

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

### Data Article

## Proteomics data of SNF1-related protein kinase 2.4 interacting proteins revealed by immunoprecipitation-mass spectrometry



# Tong Zhang<sup>a</sup>, Jacqueline D. Schneider<sup>a</sup>, Chuwei Lin<sup>a</sup>, Jin Koh<sup>d</sup>, Sixue Chen<sup>a,b,c,d,\*</sup>

<sup>a</sup> Department of Biology, University of Florida, Gainesville, FL 32610, USA

<sup>b</sup> Genetics Institute, University of Florida, Gainesville, FL 32610, USA

<sup>c</sup> Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA

<sup>d</sup> Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA

#### ARTICLE INFO

Article history: Received 13 July 2020 Revised 5 September 2020 Accepted 16 September 2020 Available online 20 September 2020

*Keywords:* Immunoprecipitation-mass spectrometry Proteomics SNF1-related protein kinase 2.4 Protein-protein interaction

#### ABSTRACT

Identification of kinase substrates is a prerequisite for elucidating the mechanism by which a kinase transduces internal or external stimuli to cellular responses. Conventional methods to profile this type of protein-protein interaction typically deal with one kinase-substrate pair at a time. Mass spectrometry-based proteomics, on the other hand, can determine putative kinase-substrate pairs at a large-scale in an unbiased manner. In this study, we identified the interacting partners of SNF1-related protein kinase 2.4 (SnRK2.4) via immunoprecipitation coupled with mass spectrometry. Proteins from stable transgenic Arabidopsis plants overexpressing a FLAG-tagged SnRK2.4 (cloned from Brassica napus) were pulled down using an anti-FLAG antibody. The protein components were then identified by mass spectrometry. In parallel, proteins from wild type plants were also analyzed, providing a list of nonspecific binding proteins that were further removed from the candidate SnRK2.4-interacting protein list. Our data identified over 30 putative SnRK2.4 interacting

\* Corresponding author at: Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.

E-mail address: schen@ufl.edu (S. Chen).

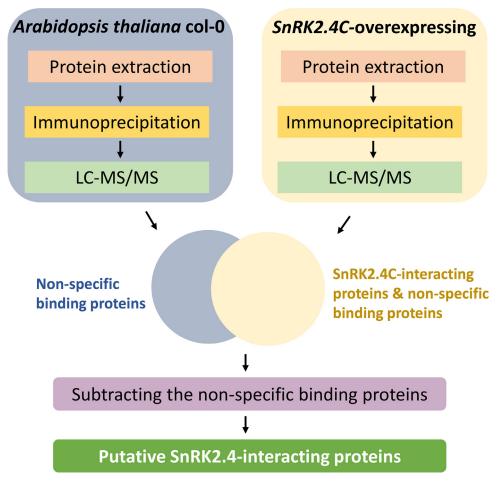
https://doi.org/10.1016/j.dib.2020.106326

<sup>2352-3409/© 2020</sup> The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

partners, which included many key players in stress responses, transport, and cellular metabolic processes.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

#### **Specifications Table**


| Subject                        | Plant molecular biology                                                                                                                                                                                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specific subject area          | Cellular proteomics                                                                                                                                                                                                         |
| Type of data                   | Table, image, figure                                                                                                                                                                                                        |
| How data were                  | LC-MS/MS analysis, using an Orbitrap Fusion Tribrid Mass Spectrometer                                                                                                                                                       |
| acquired                       | (Thermo Scientific)                                                                                                                                                                                                         |
| Data format                    | Raw data and analyzed data                                                                                                                                                                                                  |
| Parameters for data collection | Proteins from both the wild type and transgenic plants overexpressing a FLAG-tagged SnRK2.4 were immunoprecipitated with an anti-FLAG antibody. The resulting proteins were identified by LC-MS/MS.                         |
| Description of data collection | A data-dependent acquisition method was used for MS data collection                                                                                                                                                         |
| Data source location           | Gainesville, FL, United States                                                                                                                                                                                              |
| Data accessibility             | The data on putative SnRK2.4-interacting proteins are available with this article. Raw data files and search results are available through ProteomeXchange (http://www.proteomexchange.org/) with the identifier PXD017499. |
| Direct link to the             | https://www.ebi.ac.uk/pride/archive/projects/PXD017499                                                                                                                                                                      |
| dataset                        |                                                                                                                                                                                                                             |
| Related research article       | Mengmeng Zhu; Tong Zhang; Wei Ji; Cecilia Silva-Sanchez; Wen-yuan Song;<br>Sarah M. Assmann; Alice C. Harmon; Sixue Chen                                                                                                    |
|                                | Redox regulation of a guard cell SNF1-related protein kinase in <i>Brassica napus</i> , an oilseed crop                                                                                                                     |
|                                | Biochemical Journal (2017), 474(15):2585-2599.                                                                                                                                                                              |
|                                | doi: 10.1042/BCJ20170070.                                                                                                                                                                                                   |

#### Value of the Data

- This data provides putative interacting proteins of SnRK2.4, information of which is crucial toward understanding SnRK2.4-mediated signaling.
- The list of candidate proteins serves as a foundation for further detailed studies to validate protein-protein interactions between SnRK2.4 and other proteins.
- This data set provides the comprehensive characterization of the SnRK2.4 interactome, which can be used to compare with the interactomes of other SnRKs in plants.
- This dataset demonstrates the utility of immunoprecipitation-mass spectrometry (IP-MS) to screen potential interacting proteins in the context of kinase signaling networks.
- The method has broad applications in studying protein complexes and interaction networks in different organisms and biological context.

#### 1. Data Description

The overall experimental approach consisted of the purification of SnRK2.4-interacting proteins by immunoprecipitation, followed by identification via mass spectrometry-based proteomics (Fig. 1). Arabidopsis plants overexpressing a FLAG-tagged SnRK2.4 were used, making it possible to pull down SnRK2.4 and its associated proteins by an anti-FLAG antibody. Processing of protein samples from the wild type (WT) plants in the same manner provided a robust way to eliminate nonspecific binding proteins (See Methods for detail). We define specific interacting proteins with our protein of interest as those that are only identified from the transgenic

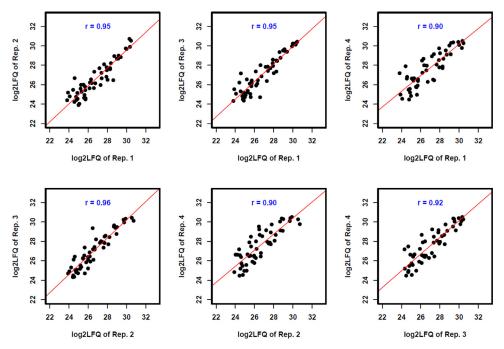


**Fig. 1.** IP-MS workflow. Note that samples from the wild type (top left panel) and transgenic plants overexpressing FLAG-tagged SnRK2.4 were processed in parallel. Following protein extraction, immunoreaction with anti-FLAG antibody, and LC-MS/MS analysis, the resulting proteins lists were compared. Nonspecific proteins identified from the wild type plants were subtracted, providing a clean list of SnRK2.4-interacting proteins.

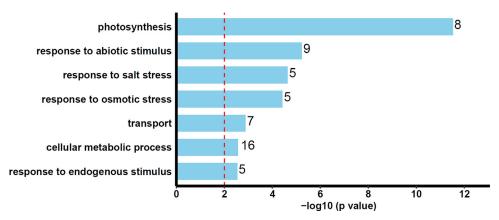
plants, not from the WT. In this study, we identified 110 unique proteins from the SnRK2.4overexpressing plants. Among them, 73 were also identified in the WT, which were considered as non-specific binding proteins. After removing these proteins, the remaining 37 proteins were further analyzed.

Quantification of protein intensities showed good correlation among the four independent IP-MS analyses of SnRK2.4-overexpressing plants (average Pearson correlation r = 0.93, Fig. 2). Table 1 lists putative SnRK2.4-interacting proteins, which are enriched primarily in stress responses such as response to abiotic stress and response to endogenous stimulus, as well as in transport and cellular metabolic processes (Fig. 3). This supports the notion that SnRK2 protein kinases are key regulators in stress responses [1,2]. Of note, we identified ARM repeat superfamily protein (AT4G36550, a protein known to mediate protein-protein interaction [3]) and heat shock protein 60-2 (AT2G33210) as heat-shock proteins had been shown to function downstream of SnRKs-mediated signaling [4,5]. Photosynthesis, another significantly over-represented biological process, is closely related to stress response. Thus, our data suggests a potential role

#### Table 1


Information of putative SnRK2.4 interacting proteins.

| Accession | Protein description                                          | Replicates (log <sub>2</sub> intensities) |       |       |       | Subcellular localization           |
|-----------|--------------------------------------------------------------|-------------------------------------------|-------|-------|-------|------------------------------------|
| AT3G47470 | light-harvesting chlorophyll-protein<br>complex I subunit A4 | 26.14                                     | 26.45 | 26.36 | 26.04 | chloroplast/membrane/nucleus       |
| AT5G12860 | dicarboxylate transporter 1                                  | 24.32                                     | 24.13 | 24.6  | 24.43 | chloroplast/membrane/mitochondrior |
| AT5G66760 | succinate dehydrogenase 1–1                                  | 23.8                                      | 23.76 | 23.9  | 24.25 | mitochondrion                      |
| AT4G36550 | ARM repeat superfamily protein                               | 26.09                                     | 26.36 | 26.08 | 25.73 | nucleus/cytoplasma/mitochondrion   |
| AT3G08940 | light harvesting complex photosystem II                      | 26.9                                      | 27.45 | 27.35 | 27.53 | membrane/chloroplast/nucleus       |
| AT5G54270 | light-harvesting chlorophyll B-binding<br>protein 3          | 25.37                                     | 25.73 | 26.07 | 26.04 | membrane/chloroplast               |
| AT5G25920 | hypothetical protein                                         | 26.16                                     | 27.22 | 26.94 | 26.57 | mitochondrion                      |
| AT1G61520 | PSI type III chlorophyll a/b-binding<br>protein              | 28.69                                     | 28.4  | 27.58 | 28.22 | chloroplast/membrane/nucleus       |
| AT5G53350 | CLP protease regulatory subunit X                            | 25.27                                     | 25.73 | 25.41 | 24.57 | mitochondrion                      |
| AT3G63410 | S-adenosyl-L-methionine-<br>methyltransferase                | 23.26                                     | 23.17 | 24.07 | 24.11 | chloroplast/membrane/cytosol       |
| AT1G29930 | chlorophyll A/B binding protein 1                            | 24.07                                     | 23.83 | 24.5  | 23.18 | chloroplast/membrane/nucleus       |
| AT3G13300 | transducin/WD40 repeat-like superfamily<br>protein           | 27.03                                     | 27.09 | 28.36 | 27.43 | nucleus/cytosol                    |
| AT1G31330 | photosystem I subunit F                                      | 26.09                                     | 26.57 | 26.93 | 27.6  | chloroplast/membrane/nucleus       |
| AT1G60940 | SNF1-related protein kinase 2.10                             | 31.78                                     | 32.64 | 32.02 | 31.05 | plasma membrane/nucleus/cytosol    |
| AT4G38630 | regulatory particle non-ATPase 10                            | 24.18                                     | 22.74 | 22.9  | 22.75 | membrane/nucleus/cytosol           |
| ATCG00580 | photosystem II reaction center protein E                     | 23.31                                     | 24.1  | 23.46 | 22.23 | membrane/chloroplast/nucleus       |
| AT5G16030 | mental retardation GTPase activating<br>protein              | 25.29                                     | 25.21 | 25.15 | 23.64 | nucleus                            |
| AT1G11910 | aspartic proteinase A1                                       | 27.04                                     | 25.35 | 25.14 | 26.49 | vacuole/plasmodesma/cytosol        |
| AT3G18780 | actin 2                                                      | 27.18                                     | 26.28 | 27.11 | 25    | cytosol/membrane/cytoskeleton/nucl |
| AT2G05100 | photosystem II light harvesting complex<br>protein 2.1       | 25.48                                     | 26.26 | 25.41 | 27.74 | membrane/chloroplast/nucleus       |
| AT5G14040 | phosphate transporter 3                                      | 23.6                                      | 23.82 | 23.27 | 25.71 | chloroplast/mitochondrion/membran  |
| ATCG00130 | ATPase F subunit                                             | 26.23                                     | 25.6  | 24.02 | 27.16 | membrane/chloroplast/nucleus       |


(continued on next page)

#### Table 1 (continued)

| Accession | Protein description                                      | Replicates | (log <sub>2</sub> intensities | Subcellular localization |       |                                     |
|-----------|----------------------------------------------------------|------------|-------------------------------|--------------------------|-------|-------------------------------------|
| AT5G66880 | sucrose nonfermenting 1(SNF1)-related protein kinase 2.3 | 26.08      | 28.2                          | 25.87                    | 24.7  | nucleus/cytosol                     |
| AT4G33950 | Protein kinase superfamily protein                       | 24.6       | 26.56                         | 26.09                    | 23.29 | nucleus/cytosol                     |
| AT3G01390 | vacuolar membrane ATPase 10                              | 19.69      | 19.77                         | 18.38                    | 22.18 | Golgi apparatus/vacuole/cytosol     |
| AT3G03530 | non-specific phospholipase C4                            | 25.85      | 23.61                         | 26.49                    | 27.36 | plasma membrane/cytosol             |
| AT2G46620 | P-loop containing nucleoside<br>triphosphate hydrolase   | 22.62      | 26.6                          | 25.5                     | 26.01 | plasma membrane/cytosol             |
| ATCG00720 | photosynthetic electron transfer B                       | 22.67      | 20.42                         | 20.07                    | 24.08 | chloroplast/membrane/nucleus        |
| AT2G28900 | outer plastid envelope protein 16-1                      | 23.83      | 20.13                         | 21.83                    | 24.45 | chloroplast/vacuole/mitochondrion   |
| AT3G09660 | minichromosome maintenance 8                             | 26.98      | 26.36                         | 27.13                    | 22.64 | nucleus                             |
| AT4G11010 | nucleoside diphosphate kinase 3                          | 25.64      | 21.52                         | 25.56                    | 26.38 | mitochondrial/chloroplast           |
| AT5G46800 | Mitochondrial substrate carrier family<br>protein        | 19.83      | 23.4                          | 24.83                    | 24.02 | cytosol/membrane                    |
| AT5G35200 | ENTH/ANTH/VHS superfamily protein                        | 20.24      | 24.98                         | 23.71                    | 25.39 | plasma membrane/Golgi/mitochondrion |
| AT2G20260 | photosystem I subunit E-2                                | 21.28      | 20.68                         | 21.22                    | 25.96 | chloroplast/membrane/cytosol        |
| AT5G52090 | P-loop containing nucleoside<br>triphosphate hydrolase   | 24.4       | 19.6                          | 18.68                    | 22.32 | nucleus/cytosol                     |
| AT2G33210 | heat shock protein 60-2                                  | 18.38      | 22.85                         | 23.42                    | 25.17 | mitochondrion/cytosol/chloroplast   |



**Fig. 2.** Quantification metrics IP-MS. Correlation of relative protein abundance, expressed as log2 transformed label-free quantification (LFQ) intensities, from four biological replicates were shown. In each plot, the Pearson correlation value (r, shown in blue) and the best linear fit line (shown in red) were indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



**Fig. 3.** Over-represented biological processes enriched from putative SnRK2.4-interacting proteins. Gene ontology of the protein lists was performed with agriGO, and statistically over-represented biological processes (p < 0.01, indicated by a vertical red line) were shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of SnRK2.4 in balancing stress response and growth. In addition, most of the putative interacting proteins in Table 1 share subcellular localization with the SnRK2.4, which is found in nucleus, cytosol and mitochondria. Lastly, the coupling of genetic engineering and immunoprecipitation makes the approach described here easy to implement without the need to generate protein

specific antibody. Thus, it can be readily applied to study the interactome of other proteins to broaden the search for protein-protein interactions.

#### 2. Experimental Design, Materials and Methods

#### 2.1. Plant materials

Both wild type (WT) Arabidopsis thaliana col-0 (obtained from Arabidopsis Biological Resource Center) and transgenic plants overexpressing a *Brassica napus SnRK2.4-1C* were used in this study. The transgenic plants were generated by transferring a FLAG-tagged *SnRK2.4-1C* into the WT *A. thaliana* as described previously [6,7]. Seeds were soaked in 50% bleach for disinfection and were then sown on half-strength Murashige and Skoog medium supplemented with  $1 \times MS$  vitamins (Caisson, UT). Following stratification at  $4 \,^{\circ}$ C for 2 days in the dark, seeds were allowed to germinate and grow in a growth chamber at 22/20 °C with 8/16 h light cycle (day/night). Two-week-old seedlings were used for proteomics experiments.

#### 2.2. Immunoprecipitation and proteomic sample preparation

Seedlings were pulled off from the agar plate with tweezers and immediately frozen in liquid nitrogen. Samples were then ground into fine power with a mortar and pestle in the presence of liquid nitrogen. Next, proteins were extracted in 50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 supplemented with protease and phosphatase inhibitor cocktails (Thermo Scientific, IL). Insoluble cellular debris were removed by centrifugation at 10,000 g for 10 min, and proteins in the supernatant were quantified with the Bradford method assay.

Immunoprecipitation and the subsequent sample preparation for proteomics were performed according to previous descriptions [8]. Briefly, 10 mg of proteins were incubated with 300  $\mu$ L of anti-FLAG M2 resin (Sigma, MO) for 2 h at 4 °C with gentle agitation. Nonspecific binding proteins were removed by washing the resin three times with 50 mM Tris–HCl and 150 mM NaCl (pH 7.4). Subsequently, FLAG-tagged SnRK2.4 and its associated proteins were eluted with 150 ng/ $\mu$ L 3 X FLAG peptide (Sigma, MO). The eluted samples were cleaned by a short-run SDS-PAGE (30 min at 100 V), which effectively removed salts and the 3 X FLAG peptide that would otherwise compromise protein identification. Protein bands of interest were cut from the gel and were then digested with trypsin. Specifically, three fractions were collected for each sample: the major band corresponding to SnRK2.4, proteins above this band, and proteins below this band. The resulting peptides from each fraction were further desalted by Ziptip prior to liquid chromatography mass spectrometry analysis. Four biological replicates were conducted from both the WT and the transgenic plants, thus yielding 24 samples for proteomic identification (8 samples X 3 fractions/sample = 24).

#### 2.3. Liquid chromatography mass spectrometry

On-line peptide separation and mass spectrometry data acquisition were performed on an EASY-nLC 1000 (Thermo Scientific, CA) coupled with an Orbitrap Fusion Tribrid (Thermo Scientific, Germany) as described previously [9]. Briefly, peptides were eluted with a reverse phase C18 column at 350 nL/min with a linear increase of buffer B (0.1% formic acid in acetonitrile) from 2 to 30% in 60 min. The eluted peptides were subjected to a data-dependent acquisition scheme where a full MS scan was followed by MS/MS scans of the most intense precursor ions within a cycle of 2 s. Full MS scans were performed in the Orbitrap at 350–1800 m/z at a resolution of 120,000 with automatic gain control (AGC) of 4E5 and maximum ion injection time of 50 ms. Most intense precursor ions were selected by the quadrupole at an isolation window

1.3 m/z, and then fragmented by higher-energy collisional dissociation at collision energy of 35. Full MS/MS scans were conducted in the Orbitrap at AGC of 1E4 and maximum ion injection time of 35 ms.

#### 2.4. Data analysis

Analysis of IP-MS data was performed as previously described [8,10]. All raw data were searched with MaxQuant [11,12] against the TAIR10 protein database (35,386 entries, downloaded on October 2017). Gel pieces from the same biological replicates were assigned as fractions. Key searching parameters included: trypsin as the enzyme for digestion with a maximum missed cleavage sites of 2; Carbamidomethyl on cysteine residues (+57.021464Da) as a fixed modification; oxidation of methionine (+15.994915Da) and acetylation of protein N termini (+42.010565Da) as dynamic modifications; mass tolerance for MS1 and MS/MS spectra being 4.5 ppm and 0.5Da, respectively. A 1% false discovery rate was applied for both peptide and protein identification. In addition, at least two unique peptides were required for confident protein identification. The match between run and label-free quantification features [11] was also enabled.

Since four biological replicates were used here, a protein is defined as identified in either the WT or the transgenic plants if it is quantified in at least two biological replicates (i.e., missing values <=2). SnRK2.4-interacting proteins were defined as these that are uniquely identified in the transgenic plants but not in the WT controls. The quantification correlation among biological replicates was performed with log2 transformed label-free quantification (LFQ) protein intensities using Pearson correlation in the base R [13]. Gene ontology of the putative SnRK2.4-interacting proteins was performed using agriGO [14] with the results in *Supplemental Table 1*. The R script code for plotting can be found in *Supplemental code*.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

#### Acknowledgments

This research was supported by grants from the National Science Foundation (MCB 0818051 to S. Chen). Ning Zhu and Dr. Joe Collins at University of Florida were acknowledged for technical assistance and invaluable discussions, respectively.

#### **Supplementary Materials**

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106326.

#### References

- A. Kulik, I. Wawer, E. Krzywińska, M. Bucholc, G. Dobrowolska, SnRK2 protein kinases-key regulators of plant response to abiotic stresses, OMICS 15 (2011) 859–872.
- [2] T. Zhang, S. Chen, A.C. Harmon, Protein phosphorylation in stomatal movement, Plant Signal Behav. 9 (2014) e972845.
- [3] Y. Mudgil, S.-.H. Shiu, S.L. Stone, J.N. Salt, D.R. Goring, A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family, Plant Physiol. 134 (2004) 59–66.

- [4] M. Clément, N. Leonhardt, M.-J. Droillard, I. Reiter, J.-L. Montillet, B. Genty, C. Laurière, L. Nussaume, L.D. Noël, The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis, Plant Physiol. 156 (2011) 1481-1492.
- [5] P. Jacob, H. Hirt, A. Bendahmane, The heat-shock protein/chaperone network and multiple stress resistance, Plant Biotechnol. J. 15 (2017) 405-414.
- [6] M. Zhu, T. Zhang, W. Ji, C. Silva-Sanchez, W.Y. Song, S.M. Assmann, A.C. Harmon, S. Chen, Redox regulation of a guard cell SNF1-related protein kinase in Brassica napus, an oilseed crop, Biochem. J. 474 (2017) 2585-2599.
- [7] T. Ma, M.J. Yoo, T. Zhang, L. Liu, J. Koh, W.Y. Song, A.C. Harmon, W. Sha, S. Chen, Characterization of thiol-based redox modifications of Brassica napusSNF1-related protein kinase 2.6-2C, FEBS Open Bio 8 (2018) 628-645.
- [8] T. Zhang, J.D. Schneider, C. Lin, S. Geng, T. Ma, S.R. Lawrence, C.P. Dufresne, A.C. Harmon, S. Chen, MPK4 phosphorylation dynamics and interacting proteins in plant immunity, J. Proteome Res. 18 (2019) 826–840. [9] T. Zhang, S. Chhajed, J.D. Schneider, G. Feng, W.-.Y. Song, S. Chen, Proteomic characterization of MPK4 signaling
- network and putative substrates, Plant Mol. Biol. 101 (2019) 325-339.
- [10] T. Zhang, J.D. Schneider, N. Zhu, S. Chen, Identification of MAPK substrates using quantitative phosphoproteomics, Methods Mol. Biol. 1578 (2017) 133-142.
- [11] J. Cox, M.Y. Hein, C.A. Luber, I. Paron, N. Nagaraj, M. Mann, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell Proteom. 13 (2014) 2513-2526.
- [12] S. Tyanova, T. Temu, J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc. 11 (2016) 2301-2319.
- [13] R.C. TeamR: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2017.
- [14] T. Tian, Y. Liu, H. Yan, Q. You, X. Yi, Z. Du, W. Xu, Z. Su, AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update, Nucl. Acids Res. 45 (2017) W122-W129.