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Abstract: Chemokine binding to glycosaminoglycans (GAGs) is recognised to be an 

important step in inflammation and other pathological disorders like tumor growth and 

metastasis. Although different ways and strategies to interfere with these interactions are 

being pursued, no major breakthrough in the development of glycan-targeting drugs has 

been reported so far. We have engineered CXCL8 towards a dominant-negative form of 

this chemokine (dnCXCL8) which was shown to be highly active in various inflammatory 

animal models due to its inability to bind/activate the cognate CXCL8 GPC receptors on 

neutrophils in combination with its significantly increased GAG-binding affinity [1]. For 

the development of GAG-targeting chemokine-based biopharmaceuticals, we have 

established a repertoire of methods which allow the quantification of protein-GAG 

interactions. Isothermal fluorescence titration (IFT), surface plasmon resonance (SPR), 

isothermal titration calorimetry (ITC), and a novel ELISA-like competition assay (ELICO) 

have been used to determine Kd and IC50 values for CXCL8 and dnCXCL8 interacting with 

heparin and heparan sulfate (HS), the proto-typical members of the GAG family. Although 

the different methods gave different absolute affinities for the four protein-ligand pairs, the 

relative increase in GAG-binding affinity of dnCXCL8 compared to the wild type 

chemokine was found by all methods. In combination, these biophysical methods allow to 

discriminate between unspecific and specific protein-GAG interactions. 
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1. Introduction 

Composed of repeating disaccharide units with alternating uronic acid- (either D-glucuronic acid or 

L-iduronic acid) or galactose- and hexamine- (D-glucosamine or D-galactosamine) building blocks, 

glycosaminoglycans (GAGs) are linear polysaccharides varying in length and molecular weights 

ranging from 10 to 100 kDa [2,3]. Additional enzymatic post-polymerization reactions (sulfation, 

desulfation and acetylation reactions) at preferred sites of the disaccharide backbone further increase 

the structural heterogeneity conferring highly negative charge to defined regions [4]. The main classes 

of GAGs are heparin and heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), 

keratan sulfate (KS) and the non-sulfated hyaluronic acid (HA) [5]. Contrary to heparin, which shows 

an overall high degree of sulfation, and contrary to hyaluronic acid, which is completely unsulfated, 

heparan sulfate and chondroitin sulfate consist of alternating high sulfated and low sulfated regions. 

Covalently O- linked to core proteins GAGs form so called proteoglycans which are found on cell 

surfaces, in the basement membranes of tissues and in the extracellular matrices where they are known 

to play crucial roles in biological and pathophysiological processes that are important for cell 

development, growth, regulation of proliferation and differentiation, signalling, mediation of cell 

adhesion and migration, etc. [6,7]. Heparan sulfate and chondroitin sulfate are the major GAG 

members on cell surfaces and are therefore important interaction partners of chemokines.  

Chemokines are a class of small, basic proteins with molecular weights ranging from 8 to 12 kDa [8]. 

They can be distinguished into inflammatory chemokines that are induced by pro-inflammatory stimuli 

such as lipopolysaccharide, tumour necrosis factor α (TNF-α), and interleukin 1 (IL-1) or up-regulated 

by interferon γ (IFN-γ) and homeostatic chemokines. In the course of inflammation, chemokines are 

released and bind to endothelial cell surface GAGs of blood vessels [9]. Thus chemokine gradients are 

formed and chemokine-specific leukocytes are attracted to be activated for subsequent extravasation 

into the surrounding, inflamed tissue [10]. Homeostatic chemokines, in contrast, are constitutively 

expressed in lymphoid tissue and direct trafficking and homing of lymphocytes and dendritic cells 

within the immune system.  

The binding of chemokines to GAGs is driven mainly by electrostatic forces which lead to high 

affinity but commonly rather unspecific interactions. Electrostatic interactions occur between basic 

amino acids and the highly sulfated S-domains of the polysaccharide. Specificity in protein-GAG 

interactions results from van der Waals and hydrogen bonding forces between the less charged regions 

of the polysaccharide and respective amino acids of the protein [11]. With a few exceptions (like 

antithrombin-3 and FGF2, [12–14] only very little is known about the exact structure of a human GAG 

target sequence for a given GAG-binding protein. Great efforts are currently made to overcome 

limitations in sequencing technologies as well as in preparation protocols for feasible amounts of 

human GAGs, which would certainly be the next decisive step in understanding the biological and 

pathological role of these polysaccharides.  
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Despite the unclear picture regarding specific GAG ligands, chemokine binding to GAGs has been 

shown to be indispensable for the protein's biological activity, for reasons of localization/ 

immobilisation within the blood stream, conformational change, and oligomerisation. As chemokines 

are involved in numerous biological and pathological processes, e.g., inflammation, tumor growth and 

metastasis, the need for novel chemokine-targeting drugs is high, but so far no major breakthrough has 

been reported [15–17]. We have developed a protein engineering approach which enables us to 

produce anti- inflammatory decoy chemokines with higher GAG binding affinities compared to their 

wild-types but with impaired GPC receptor binding and activation [18,19]. Our mutant chemokines 

exert their biological function by displacing wild type chemokines from the GAG-coated endothelium 

thereby forming an inert layer which prevents the attraction of leukocytes thus interfering with the 

extravasation of these cells into the tissue. We have successfully applied our engineering approach to 

CXCL8 (interleukin-8), CXCL12 (SDF-1a), CCL2 (monocyte attracting chemokine 1), and CCL5 

(RANTES) [1,11,20–22] Since our engineering approach is based on increasing the GAG-binding 

affinity of a selected target protein, we have developed a pool of methods for the quantification of 

chemokine-glycosaminoglycan interactions. Affinities, as expressed in Kd or IC50 values, are decisive 

for the selection of mutant candidates which are selected for further drug development.  

Taking CXCL8 and its respective mutant form dnCXCL8 as a case study, we describe here the 

combined use of our methods to get a picture of these protein-GAG interactions under various 

conditions. We have applied isothermal fluorescence titration (IFT), surface plasmon resonance (SPR), 

and ELISA-like competition assays (ELICO) to quantitate the interaction of CXCL8 and dnCXCL8 

with heparin and heparan sulfate (HS). An integrated analyses of the results gave a very 

comprehensive picture of the limitations of each method and showed that a single method could in 

some cases be misleading in the interpretation of protein-GAG interactions and therefore prohibit the 

development of suitable inhibitors of protein-GAG binding.  

2. Results and Discussion 

dnCXCL8 is a dominant (= increased GAG binding affinity) negative (= knocked out neutrophil 

receptor activation) decoy variant of human CXCL8 (see Figure 1). By applying site directed 

mutagenesis it was engineered to turn pro-inflammatory CXCL8 into an anti-inflammatory chemokine 

decoy [1] which was developed for the treatment of acute and chronic lung inflammation. Its proposed 

mode of action is displacing CXCL8 from GAGs on endothelial cells of blood vessels by which the 

mutant prevents neutrophil extravasation into the surrounding inflamed lung tissue. A high-affinity 

interaction with GAGs is thus required for dnCXCL8 to be anti-inflammatory. This was therefore 

characterised here in detail relative to its wild type chemokine counterpart (CXCL8). The sequence of 

the two proteins is depicted in Figure 1 where we have also displayed the structures of the two GAG 

ligands under investigation. As can be seen, dnCXCL8 differs from wild type CXCL8 by the higher 

number of basic amino acids and the lack of the GPCR-binding N-terminal peptide. On the other hand, 

heparan sulfate (HS) differs from heparin by its overall lower sulfation degree, which leads to an 

arrangement of high-sulfated domains—responsible for protein binding—and unsulfated domains 

(other GAG family members such as dermatan sulphate were not considered in this study as we were 

unable yet to reproducibly biotinylate these molecules which prevents their use in SPR measurements).  
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Figure 1. (A) Sequence comparison of CXCL8 and dnCXCL8; (B) Schematic presentation 

of heparin and heparan sulfate. 

(A) 

 
(B) 

 

2.1. Isothermal Fluorescence Titrations  

The intrinsic fluorescence of the single Trp residue located on top of the C-terminal α-helix of 

CXCL8 was used as sensor signal for GAG-binding. Due to the high fluorescence quantum yield of the 

tryptophan residue in combination with the environmental sensitivity of the emission, GAG ligand 

binding can be quantified by this method at very low chemokine concentrations (<1 μM) by a dose-

dependent decrease (= quenching) of the fluorescence [23]. The observed quenching is caused by a 

structural re-arrangement of the chemokine following ligand interaction which impacts on the Trp 

emission. In Figure 2 the bi-molecular saturation curves of CXCL8 and dnCXCL8 binding to heparin 

and HS are depicted. For both ligands it is obvious from the different initial slopes in the binding 

isotherms that dnCXCL8 has a significantly higher affinity to both GAG ligands compared to wild 

type CXCL8 (see Table 1): 9-fold higher for HS and 8,5-fold higher for heparin. The absolute Kd 

values are in a similar range for dnCXCL8/heparin and dnCXCL8/HS (170 nM and 317 nM, 

respectively), whereas the values differ quite significantly for the wild type CXCL8/heparin and 

CXCL8/HS pairs (1,5 μM and 2,7 μM, respectively). This is interpreted by the domination of 

electrostatic forces in the dnCXCL8 interaction pairs (due to the increased number of basic amino 

acids in the protein), which are the long-range attraction factors in protein ligand interactions and 

which are therefore responsible for high affinity binding. Conversely they do not contribute to 

selective ligand interaction which is mainly attributed to the near-acting hydrogen bond and van der 

Vaals interactions. Consequently, dnCXCL8 is less discriminative with respect to its ligand compared 

to the wild type chemokine and therefore binds both, heparin and HS, with similar affinity.  
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Figure 2. Isothermal fluorescence titration: (A) heparin binding isotherms of CXCL8 and 

dnCXCL8; (B) HS binding isotherms of CXCL8 and dnCXCL8 (for Kd values see  

Table 1). On the y-axis, the relative change in fluorescence intensity following ligand 

addition is displayed: ΔF = F (fluorescence emission at a certain ligand concentration) − F0 

(fluorescence emission in the absence of ligand).  
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Table 1. Isothermal binding and competition values for CXCL8 and dnCXCL8 binding to 

heparin and to HS. 

Heparan Sulfate (HS) Heparin 

Kd (nM) ± (SEM) Kd (nM) ± (SEM) 

IFT 

dnCXCL8 170 27 317 49 

CXCL8 1545 570 2710 600 

SPR 

dnCXCL8 255 27 195 14 

CXCL8 11500 1050 8305 1700 

IC50 (nM) ± (SEM) IC50 (nM) ± (SEM) 

ELICO 

dnCXCL8 180 24 130 18 

CXCL8 730 59 810 205 

Interestingly also the degree of saturation (as expressed in −ΔF/F0) is much higher for dnCXCL8 

again for both GAG ligands compared to wild type CXCL8. This means that ligand-induced quenching 

of the Trp residue in dnCXCL8 is much more efficient (approximately 3-fold higher) than for CXCL8. 

This refers to a significant difference in the structural change induced by GAG binding to the two 

proteins. We have shown previously by CD-spectroscopy that CXCL8 and dnCXCL8 do not exhibit 

the same overall three dimensional fold [1]. Therefore, GAG ligand binding is expected to lead to a 

different structural re-arrangement in the two proteins which impacts in a different manner on the 

tryptophan emission and thus to a different signal saturation behaviour. The stronger electrostatic 

attraction between dnCXCL8 and the GAG ligands compared to CXCL8 also contributes to the more 

efficient ligand-induced fluorescence quenching of the mutant compared to the wild type.  



Molecules 2014, 19 10623 

 

 

The IFT method is a highly sensitive and robust method to determine protein-GAG binding 

affinities without chemically or genetically modifying the protein and/or the ligand, but only if the 

protein under investigation naturally contains a tryptophan residue (if this is not the case, a tryptophan 

residue can be introduced by genetic engineering or an extrinsic fluorophore like fluorescein can be 

chemically attached to the protein, e.g., via primary amine chemistry). Depending upon the protein and 

the mode of interaction, the method is able to discriminate between similar but significantly different 

polysaccharide ligands like heparin and HS. It is generally easy to implement but cannot easily be 

automated which would be important for screening purposes (a comparison of the methods described 

here relating to practical matters is given in Table 2). The stoichiometry of the interaction is not 

revealed by these experiments, likewise the oligomerisation state of the interacting partners. Both, 

stoichiometry and oligomerisation, would be important to more deeply characterise the protein-GAG 

interaction. Especially with respect to the number of binding sites, GAGs are a very special class of 

bio-macromolecules as they may contain multiple binding sites for a single protein. Because all 

commercially available GAG preparations consist, in addition, of many different individual molecules 

which differ in length as well as in overall charge and sulfation patterns, an estimation of binding sites 

is as impossible as to determine the exact nature of the very specific GAG ligand for a defined protein. 

However, IFT is a suitable method to characterise protein-GAG interactions for drug development as 

long as a certain class of GAGs is targeted rather than a well defined GAG oligosaccharide sequence 

(like in the case of antithrombin III).  

Table 2. Comparison of the four methods described here relating to practical 

considerations. 

 

Amount of Chemokine 
Needed for One Set of 
Experiments (n = 3) 

Sensitivity * 
(LDL Estimate)  

Limitations 

Isothermal 
Fluorescene 
titration (IFT) 

50–200 µg 
100 nM 
(chemokine) 

intrinsic tryptophan residue which is 
sensitive to ligand binding (via ligand-
induced conformational change); 
background fluorescence (i.e., due to 
contaminant proteins); automatisation 
very difficult 

Surface 
Plasmon 
resonance 
(SPR)  

50–200 µg 100 nM (GAG) 

biotinylation of GAGs; GAG chip 
coating efficiency; better fitting 
algorithms needed for calculating on 
and off rates 

ELICO 
20–50 µg (biotinylated 
chemokine) 

200 nM 
(chemokine) 

biotinylation of target chemokine; large 
amounts of competitor chemokines  

Isothermal 
titration 
calorimetry 
(ITC)  

1 mg 
1 µM 
(chemokine) 

large amounts of chemokine;  
re-buffering of GAG ligand(s) to avoid 
dilution heat effects 

* lower detection limit referring to the lowest concentration of the reporting interaction partner (= chemokine or GAG). 
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2.2. Surface Plasmon Resonance Measurements 

A much more common method in drug development for investigating protein-ligand interactions is 

surface plasmon resonance (SPR) [24]. One of the major methodological differences compared to IFT 

is that one of the interaction partners needs to be immobilised. In our case, we biotinylated the two 

GAG ligands either via their carboxyl groups (HS) or by reductive amination (heparin, see the 

Experimental Section for further details), depending upon the availability of reducing ends. The 

biotinylated GAGs were then immobilised on streptavidin-coated SPR chips and then used for 

chemokine and mutant interaction studies in a typical SPR set-up. This set-up would in principle also 

allow the determination of kinetic on- and off-rates (kon/koff) on top of equilibrium Kd values. In the 

case of our chemokine-GAG interactions this was not possible due to the lack of a mathematical model 

which would allow the fitting of rate constants for such interactions (see Figure 3). Since the binding 

kinetics is most probably influenced by oligomerisation/de-oligomerisation processes of the 

chemokine (induced by GAG binding) a deconvolution of binding and aggregation processes is too 

complex to model mathematically.  

Figure 3. Surface plasmon resonance: (A) sensogram of CXCL8 and dnCXCL8 binding to 

heparin; (B) sensogram of CXCL8 and dnCXCL8 binding to HS. The step-wise addition of 

protein ligands is shown as insert (for Kd values see Table 1).  
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Figure 3. Cont. 

(B) 

 

 

Typical sensograms obtained for CXCL8 and dnCXCL8 binding to heparin or HS are displayed in 

Figure 3. A biphasic behavior of the sensograms was observed especially at higher chemokine 

concentrations which again might be the result of protein oligomer formation that was more dominant 

at higher chemokine concentrations. The Kd values obtained for the four protein-ligand pairs are shown 

in Table 1. Again, the affinities found for dnCXCL8 to heparin and HS are in a similar range whereas 

the Kd values for CXCL8 binding to these two ligands differ significantly, similar to the results 

obtained in the IFT measurements (see above). In addition, the relative affinity increase between wild 

type chemokine and the mutant is much higher for both ligands, i.e., over 40-fold. This much larger 

difference in Kd values between CXCL8 and dnCXCL8 observed in SPR measurements is interpreted 

as being due to the strong entropic contribution which favours GAG binding only when this otherwise 

very flexible ligand is immobilised. Interestingly, structurally immobilised GAGs reflect more the 

situation which is expected in vivo where membrane-bound proteoglycans (such as the syndecans and the 

glypicans) provide GAG “anchors” for chemokine binding in order to prevent the molecules from floating 

around. This quasi-static localisation of chemokines via GAG chains provides the basis for the solid-state 

chemotactic gradient that is responsible for leukocyte migration in vivo [7,18].  
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The SPR method is a fairly sensitive and very robust method to determine GAG-protein binding 

affinities. One of the interacting partners, in our case the GAG ligands, need to be chemically modified 

for the required immobilisation on the SPR chip. This method can, moreover, be automatised which is 

of great advantage if screening for high-affinity binders is needed. In addition, the kinetics of protein-

GAG binding is in principle contained within the data, for which more sophisticated mathematical 

models need to be developed that take into account the GAG-induced oligomerisation of chemokines.  

2.3. Isothermal Titration Calorimetry Measurements 

Isothermal titration calorimetry (ITC) has been used in the past to determine protein-GAG 

ineractions [25,26]. In ITC measurements heat is released or absorbed due to ligand binding. Typically 

solvent and salt displacement as well as conformational changes contribute to binding heats, 

representing enthalpic and entropic terms, respectively. Due to the low sensitivity of the method, quite 

high protein concentrations are needed to achieve a sufficiently high signal which is responsive to 

ligand addition in a concentration-dependent manner. Therefore, a 20-fold higher chemokine 

concentration was applied in ITC experiments (15 μM) compared to IFT measurements (700 nM). 

These method-dependent, relatively high protein concentrations induce artificial dimer/oligomer 

formation which leads to Kd values incomparable to IFT and SPR. As can be seen from the binding 

isotherms obtained by ITC (Figure 4), already the first addition of GAG ligand resulted in a rather 

large heat release with no baseline formation, which rendered reliable data analysis impossible. 

Therefore, we were not able to fully explore the potential of ITC experiments by which also the 

stoichiometry of the interaction (n), the reaction enthalpy (ΔH) and thus entropy changes (ΔS) can in 

principle be determined. The limitations mentioned above are dependent upon the chemokine under 

investigation, CCL2 for example exhibits a different oligomerisation behaviour which leads to 

straightforward analysable ITC data [20,27,28]. 

Figure 4. Isothermal titration calorimetry: binding isotherms of dnCXCL8 (black) and 

CXCL8 (grey) against heparin (A) and heparan sulfate (B) are shown. It can be clearly 

seen that the first addition of ligand already generates binding heat which does not allow 

for a concise data analysis (for further interpretation see text).  
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2.4. ELISA-Like Competition Assays  

Since our decoy proteins were designed to displace the corresponding wild type chemokine from its 

GAG co-receptor, we have developed a novel competition assay which yields IC50 values from 

displacement curves rather than Kd values obtained from bi-molecular binding isotherms. In our assay 

we have tried to mimic the glycocalix of cell surfaces by coating GAGs (heparin or HS) on specially 

prepared microtiter plates (Iduron Inc.). We then added biotinylated CXCL8 which was, after washing, 

displaced either by unmodified CXCL8 or by dnCXCL8 in a concentration-dependent manner. The 

detection of bound biotinylated CXCL8 at 450 nm is based on a typical ELISA set-up using 

streptavidin coupled to HRP (see the Experimental Section for further details). For this purpose, we 

have established a biotinylation protocol that was evaluated using IFT to prove that this labeling did 

not affect GAG binding (data not shown). In addition, the overall protein fold after biotinylation 

remained the same as the fluorescence emission spectra did not show any significant wavelength shift 

(data not shown). We were therefore confident that our labeling procedure yielded structurally and 

functionally active biotinylated chemokines which still reflect the natural characteristics of the 

unlabeled protein. 

The displacement curves are summarized in Figure 5. Similarly to IFT and SPR, the relative 

difference in GAG binding affinities between dnCXCL8 and wild type CXCL8 are reflected also in the 

competition experiments: dnCXCL8 was a 4-times better competitor for HS, and 6-times better for 

heparin compared to its wild type CXCL8 counterpart. However, there was no significant difference 

observed for the two GAG ligands binding to CXCL8. This means that in a competition set-up, both 

proteins (CXCL8 and dnCXCL8) were equally unable to discriminate between the two GAG ligands. 

The ELICO assay was originally designed to generate a displacement pattern of one (biotinylated) 

chemokine against a whole panel of other chemokines and GAG-binding proteins, that is to check for 

selectivity of protein displacement on the same GAG ligand rather than to discriminate between 

different GAG ligands. For the purpose of protein discrimination, the ELICO assay was shown to be 

robust and very sensitive. The major limitation is protein biotinylation which needs to be checked for 

structure/function conservation by an independent means (such as direct GAG binding monitored by IFT).  

Figure 5. ELICO: Displacement assay of dnCXCL8 (black) in comparison to CXCL8 

(grey) competing with biotinylated CXCL8 for binding to heparin (A) or HS (B).  
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3. Experimental Section  

3.1. Materials  

GAG binding plates, LMW heparin, HMW heparin, heparan sulfate and dermatan sulfate were 

purchased from Iduron (Manchester, UK), all chemicals, unless stated otherwise, from Sigma- Aldrich 

(St. Louis, MO, USA). CXCL8 and DN-CXCL8 (CXCL8Δ6F17KF21KE70KN71K) were produced in 

house. Phosphate- buffered saline (PBS) pH 7.2 contains 10 mM phosphate buffer and 137 mM NaCl. 

3.2. Isothermal Fluorescence Titration (IFT) 

The titration experiments were performed on a Fluoromax-4 Spectrofluorometer (Horiba, Kyoto, 

Japan) coupled to an external water bath to ensure constant temperature during the measurements. 

Protein fluorescence emission spectra were recorded over the range of 300–400 nm upon excitation at 

280 nm. The slit widths were set at 5 nm for excitation and emission, scan speed at 500 nm/min and 

the temperature was set to 20 °C. The use of concentrated GAG oligosaccharide stock solution ensured 

a dilution of the protein sample less than 5%. Prior to collection of the initial (=unliganded) protein 

emission spectra, 700 nM protein solutions were prepared from stock solutions and needed to be 

equilibrated for 30 mins. Following, respective GAG ligands (HS, HMW heparin, DS or LMW 

heparin) were added in concentrations ranging from 50 nM to 200 nM, the protein solutions were 

equilibrated for 1 min and fluorescence emission spectra were collected. For background correction the 

emission spectra of the respective GAG concentrations were collected in PBS buffer only. They were 

subsequently subtracted from protein emission spectra and the resulting curves were then integrated. 

The mean values resulting from 3 independent measurements were plotted against the concentration of 

the added ligand. The resulting binding isotherms were analysed by nonlinear regression using the 

program Origin (Microcal Inc., Northampton, MA, USA) to the following equation describing a 

bimolecular association reaction, where Fi is the initial and Fmax is the maximum fluorescence value. 

Kd is the dissociation constant, and [protein] and [ligand] are the total concentrations of the protein and 

the GAG ligand:  

F F F 	
K protein ligand K protein ligand 4 protein ligand

2 protein
 

3.3. Surface Plasmon Resonance (SPR) 

3.3.1. Biotinylation by Reductive Amination for LMW Heparin 

LMW heparin (50 mg) was dissolved in 2 M NH4Cl (1 mL). CH3BNNa (100 mg, Fluka, Buchs, 

Switzerland) was dissolved in 2 M NH4Cl (1 mL) and pipetted into dissolved GAG (1 mL) [29]. The 

reaction was incubated for 48 h at 70 °C under shaking. Then another portion (50 mg) of freshly 

weighed out CH3BNNA were added to the reaction and incubated for additional 48 h at 70 °C. Dialysis 

against PBS was performed using Float-a-lyzer (Spectrum Labs, Rancho Dominguez, CA, USA) 

repeated four times for 16 h. After reducing the volume about 30%–40% using a speed vac 

concentrator (Eppendorf, Vienna, Austria) the concentration of the GAG was determined by gel 
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electrophoresis as described by Gunay [30]. GAG (50 mg) was coupled to sulfo-NHS-LC-biotin (15 mg, 

Pierce, Rockford, IL, USA). Depending on the concentration of GAG, the respective molar amount of 

biotin was weighed out. The biotinylation reaction was performed in PBS (2 mL) on ice for 2 h. To get 

rid of the unbound biotin the reaction mixture was desalted again in a Float-a-lyzer against PBS for 16 h 

with four buffer changes and then reduced in volume on a speed vac concentrator. Again the 

concentration of the biotinylated GAG was determined on a gel as described before [30]. To estimate 

the quality of biotinylation of different GAG preparations we compared the binding properties with a 

biotinylated GAG reference batch with known binding properties and quality. The unknown 

biotinylated GAG was immobilized on the first flow cell under the same conditions than a reference 

batch on flow cell 2 using a flow rate of 5 µL/min, for a certain contact time, depending on the type of 

GAG, usually around 60 s. Rmax and Rimmob were determined and set relative to the baseline response. 

Biotinylation efficacy in % was calculated by dividing Rimmob by Rmax multiplied with 100. For 

comparison of batches Rimmob of the unknown b-GAG was divided by the reference b-GAG that gave a 

specific immobilization reference value.  

3.3.2. Biotionylation of Carboxyl Groups for Heparan Sulfate 

Heparan sulfate (10 mg) was dissolved in 0.1 M MES buffer pH 5.0. 1.25 mM Biotin Hydrazid 

(Pierce) and 6.5 mM EDC were added and the solution was incubated for 2.5 h at RT. Dialysis against 

PBS was repeated four times for 24 h using a Float-a-lyzer. The quality of biotinylation was 

determined as described for LMW heparin. 

3.3.3. Affinity Measurements  

All measurements were performed on a BiacoreX100 system (GE Healthcare, Uppsala, Sweden) at 

a constant temperature of 25 °C. PBS plus 0.005% Tween (Merck, Darmstadt, Germany) was used as 

running buffer. C1 sensor chips (GE Healthcare) were pre-treated and washed as described in the 

manufacturer’s instruction manual. Before immobilizing biotinylated GAGs on the surface of C1 

chips, C1 carboxyl groups were activated with EDC/NHS and coated with neutravidin (0.2 mg/mL in 

acetate buffer pH 4). The remaining active groups were blocked with ethanolamine. Flow runs were set 

to 5 µL/min and contact time for all reagents to 10 min. b-GAGs were immobilized with a flow rate of 

5 µL/min and a concentration of 20 µg/mL. Contact times were varied depending on the used GAG 

and the determined biotinylation efficacy. The reference cell was only immobilized with neutravidin, 

serving as control to measure background binding of chemokines. For each binding measurement,  

7 different concentrations of the respective chemokine were measured in quadruplicates; the second 

lowest concentration was injected twice as control. Contact times for all injections and dissociations 

were 120 s at 30 µL /min over both flow cells. The regeneration solution (1 M NaCl) was enclosed 

directly after each dissociation time with 30 µL/min and 60 s contact time after each cycle. The data 

were evaluated using the Biacore Evaluation software 1.0. Affinity constants were assessed by a 

simple 1:1 equilibrium binding model, where Req is plotted against the analyte concentration. For 

fitting the steady state formula that corresponds to the Langmuir adsorption equation was used 

provided by the Biacore Evaluation Software. 
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3.4. Isothermal Titration Calorimetry (ITC) 

The measurements were performed on a VP-ITC Microcalorimeter (MicroCal, Pittsburgh, PA, 

USA). The protein concentration (CXCL8, dnCXCL8) in the sample cell was 15 µM. Titrants (GAGs) 

were used in concentrations ranging from 25–360 µM depending on size and assumed number of 

binding sites. Proteins and GAGs were diluted in PBS buffer and degassed for 10 min at 20 °C in the 

Thermo Vac (MicroCal) prior to use. The reference cell was filled with degassed double-distilled 

water. Following parameters were adjusted for the experiments: cell temperature was set to 25 °C; 

reference power 11.8 µCal/s; initial delay: 60s; stirring speed 270 rpm; feedback mode: high; 

equilibration options set to fast equilibration and auto. After an initial injection of 2 µL (pre-titration) 

the following titrating aliquots had a volume of 8 µL with 250 s spacing between each titrant addition 

to assure signal returning to baseline. The filter period was 2; the duration was 4 s for the pre-titration 

and 16 s for following titrations. The titrant was added until saturation was observed. The maximum 

total number of ligand additions was 38. 

The integrated heat changes were then plotted against the molar ratio and analyzed with Origin® 

scientific plotting software version 7.0 (MicroCal) using a One Set of Sites curve fitting model to 

obtain the association constant (Ka), the stoichiometry (N),the enthalpy (ΔH) as well as the entropy 

(ΔS) of binding. The dissociation constant (Kd) and the Gibbs free energy (ΔG) of the binding were 

calculated using following correlations: Kd = 1/Ka, and ΔG = −RT ln Ka.  

3.5. ELISA-Like Competition (ELICO) 

3.5.1. Biotinylation of Chemokines 

Prior to chemokine biotinylation a buffer exchange was performed to 0.1 M MES using Amicon 

Ultracel 3K 4 mL (Millipore, Billerica, MA, USA) to provide optimum reaction conditions. The 

protein was then incubated with 20 molar excess of EZ Link Penthylamine Biotin (Thermo Scientific, 

Waltham, MA, USA) and 10 molar excess EDC (Pierce) for 2 h at room temperature and low 

agitation. Desalting was performed using ZEBA desalting columns (Pierce) according to 

manufacturer’s protocol. Biotinylation grade was determined using a Biotin Quantification kit (Pierce) 

and protein concentration was determined by photometric measurements.  

3.5.2. ELICO Protocol 

GAG (2.5 µg) was diluted in PBS (137 mM NaCl, 10 mM phosphate buffer, pH 7.2) and coated on 

specially prepared Iduron plates over night at room temperature. After a washing step using an 

automatic platewasher (Tecan, Männedorf, Switzerland), 250 nM biotinylated CXCL8 was incubated 1 h 

at room temperature with the pre- coated GAG plates. After another washing step to remove unbound 

biotinylated CXCL8, it was incubated with different competitor concentrations starting from 50 µM to 

3 nM diluted in PBS for 2 h at room temperature. To detect the remaining biotinylated CXCL8 we 

used an ELISA- like setup. After another washing step we incubated the plates with high sensitivity 

Streptavidin HRP (Pierce) diluted in 0.2% dry milk that binds to the non-displaced biotinylated 

CXCL8 on the plate. After another hour incubation at RT and removal of unbound Streptavidin by 
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washing, we analysed the plate by adding the substrate Tetramethylbenzidine (TMB), resulting in a 

blue colour change. After stopping the reaction with sulphuric acid the absorbance at 450 nm was read 

in a Beckman Coulter DTX 800 Multimode Detector (Vienna, Austria), with correction at 620 nm. The 

reference (OD620) values were subtracted from the sample values (OD450) and the Mean and Standard 

Deviation of the replicates calculated. Data analysis was performed using specialized statistical 

software Origin® (Microcal Inc.). 

4. Concluding Remarks  

The chemokine-glycosaminoglycan interaction has been recognized as a key step in various 

biological and pathological processes involving leukocyte migration and extravasation. Different ways 

of therapeutically interfering with this particular interaction (low molecular weight glycomimetics or 

antibody approaches) have been investigated, but a major breakthrough has so far not been reported. 

One of the major problems of protein-GAG interactions in general is the lack of knowledge about the 

exact nature of the specific GAG ligand. In addition, it is still under debate whether the interaction of 

proteins with GAGs is specific or unspecific (i.e., based purely on electrostatic interactions), and that 

there are perhaps only a few exceptions to this rule (like antithrombin-III). In order to investigate the 

protein-GAG interaction to a level to differentiate between specific and unspecific interactions, a 

repertoire of methods is needed. Some of the methods have been compared here. Unlike other, quite 

frequently used methods like heparin affinity chromatography, the biophysical methods described here 

reveal true affinity or competition constants (Kd and IC50 values, respectively). This is especially 

important if the binding potential of various protein mutants to different GAG molecules should be 

unravelled to a certain degree of sensitivity in the context of drug development. The ITC method, 

though giving Kd values based on heat release/absorption after ligand binding (i.e., the most direct 

response to ligand binding), the calorimetric method consumes a quite high protein amount. The IFT 

technique, on the other hand, needs only a fairly low protein concentration and is thus quite sensitive 

compared to other methods like NMR and analytical ultracentrifugation, but cannot be compared in 

this respect with radiolabelling methods which are sensitive down into the picomolar protein range. 

However, either protein or GAG ligand need to be radiolabelled for this purpose. If therefore in IFT 

experiments intrinsic fluorophores like the tryptophan residue can be used, labelling of the protein can 

be avoided and therefore a substantial change of the protein's structure (and thus function) can be 

avoided. Also the SPR set-up used in our study avoids protein labelling and allows, due to 

immobilisation of the GAG ligand, a view onto the protein-GAG interaction “from the other side”. 

This means that while in IFT measurements—like in NMR spectroscopy—the affinities are inferred 

from protein conformational changes, in SPR measurements with immobilised GAGs the interaction 

strength is detected via the surface reorganisation of the carbohydrate ligand. If therefore, for example, 

affinities of a defined protein-ligand pair would significantly differ in IFT and SPR measurements, 

different factors can be assumed to contribute differently to the interaction depending upon the 

molecular view point (i.e., from the protein like in IFT or from the GAG like in SPR). The most 

important factors are considered to be enthalpy versus entropy (depending upon the overall charge 

versus flexibility of the sensing interaction partner), desolvation and salt release, ligand-induced 

conformational changes (and consequently oligomerisation). Only the SPR method is able, in 



Molecules 2014, 19 10632 

 

 

principle, to yield on and off rates for the protein-GAG interaction. However, more sophisticated 

fitting algorithms need to be put in place. Finally, the ELICO method introduced here allows a 

screening for specificity in a given protein-GAG interaction which is not easily possible in other 

competitive set-ups like radioligand displacement assays. As the protein interaction partner can be 

displaced by either other proteins, as described above, but also by other GAG ligands (data not shown) 

and, moreover, other GAG ligands can be immobilised to serve for the competition experiments, a 

deeper insight into specificity becomes possible. This will be the task of future experiments.  

If therefore possible, we would recommend a combinatorial approach and to start off investigating a 

protein-GAG interaction by a method which does not influence the structure of the protein nor of the 

GAG ligand, and which is still sensitive down to a protein concentration comparable to in vivo 

situations (i.e., in the nanomolar range). To our knowledge, only the IFT method using intrinsic 

tryptophan residues as fluorescence reporters, falls under this category. This method is, on top, very 

robust, easy to implement, and gives reproducible results. In a second step, if the GAG ligand can be 

immobilised onto an SPR chip, this method allows to detect and compare affinities from the 

carbohydrate molecular viewpoint which could give different results and lead therefore to different 

conclusions about the mode of protein-ligand interaction. Access to kinetic rate constants is a further 

asset of this method. Specificity is suggested to be challenged in a third step, i.e., once the affinities 

have already been established. By variation of the competition conditions as well as by the nature of 

the competitors, conclusions about the specificity of the given protein-GAG pair can be drawn. Finally, 

high-resolution structure determination of chemokine-GAG complexes by X-ray crystallography or by 

NMR spectroscopy are needed to ultimately resolve the structure-function relation of such interactions. 

This was recently demonstrated by Nordsieck et al. [31] who have shown that a C-terminal mutation of 

CXCL8 led to an additional GAG binding site, which could also explain some findings of our study. 
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