergence risk depend on the balance between ecological
and evolutionary forces. How these forces balance out
depends on the rate of mutation and the strength of selection
acting against human exapted genotypes within the reservoir
population and also the genetic basis of exaptation.

In addition to the rate of population turnover, our results
suggest that epidemiological properties of viruses within the
reservoir may be important determinants of spillover and
emergence risk. For instance, our results demonstrate that
viral pathogens yielding short-term acute infections are less
likely to lead to emergence than viruses that generate long-
term persistent infections. The reason this effect arises is
that our model assumes selection within the reservoir acts
on transmission alone. Thus, long-term persistent infections
offer far greater opportunities for mutation to increase the fre-
quency of the deleterious alleles that confer exaptation to the
human host than do short-term acute infections that experi-
ence more frequent purging selection. Although sufficient
data is not yet available to robustly test this prediction, it is
consistent with observed persistent viral infection in bats
and the rapid accumulation of SARS-CoV spike mutations
during persistent in vitro infection [31,33–35]. Our results
also demonstrate that the durability of virus immunity
within the reservoir population influences spillover and
emergence risk. Specifically, we find that risk increases with
the rate at which immunity is lost. In this case, the driving
force is epidemiological rather than evolutionary, with
increasing rates of waning immunity leading to a greater
viral prevalence within the reservoir population but no
change in the frequency of human exapted mutations.

Our exploration of the genetic basis of spillover and emer-
gence revealed two important results. First, as the number of
loci involved in exaptation to the human host increases, the
likelihood of emergence drops. This result is unsurprising
as our model assumes emergence requires a virus strain car-
rying multiple rare alleles to spillover. As the number of loci
involved in exaptation to the human host rises, the prob-
ability of sampling a virus strain carrying an increasingly
large number of rare alleles falls. Although this result is
intuitive, it suggests a better understanding of the genetic
mechanisms involved in viral adaptation to human hosts
would facilitate efforts to predict emergence risk [36]. The
second result revealed by our multi-locus simulations is less
intuitive and rooted in the interplay between epidemiological
and evolutionary dynamics. Specifically, our results show
that when the rate of population turnover has an impact on
emergence risk, this impact tends to be positive when exapta-
tion depends on only a single genetic locus but negative
when larger numbers of loci are involved. The reason for
this effect is the increasing importance of the evolutionary
component of emergence risk—which causes human exapted
alleles to decrease in frequency as the rate of turnover
increases—as the number of loci rises. Thus, for those viral
pathogens where sustained transmission among humans
requires change in only a single nucleotide, the risk of emer-
gence should be greater from reservoir species with a high
rate of population turnover. By contrast, for viral pathogens
where sustained transmission among humans requires mul-
tiple nucleotide changes, those reservoir species with a slow
rate of population turnover should represent the greatest
emergence risk. This nuanced relationship between the gen-
etic mechanism of host adaptation and population turnover
complicates efforts to predict the risk of emergence from
reservoir species with different rate of population turnover
or natural lifespans (e.g. [2]).

Although we have used a range of methods and analyses
to ensure our predictions are robust, our results do rest on
several important assumptions. Of these, we anticipate that
four are the most likely to influence our predictions. First,
we have assumed virus performance in reservoir and
human populations is controlled by an identical set of genetic
loci with directly opposing effects on fitness in each host.
Although this is a strong assumption, it is consistent with
some well-studied examples of viral adaptation such as the
spike protein of SARS-CoV-2 where specific nucleotide sub-
stitutions are known to be associated with performance in
different hosts (e.g. [31,37]). Even in cases where pleiotropy
is not absolute, however, we anticipate that our results will
continue to hold qualitatively. Second, our model assumes
that genotypes differ only with respect to their rates of trans-
mission within reservoir and human populations. If alleles
that alter transmission also influence other epidemiologically
relevant traits such as recovery rate, virulence, or duration of
immunity, however, our results may break down. Although a
substantial body of theory has focused on the consequences
of such trade-offs for viral evolution [38], the ubiquity of alleles
with pleiotropic effects on transmission and other epidemiolo-
gically traits remains largely unknown. Third, we have focused
our analyses on steady-state solutions where vital rates of
the reservoir population remain constant over time. If these
vital rates change seasonally [11,39] or in response to anthropo-
genic manipulation or disturbance [40,41], our results may
need to be adjusted or modified [42]. Finally, our models
ignore the potential for multiple infection of individual hosts
and recombination.

Understanding the relationships between the ecology and
life history of wild animals and their potential to serve as
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reservoirs for viral pathogens capable of causing emerging
infectious disease in humans is a fundamental challenge for
our ability to anticipate—and potentially preempt—future pan-
demics. Existing studies have largely focused on identifying
patterns and statistical relationships between reservoir traits
and emergence risk without probing underlying mechanisms.
We have taken an alternative approach to this challenge and
used mechanistic models that couple reservoir population ecol-
ogy, virus evolution and emergence risk to clarify when and
why we expect these relationships to occur. By connecting
mechanisms to predicted patterns, our work represents a first
step in generating testable hypotheses that could better
inform efforts to reduce the risk of emerging infectious disease.
Data accessibility. The data are provided in the electronic supplementary
material [43].
Authors’ contributions. S.L.N.: conceptualization, formal analysis, funding
acquisition, investigation, methodology, project administration, soft-
ware, visualization, writing—original draft, writing—review and
editing; A.J.B.: validation, writing—review and editing; C.S.: writ-
ing—review and editing; A.W.: visualization, writing—review and
editing; C.H.R.: conceptualization, formal analysis, funding acqui-
sition, investigation, validation, writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. This work was supported by NSF DEB 1450653 (S.L.N. and
C.H.R.), NIH R01GM122079 (S.L.N. and C.H.R.) and DARPA
D18AC00028 (S.L.N.).
Proc.R.So
References
c.B
289:20221080
1. Becker DJ, Washburne AD, Faust CL, Mordecai EA,
Plowright RK. 2019 The problem of scale in the
prediction and management of pathogen spillover.
Phil. Trans. R. Soc. B 374, 20190224. (doi:10.1098/
rstb.2019.0224)

2. Han BA, Schmidt JP, Bowden SE, Drake JM. 2015
Rodent reservoirs of future zoonotic diseases. Proc.
Natl Acad. Sci. USA 112, 7039–7044. (doi:10.1073/
pnas.1501598112)

3. Geoghegan JL, Senior AM, Holmes EC. 2016
Pathogen population bottlenecks and adaptive
landscapes: overcoming the barriers to disease
emergence. Proc. R. Soc. B 283, 20160727. (doi:10.
1098/rspb.2016.0727)

4. Morens DM, Folkers GK, Fauci AS. 2004 The challenge
of emerging and re-emerging infectious diseases.
Nature 430, 242–249. (doi:10.1038/nature02759)

5. Huang ZYX, de Boer WF, van Langevelde F, Olson V,
Blackburn TM, Prins HHT. 2013 Species’ life-history
traits explain interspecific variation in reservoir
competence: a possible mechanism underlying the
dilution effect. PLoS ONE 8, e54341. (doi:10.1371/
journal.pone.0054341)

6. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D,
Gittleman JL, Daszak P. 2008 Global trends in
emerging infectious diseases. Nature 451, 990–993.
(doi:10.1038/nature06536)

7. Allen T, Murray KA, Zambrana-Torrelio C, Morse SS,
Rondinini C, Di Marco M, Breit N, Olival KJ, Daszak
P. 2017 Global hotspots and correlates of emerging
zoonotic diseases. Nat. Commun. 8, 1124. (doi:10.
1038/s41467-017-00923-8)

8. Anthony SJ et al. 2017 Global patterns in
coronavirus diversity. Virus Evol. 3, vex012. (doi:10.
1093/ve/vex012)

9. Fichet-Calvet E, Rogers DJ. 2009 Risk maps of Lassa
fever in West Africa. PLoS Negl. Trop. Dis. 3, e388.
(doi:10.1371/journal.pntd.0000388)

10. Basinski AJ et al. 2021 Bridging the gap: using
reservoir ecology and human serosurveys to
estimate Lassa virus spillover in West Africa. PLoS
Comput. Biol. 17, e1008811. (doi:10.1371/journal.
pcbi.1008811)

11. Plowright RK, Field HE, Smith C, Divljan A, Palmer
C, Tabor G, Daszak P, Foley JE. 2008 Reproduction
and nutritional stress are risk factors for Hendra
virus infection in little red flying foxes (Pteropus
scapulatus). Proc. R. Soc. B 275, 861–869. (doi:10.
1098/rspb.2007.1260)

12. Daszak P, Zambrana-Torrelio C, Bogich TL,
Fernandez M, Epstein JH, Murray KA, Hamilton H.
2013 Interdisciplinary approaches to understanding
disease emergence: the past, present, and future
drivers of Nipah virus emergence. Proc. Natl Acad.
Sci. USA 110(Suppl. 1), 3681–3688. (doi:10.1073/
pnas.1201243109)

13. Nandi A, Allen LJS. 2021 Probability of a
zoonotic spillover with seasonal variation. Infect.
Dis. Modell. 6, 514–531. (doi:10.1016/j.idm.2021.
01.013)

14. Gomulkiewicz R, Holt RD. 1995 When does
evolution by natural selection prevent extinction?
Evolution 49, 201–207. (doi:10.1111/j.1558-5646.
1995.tb05971.x)

15. Holt RD, Gomulkiewicz R. 1997 How does
immigration influence local adaptation? A
reexamination of a familiar paradigm. Am. Nat.
149, 563–572. (doi:10.1086/286005)

16. Dennehy JJ. 2017 Evolutionary ecology of virus
emergence: virus emergence. Ann. NY Acad. Sci.
1389, 124–146. (doi:10.1111/nyas.13304)

17. Bell G. 2017 Evolutionary rescue. Ann. Rev. Ecol.
Evol. Syst. 48, 605–627. (doi:10.1146/annurev-
ecolsys-110316-023011)

18. Antia R, Regoes RR, Koella JC, Bergstrom CT. 2003
The role of evolution in the emergence of infectious
diseases. Nature 426, 658–661. (doi:10.1038/
nature02104)

19. Gould SJ, Vrba ES. 1982 Exaptation: a missing term
in the science of form. Paleobiology 8, 4–15.
(doi:10.1017/S0094837300004310)

20. Kermack W, McKendrick AG. 1927 A contribution
to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700–721. (doi:10.1098/
rspa.1927.0118)

21. Gandon S, Day T, Metcalf CJE, Grenfell BT.
2016 Forecasting epidemiological and
evolutionary dynamics of infectious diseases.
Trends Ecol. Evol. 31, 776–788. (doi:10.1016/j.tree.
2016.07.010)
22. Day T, Gandon S. 2007 Applying population-genetic
models in theoretical evolutionary epidemiology.
Ecol. Lett. 10, 876–888. (doi:10.1111/j.1461-0248.
2007.01091.x)

23. Poullain V, Nuismer SL. 2012 Infection genetics and
the likelihood of host shifts in coevolving host-
parasite interactions. Am. Nat. 180, 618–628.
(doi:10.1086/667889)

24. Fichet-Calvet E et al. 2007 Fluctuation of abundance
and Lassa virus prevalence in Mastomys natalensis
in Guinea, West Africa. Vector Borne Zoonotic Dis. 7,
119–128. (doi:10.1089/vbz.2006.0520)

25. Fichet-Calvet E, Becker-Ziaja B, Koivogui L,
Guenther S. 2014 Lassa serology in natural
populations of rodents and horizontal transmission.
Vector Borne Zoonotic Dis. 14, 665–674. (doi:10.
1089/vbz.2013.1484)

26. Smith MJ, Telfer S, Kallio ER, Burthe S, Cook AR,
Lambin X, Begon M. 2009 Host–pathogen time
series data in wildlife support a transmission
function between density and frequency
dependence. Proc. Natl Acad. Sci. USA 106,
7905–7909. (doi:10.1073/pnas.0809145106)

27. Kallio ER, Helle H, Koskela E, Mappes T, Vapalahti O.
2015 Age-related effects of chronic hantavirus
infection on female host fecundity. J. Anim. Ecol.
84, 1264–1272. (doi:10.1111/1365-2656.12387)

28. Previtali MA, Ostfeld RS, Keesing F, Jolles AE,
Hanselmann R, Martin LB. 2012 Relationship
between pace of life and immune responses in wild
rodents. Oikos 121, 1483–1492. (doi:10.1111/j.
1600-0706.2012.020215.x)

29. Ostfeld RS, Levi T, Jolles AE, Martin LB, Hosseini PR,
Keesing F. 2014 Life history and demographic
drivers of reservoir competence for three tick-borne
zoonotic pathogens. PLoS ONE 9, e107387. (doi:10.
1371/journal.pone.0107387)

30. Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E,
Bowerman J, Lunde KB. 2012 Living fast and dying
of infection: host life history drives interspecific
variation in infection and disease risk: living fast
and dying of infection. Ecol. Lett. 15, 235–242.
(doi:10.1111/j.1461-0248.2011.01730.x)

31. Graham RL, Baric RS. 2010 Recombination,
reservoirs, and the modular spike: mechanisms of

http://dx.doi.org/10.1098/rstb.2019.0224
http://dx.doi.org/10.1098/rstb.2019.0224
http://dx.doi.org/10.1073/pnas.1501598112
http://dx.doi.org/10.1073/pnas.1501598112
http://dx.doi.org/10.1098/rspb.2016.0727
http://dx.doi.org/10.1098/rspb.2016.0727
http://dx.doi.org/10.1038/nature02759
http://dx.doi.org/10.1371/journal.pone.0054341
http://dx.doi.org/10.1371/journal.pone.0054341
http://dx.doi.org/10.1038/nature06536
http://dx.doi.org/10.1038/s41467-017-00923-8
http://dx.doi.org/10.1038/s41467-017-00923-8
http://dx.doi.org/10.1093/ve/vex012
http://dx.doi.org/10.1093/ve/vex012
https://doi.org/10.1371/journal.pntd.0000388
http://dx.doi.org/10.1371/journal.pcbi.1008811
http://dx.doi.org/10.1371/journal.pcbi.1008811
http://dx.doi.org/10.1098/rspb.2007.1260
http://dx.doi.org/10.1098/rspb.2007.1260
http://dx.doi.org/10.1073/pnas.1201243109
http://dx.doi.org/10.1073/pnas.1201243109
http://dx.doi.org/10.1016/j.idm.2021.01.013
http://dx.doi.org/10.1016/j.idm.2021.01.013
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05971.x
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05971.x
http://dx.doi.org/10.1086/286005
http://dx.doi.org/10.1111/nyas.13304
http://dx.doi.org/10.1146/annurev-ecolsys-110316-023011
http://dx.doi.org/10.1146/annurev-ecolsys-110316-023011
http://dx.doi.org/10.1038/nature02104
http://dx.doi.org/10.1038/nature02104
https://doi.org/10.1017/S0094837300004310
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1016/j.tree.2016.07.010
http://dx.doi.org/10.1016/j.tree.2016.07.010
http://dx.doi.org/10.1111/j.1461-0248.2007.01091.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01091.x
http://dx.doi.org/10.1086/667889
http://dx.doi.org/10.1089/vbz.2006.0520
http://dx.doi.org/10.1089/vbz.2013.1484
http://dx.doi.org/10.1089/vbz.2013.1484
http://dx.doi.org/10.1073/pnas.0809145106
http://dx.doi.org/10.1111/1365-2656.12387
http://dx.doi.org/10.1111/j.1600-0706.2012.020215.x
http://dx.doi.org/10.1111/j.1600-0706.2012.020215.x
http://dx.doi.org/10.1371/journal.pone.0107387
http://dx.doi.org/10.1371/journal.pone.0107387
http://dx.doi.org/10.1111/j.1461-0248.2011.01730.x


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:2

11
coronavirus cross-species transmission. J. Virol. 84,
3134–3146. (doi:10.1128/JVI.01394-09)

32. Han BA, O’Regan SM, Paul Schmidt J, Drake JM.
2020 Integrating data mining and transmission
theory in the ecology of infectious diseases. Ecol.
Lett. 23, 1178–1188. (doi:10.1111/ele.13520)

33. Subudhi S et al. 2017 A persistently
infecting coronavirus in hibernating Myotis
lucifugus, the North American little brown
bat. J. Gen. Virol. 98, 2297–2309. (doi:10.1099/jgv.
0.000898)

34. Plowright RK et al. 2015 Ecological dynamics of
emerging bat virus spillover. Proc. R. Soc. B 282,
20142124. (doi:10.1098/rspb.2014.2124)

35. Jeong J, Smith CS, Peel AJ, Plowright RK, Kerlin DH,
Mcbroom J, Mccallum H. 2017 Persistent infections
support maintenance of a coronavirus in a
population of Australian bats (Myotis macropus).
Epidemiol. Infect. 145, 2053–2061. (doi:10.1017/
S0950268817000991)
36. Holmes EC, Drummond AJ. 2007 The evolutionary
genetics of viral emergence. In Wildlife and
emerging zoonotic diseases: the biology,
circumstances and consequences of cross-species
transmission, vol. 315 (eds RW Compans et al.),
pp. 51–66. Berlin/Heidelberg, Germany: Springer.

37. Bashor L, Gagne RB, Bosco-Lauth AM, Bowen RA,
Stenglein M, VandeWoude S. 2021 SARS-CoV-2
evolution in animals suggests mechanisms for rapid
variant selection. Proc. Natl Acad. Sci. USA 118,
e2105253118. (doi:10.1073/pnas.2105253118)

38. Alizon S, Hurford A, Mideo N, Van Baalen M. 2009
Virulence evolution and the trade-off hypothesis:
history, current state of affairs and the future.
J. Evol. Biol. 22, 245–259. (doi:10.1111/j.1420-
9101.2008.01658.x)

39. Peel AJ, Pulliam JRC, Luis AD, Plowright RK, O’Shea
TJ, Hayman DTS, Wood JLN, Webb CT, Restif O. 2014
The effect of seasonal birth pulses on pathogen
persistence in wild mammal populations.
Proc. R. Soc. B 281, 20132962. (doi:10.1098/rspb.
2013.2962)

40. Seltmann A, Czirják GÁ, Courtiol A, Bernard H,
Struebig MJ, Voigt CC. 2017 Habitat disturbance
results in chronic stress and impaired health status
in forest-dwelling paleotropical bats. Conserv.
Physiol. 5, cox020. (doi:10.1093/conphys/cox020)

41. Previtali MA et al. 2010 Roles of human
disturbance, precipitation, and a pathogen on the
survival and reproductive probabilities of deer mice.
Ecology 91, 582–592. (doi:10.1890/08-2308.1)

42. Carmona P, Gandon S. 2020 Winter is coming:
pathogen emergence in seasonal environments.
PLoS Comput. Biol. 16, e1007954. (doi:10.1371/
journal.pcbi.1007954)

43. Nuismer SL, Basinski AJ, Basinski C, Whitlock A,
Remien CH. 2022 Reservoir population ecology, viral
evolution and the risk of emerging infectious
disease. Figshare. (doi:10.6084/m9.figshare.c.
6168347)
0
221
080

http://dx.doi.org/10.1128/JVI.01394-09
http://dx.doi.org/10.1111/ele.13520
http://dx.doi.org/10.1099/jgv.0.000898
http://dx.doi.org/10.1099/jgv.0.000898
http://dx.doi.org/10.1098/rspb.2014.2124
http://dx.doi.org/10.1017/S0950268817000991
http://dx.doi.org/10.1017/S0950268817000991
http://dx.doi.org/10.1073/pnas.2105253118
http://dx.doi.org/10.1111/j.1420-9101.2008.01658.x
http://dx.doi.org/10.1111/j.1420-9101.2008.01658.x
http://dx.doi.org/10.1098/rspb.2013.2962
http://dx.doi.org/10.1098/rspb.2013.2962
http://dx.doi.org/10.1093/conphys/cox020
http://dx.doi.org/10.1890/08-2308.1
http://dx.doi.org/10.1371/journal.pcbi.1007954
http://dx.doi.org/10.1371/journal.pcbi.1007954
https://doi.org/10.6084/m9.figshare.c.6168347
https://doi.org/10.6084/m9.figshare.c.6168347

	Reservoir population ecology, viral evolution and the risk of emerging infectious disease
	Introduction
	The model
	Viral epidemiology and evolution within  the reservoir
	The genetic architecture of spillover and emergence
	Quantifying the risk of spillover and emergence

	Results
	Reservoir population ecology and life history drive the risk of viral spillover
	Viral evolution modulates the risk of emergence
	Emergence risk depends on the balance between spillover and evolution
	Emergence risk depends on the genetic basis  of host adaptation

	Discussion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	References


