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Abstract: Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic gram-negative pathogen that can
cause various infections, particularly in patients with compromised host defenses. P. aeruginosa forms
biofilms and produces virulence factors through quorum sensing (QS) network, resulting in resistance
to antibiotics. RhlI/RhlR, one of key QS systems in P. aeruginosa, is considered an attractive target for
inhibiting biofilm formation and attenuating virulence factors. Several recent studies examined small
molecules targeting the RhlI/RhlR system and their in vitro and in vivo biological activities. In this
review, RhlR-targeted modulators, including agonists and antagonists, are discussed with particular
focus on structure-activity relationship studies and outlook for next-generation anti-biofilm agents.
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1. Introduction

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen that can
cause various infections, particularly in patients with compromised host defenses [1].
P. aeruginosa is one of the so-called “ESKAPE” panel pathogens (i.e., Enterococcus facium,
Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa
and Enterobacter species) [2]. P. aeruginosa can form biofilms and produce virulence fac-
tors through quorum sensing (QS), resulting in resistance to antibiotics and to the host
immune response [3]. QS is a cell–cell communication process that allows bacteria to share
information on bacterial population density and behave as a community to respond to
changes in their environment [4]. This intercellular communication process is controlled by
interactions between autoinducers and their cognate receptors. P. aeruginosa has three major
cellular communication QS systems (Figure 1), (i.e., LasI/LasR, RhlI/RhlR, and PQS/PqsR),
which are tightly interconnected [5]. This QS network of P. aeruginosa affects the production
of virulence factors, biofilm formation, and modulation of host immune responses.

P. aeruginosa uses N-acyl-L-homoserine lactones (AHLs) as QS auto-inducers, similar
to other gram-negative bacteria. AHLs are typically produced by LuxI-type synthases and
are recognized by the cytoplasmic LuxR-type receptor [6]. P. aeruginosa produces N-(3-oxo-
dodecanoyl)-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL)
for the LasI/LasR and RhlI/RhlR QS systems, respectively [7]. Once the bacteria reach a cer-
tain population density threshold, AHLs bind their cognate receptor protein, thereby affect-
ing gene expression through transcriptional activation [8]. In addition to the LasI/LasR and
RhlI/RhlR QS systems, the 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone
signal, PQS) circuit is the third system regulated by PqsR, which relies on PQS. Recently,
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many studies reported the interaction between Rhl and Pqs systems [9–11]. RhlR nega-
tively regulates the expression of pqsABCDE operon independently of PQS production.
Additionally, PqsE, the final gene in the operon, activates RhlR. These three QS systems are
controlled in a hierarchical fashion in P. aeruginosa, contributing to fighting of them [5].
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However, QS has challenges of selectivity, virulence reduction, and lack of resistance
against QS inhibitors to reach the treatment of people [12]. The disruption of QS signals
affects indirectly or directly the disturbance between microflora QS activity and other QS-
mimics dependent host-microbiota signaling [13,14]. Furthermore, P. aeruginosa promotes
the development of isolates with an increased survival ability against QS inhibitor and
changes their metabolism for developing resistance of QS inhibitor [15,16]. Despite the
limitations of QS inhibitors, modulating the QS network between auto-inducers and their
cognate receptors is still considered a promising strategy for attenuating virulence factors
of P. aeruginosa [17].

The LasI/LasR system is considered a primary target and has been studied extensively
because it is located at the top of the P. aeruginosa QS hierarchy [18–20]. Although the
RhlI/RhlR system also plays an important role in the QS process of P. aeruginosa by utilizing
BHL as an autoinducer, only few studies examined RhlR-targeted modulators based on the
chemical structure of BHL [21,22]. Increasing research on RhlR-targeted modulators have
provided the evidence that the RhlI/RhlR system play unique roles in the QS pathway of
P. aeruginosa.

According to the recent report, LasR-mutants occur frequently among environmental
and clinical isolates are increasing [23,24]. There are increasing evidence that such LasR-
mutants have growth advantage over the wild-type for nutrient available in the infected
lungs [24,25]. In addition, many clinically isolated LasR-mutants are still able to produce
RhlR-dependent transcription factors [25,26]. More than half of the LasR-mutants retain
LasR-independent RhlR activity [27]. Overall, it became clear that LasR-mutants are
common in a variety of chronic infections and highlight the importance of RhlR role in
chronic P. aeruginosa infections [28]. Furthermore, LasR becomes dispensable in P. aeruginosa
when it is cultured in a low phosphate medium, suggesting RhlR is the head of the QS
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hierarchy under phosphate-limiting conditions [29]. Therefore, small molecule modulators
targeting RhlR can be developed as novel therapeutic agents in the control of P. aeruginosa
chronic infections.

This review describes structure-activity relationship (SAR) studies of RhlR-targeted
agonists and antagonists and discusses RhlR-targeted drug opportunities as anti-biofilm
agents. The structural relationship of RhlR-targeted modulators (agonists and antagonists)
was analyzed by classifying tail, middle, and head sections, inducing detailed SAR studies
compared to the previous RhlR studies [30,31]. Furthermore, the importance of developing
RhlR modulators for treating patients infected with P. aeruginosa was emphasized under
LasR-mutants and phosphate-limiting conditions.

2. RhlR-Targeted Modulators
2.1. RhlR-Targeted Agonists

Research on RhlR-targeted modulators has mainly focused on RhlR agonists. The struc-
tural scaffold of initial RhlR agonists was based on BHL, a natural auto-inducer of RhlR
(Figure 2). BHL possesses an n-butanoyl group at the tail region and a homoserine lac-
tone moiety at the head region with an amide linkage. BHL further comprises a shorter
alkyl chain than OdDHL, an auto-inducer responsive to LasR, and PQS, an auto-inducer
responsive to PqsR (Figure 2).
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Structural modification of BHL-based RhlR agonists has been implemented as follows:
replacement of the homoserine lactone ring, variation of the alkyl chain, bioisosterism of
the amide linkage, and absolute stereochemistry at the chiral center.

Blackwell and co-workers synthesized various BHL analogs and evaluated their EC50
(the effective concentration of a compound that gives half-maximal response) values using
the RhlR reporter systems of E. coli and P. aeruginosa [32]. A dose-response curve of the
most active RhlR agonists was analyzed to determine their EC50 values. They analyzed
the effect of a branched alkyl chain or a cycloalkane ring at the tail region on RhlR ac-
tivation. In addition, they evaluated the importance of the homoserine lactone ring at
the head region regarding RhlR agonism. The BHL analog (1) with the isovaleryl group
at the tail region showed stronger RhlR agonism with an EC50 value of 1.42 µM, com-
pared to BHL (EC50 = 8.08 µM) in the P. aeruginosa reporter system (Table 1). Compound 2
with a cyclopropylacetyl group also showed strong RhlR agonism with an EC50 value of
2.76 µM in the E. coli reporter system. Introduction of cycloalkane ring such as cyclobu-
tane (3, EC50 = 1.41 µM) or cyclopentane (4, EC50 = 1.22 µM) instead of the lactone ring
enhanced RhlR agonistic properties compared to BHL in E. coli reporter system. In addi-
tion, replacement of the homoserine lactone ring with the homocysteine thiolactone ring
(5, EC50 = 3.82 µM) slightly increased RhlR agonism in E. coli reporter. Furthermore, the
thiolactone analogs with isovaleryl (6, EC50 = 2.58 µM) or cyclobutanyl (7, EC50 = 1.65 µM)
were as potent as the corresponding the lactone analogs (1 and 3) in the P. aeruginosa RhlR
reporter assay system [33], implying that the thiolactone ring can be a surrogate of the lac-
tone ring. In particular, the thiolactone analog 6 displayed the strongest RhlR agonism with
an EC50 value of 0.46 µM in the E. coli RhlR reporter assay system. When the lactone ring
of BHL was replaced by cyclopentanone (8–10), RhlR activities were markedly decreased,
compared to the corresponding lactone or thiolactone analogs in E. coli and P. aeruginosa
reporter systems [20]. In addition, the reduction of the ketone to alcohol precluded the RhlR
agonism, suggesting that the carbonyl group in the ring at the head region is essential for
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RhlR agonism between two different reporters [21]. Ring expansion from cyclopentanone
(8) to cyclohexanone maintained RhlR agonism activity in both systems [21].

Table 1. RhlR-targeted agonists based on BHL.

Entry Structure
EC50

in E. coli RhlR
Reporter (µM)

EC50
in P. aeruginosa RhlR

Reporter (µM)

BHL
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Entry Structure 
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in E. coli RhlR 

Reporter (μM) 

15 14.7 

16 5.5 

17 5.8 

18 2.0 

19 4.7 

20 1.7 

21 6.6 

22 6.6 

23 11.1 

24 27.1 
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(5-BBF) 

~50 

(GFP expression by PA01) 
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EC50: the effective concentration of a compound that gives half-maximal response.

In case of homoserine lactone analogs, the extension of butyl chain to pentenyl chains at
the tail region (11 and 12) slightly enhanced RhlR agonism in E. coli. In addition, the methyl
branching in the propionyl (13) or butyryl (14) at the tail region showed increased RhlR
agonistic activity compared to BHL in E. coli reporter system.

Blackwell et al. conducted comprehensive structure-activity relationship studies of
BHL-based RhlR agonists by focusing on the tail region while retaining the homoserine
lactone ring in the head region [34]. They introduced the substituted phenylacetyl, the sub-
stituted phenylpropionyl group at the tail region, and evaluated RhlR agonism by E. coli as
summarized in Table 2.

Table 2. RhlR-targeted agonists with variation of tail region.
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Phenylacetyl analogs (16–21) substituted with electron-withdrawing substituents
(-Cl, -I, and -CN) or electron-donating groups (-CH3, -OCH3, and -SCH3) at the meta-
position displayed stronger RhlR agonism than compound 15 with no substituent. The elec-
tronic effect of the substituent at the m-position had little influence on RhlR activation.
In contrast, the position of the substituent significantly affected RhlR activity, making
the meta-substituents more potent than para- or ortho-substituents in this series. Among
m-substituted phenylacetyl analogs, compound 20 with a -CN group at the m-position was
most potent, with an EC50 value of 1.7 µM in the E. coli reporter system. However, this
compound showed only approximately 70% of the maximum RhlR activity, compared to
BHL. In the case of phenylpropionyl analogs, three compounds (22–24) displayed EC50
values comparable to that of BHL. However, phenylpropionyl analogs, in general, were less
potent than the corresponding phenylacetyl analogs, indicating that carbon chain length in
the tail region is critical for maintaining and maximizing RhlR agonism. In addition, the
phenylpropionyl analogs activated LasR, PqsR, and RhlR, leading to a decrease in RhlR
selectivity. Interestingly, phenylacetyl analogs substituted with the bulky group at the
para-position turned out to be RhlR antagonists. (See Section 2.2).

Luk and co-workers reported a non-BHL RhlR agonist. Bicyclic brominated furan
compound 25, the so-called 6-bromo-4,5-dihydro-2H-cyclopenta[b]furan-2-one (5-BBF),
displayed moderate RhlR agonistic activity in the PA01 system (Table 2) [35]. 5-BBF is the
only compound comprising a scaffold that is not related to the homoserine lactone ring,
as found in BHL analogs. However, 5-BBF was much less potent than BHL-based RhlR
agonists, with an EC50 value of approximately 50 µM. Furthermore, this compound was
not effective in inhibiting biofilm formation in P. aeruginosa and E. coli. And 5-BBF showed
mild cytotoxic effects on human cells as ~76% of cells survived after 1 h of treatment.

2.2. RhlR-Targeted Antagonists

RhlR-targeted antagonists have also been developed based on BHL structure. Re-
placement of the lactone ring with a cyclopentane (26) or a tetrahydrofurfuryl ring (27)
makes the parent molecule an antagonist, as summarized in Table 3. Compounds 26 and 27
showed 45% and 57% inhibition at 1 mM concentration in the presence of 10 µM BHL in the
E. coli RhlR reporter assay, respectively [32]. In addition, compound 28 with a γ-lactam ring
also showed weak antagonistic activity (35% inhibition). These results suggested that ring
variation in the head region influences the properties of agonist or antagonist. With regard
to the amide bond variation in the middle region, compound 29 with the sulfonamide
linkage was a moderate RhlR antagonist with 55% inhibition. However, the compound
with the ester linkage was neither an RhlR agonist nor an RhlR antagonist, implying that
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the hydrogen-bonding donor N-H is necessary for binding to RhlR in the BHL series [32].
The next modification in antagonists was implemented in the tail region.

Table 3. RhlR-targeted antagonists.

Entry Structure
% Inhibition at 1 mM

in the Presence of 10 µM BHL
in E. coli RhlR Reporter
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Blackwell and co-workers synthesized and evaluated various phenylacetyl analogs
that are bulkier than RhlR agonists with respect to molecular size (Table 5) [34]. Compounds
substituted with bulky functional groups such as -I (30), -NO2 (31), -CH3 (32), and -CF3
(33) at the para-position showed strong RhlR antagonism in the E. coli RhlR reporter system,
with IC50 (the inhibitory concentration of a compound where the response is reduced by
half for dose-response curves) values ranging from 8 to 24 µM. In particular, dichloro-
substituted phenylacetyl analog (34) exhibited the strongest RhlR antagonism with an IC50
value of 3.4 µM in the E. coli reporter system. para-Substituted phenoxyacetyl analogs
(35–39) displayed strong RhlR antagonism in the E. coli bioassay. In particular, para-iodo
substituted phenoxyacetyl compound 38 showed high RhlR selectivity over LasR and
PqsR in E. coli. The antagonist effect of compound 38 was observed in the P. aeruginosa
reporter system with an IC50 value of 23.9 µM. However, the instability of the lactone
ring in culture media precluded compound 38 from further examination [33]. Based on
comprehensive SAR studies, they designed and synthesized the thiolactone analog (40)
as RhlR antagonist (Table 5). Although replacement of the homoserine lactone with the
homocysteine thiolactone ring decreased RhlR antagonist activities slightly, compound 40
was a strong RhlR antagonist, with an IC50 values of 19.6 µM and 31.4 µM in the E. coli
and P. aeruginosa reporter systems, respectively. The thiolactone ring is generally more
unstable than the lactone ring because the C-S bond strength is weaker than the C-O bond.
However, stability studies showed that the thiolactone compound 40 was more stable than
the corresponding lactone compound 38.

The EC50 or IC50 values between P. aeruginosa and E. coli reporter did not often match
accurately [32,34]. P. aeruginosa has a thicker, less permeable outer membrane, which
promotes efflux pathways for small molecules to be exported both in and out of the cell
more easily [36,37]. The MexAB-OprM efflux pump in P. aeruginosa has been shown to play
a role in the transfer of many small molecules including native and non-native AHLs [38].
Therefore, it is estimated that the substrate specificity of the MexAB-OprM efflux pump
and cell membrane diffusion rate could have a significant impact on the EC50 or IC50 values
in P. aeruginosa [39,40]. However, P. aeruginosa would be the most useful reporter strain for
evaluating the activity of BHL analogs, as this strain is RhlR’s native background [38].
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Table 4. Phenylacetyl or phenoxyacetyl analogs as RhlR antagonists.

Entry Structure

IC50
in E. coli

RhlR Reporter
(µM)

IC50
in P. aeruginosa
RhlR Reporter

(µM)
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The EC50 or IC50 values between P. aeruginosa and E. coli reporter did not often match 

accurately [32,34]. P. aeruginosa has a thicker, less permeable outer membrane, which pro-

motes efflux pathways for small molecules to be exported both in and out of the cell more 

easily [36,37]. The MexAB-OprM efflux pump in P. aeruginosa has been shown to play a 

role in the transfer of many small molecules including native and non-native AHLs [38]. 

Therefore, it is estimated that the substrate specificity of the MexAB-OprM efflux pump 

and cell membrane diffusion rate could have a significant impact on the EC50 or IC50 values 

in P. aeruginosa [39,40]. However, P. aeruginosa would be the most useful reporter strain 

for evaluating the activity of BHL analogs, as this strain is RhlR’s native background [38]. 

Bassler and co-workers also reported that a meta-bromo aryl homocysteine thio-

lactone analog (41, mBTL) was a partial agonist/partial antagonist of both RhlR and LasR 

in the E. coli assay system [22] (Table 5). They used E. coli BL21 carrying plasmid pET23b 

containing rhlR and plasmid pEVS141 containing the rhlA promoter-driving expression of 

gfp to measure RhlR transcriptional level more directly. To determine whether analogs act 

as an antagonist or agonist, BHL and the analog were reacted with reporter strain in the 

antagonism test, whereas only analog was reacted in the agonism test. Replacement of Br 

with Cl in the phenyl ring retained the mixed agonism/antagonism effect and inhibition 

of pyocyanin production without affecting P. aeruginosa PA14 growth [22], suggesting that 

RhlR is well tolerated with structural modifications in the tail region. With regard to the 

absolute configuration of the homocysteine thiolactone ring, the (S)-enantiomer, a natural 

amino acid type, was more potent than the corresponding (R)-enantiomer [22]. Treatment 

with mBTL results in a decrease in the average height of biofilm by 64%, delaying time to 

clogging of microfluidic chambers. Moreover, P. aeruginosa rapidly killed 77% of C. elegans 
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Table 4. Cont.
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Bassler and co-workers also reported that a meta-bromo aryl homocysteine thiolactone
analog (41, mBTL) was a partial agonist/partial antagonist of both RhlR and LasR in
the E. coli assay system [22] (Table 6). They used E. coli BL21 carrying plasmid pET23b
containing rhlR and plasmid pEVS141 containing the rhlA promoter-driving expression of
gfp to measure RhlR transcriptional level more directly. To determine whether analogs act
as an antagonist or agonist, BHL and the analog were reacted with reporter strain in the
antagonism test, whereas only analog was reacted in the agonism test. Replacement of Br
with Cl in the phenyl ring retained the mixed agonism/antagonism effect and inhibition of
pyocyanin production without affecting P. aeruginosa PA14 growth [22], suggesting that
RhlR is well tolerated with structural modifications in the tail region. With regard to the
absolute configuration of the homocysteine thiolactone ring, the (S)-enantiomer, a natural
amino acid type, was more potent than the corresponding (R)-enantiomer [22]. Treatment
with mBTL results in a decrease in the average height of biofilm by 64%, delaying time to
clogging of microfluidic chambers. Moreover, P. aeruginosa rapidly killed 77% of C. elegans
after 24 h, but when 50 µM of mBTL was treated on C. elegans, the killing rate decreased to
23%. mBTL also reduced the killing of human lung cells by P. aeruginosa and was not toxic
at 100 µM.

Table 5. Non-BHL RhlR antagonists.

Entry Structure IC50
(µM) Reporter System

41
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in P. aeruginosa PAO1 [41]. They distinguished the antagonism activities of LasR and RhlR 

with different specific reporter strains. RhlR antagonism activity was evaluated with P. 

aeruginosa PAO1 introduced rhlA-lacZ transcriptional fusion gene by plasmid pβ01, 

whereas PAO1 with plasmid pβ02 carrying lasB-lacZ transcriptional fusion gene was used 

for the LasR antagonism. The β-galactosidase assay revealed that N-decanoyl cyclopen-

tylamide (42) is a weak RhlR antagonist, with an IC50 value of 90 μM for rhlA-lacZ expres-

sion in P. aeruginosa PAO1 (Table 5). However, this compound also displayed LasR-inhib-

itory activity with an IC50 value of 80 μM for lasB-lacZ expression due to presence of a long 

alkyl chain group in the tail region. 250 μM of compound 42 reduced the production of 

elastase, rhamnolipid, and pyocyanin to 23%, 13%, and 36%, respectively [41]. And in 

presence of compound 42, P. aeruginosa biofilm was not formed even after 1 week of cul-

tivation. 

Recently, Byun and co-workers screened RhlR antagonism of gingerol analogs with 

various alkyl chain lengths from 4-gingerol to 10-gingerol [42]. Compound 44 (4-gingerol) 

with the n-butyl chain in the tail region showed 31% RhlR inhibition at 100 μM in the 

presence of 10 μM BHL in the E. coli QS reporter strain assay (Table 6). Based on the chem-

ical structure of 4-gingerol, they synthesized a variety of 4-gingerol analogs and evaluated 

RhlR antagonism. The compound structures tested in this study were not related to that 

of BHL. In particular, the substituted phenyl ring was utilized in the head region, instead 

of the homoserine lactone ring. Furthermore, the amide linkage was replaced by a simple 

carbonyl group. Among the diverse substituents in the phenyl ring of the head region, 

compound 45 with difluoro substituents at the 3- and 4-position was the most potent, 

leading to the replacement of 3-OCH3 and 4-OH substituents in 4-gingerol. Compound 45 

exhibited 69% RhlR inhibition at a concentration of 100 μM. Structural optimization of 

compound 45 resulted in the discovery of compound 43 (Table 5), which was the most 

potent RhlR antagonist with 86% inhibition at 100 μM, with an IC50 value of 26 μM in the 

E. coli RhlR reporter system. The reduction of the ketone group in compound 43 to alcohol

resulted in a slight decrease in RhlR antagonism. Although the absolute configuration had

little effect on RhlR inhibition, the (R)-enantiomer (46) was more potent than the corre-

sponding (S)-enantiomer. Molecular docking studies of compound 43 with the RhlR ho-

mology model suggested that the strong π-π stacking interaction of the 3,4-difluoro-

phenyl ring with Tyr 71 residue, which is one of the key amino acids that interact with

BHL-based RhlR modulators. Molecular docking studies of the RhlR homology model
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Kato and co-workers synthesized and evaluated the effects of acyl cyclopentylamides
in P. aeruginosa PAO1 [41]. They distinguished the antagonism activities of LasR and
RhlR with different specific reporter strains. RhlR antagonism activity was evaluated
with P. aeruginosa PAO1 introduced rhlA-lacZ transcriptional fusion gene by plasmid pβ01,
whereas PAO1 with plasmid pβ02 carrying lasB-lacZ transcriptional fusion gene was used
for the LasR antagonism. The β-galactosidase assay revealed that N-decanoyl cyclopenty-
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lamide (42) is a weak RhlR antagonist, with an IC50 value of 90 µM for rhlA-lacZ expression
in P. aeruginosa PAO1 (Table 6). However, this compound also displayed LasR-inhibitory
activity with an IC50 value of 80 µM for lasB-lacZ expression due to presence of a long alkyl
chain group in the tail region. 250 µM of compound 42 reduced the production of elastase,
rhamnolipid, and pyocyanin to 23%, 13%, and 36%, respectively [41]. And in presence of
compound 42, P. aeruginosa biofilm was not formed even after 1 week of cultivation.

Recently, Byun and co-workers screened RhlR antagonism of gingerol analogs with
various alkyl chain lengths from 4-gingerol to 10-gingerol [42]. Compound 44 (4-gingerol)
with the n-butyl chain in the tail region showed 31% RhlR inhibition at 100 µM in the
presence of 10 µM BHL in the E. coli QS reporter strain assay (Table 7). Based on the chemical
structure of 4-gingerol, they synthesized a variety of 4-gingerol analogs and evaluated RhlR
antagonism. The compound structures tested in this study were not related to that of BHL.
In particular, the substituted phenyl ring was utilized in the head region, instead of the
homoserine lactone ring. Furthermore, the amide linkage was replaced by a simple carbonyl
group. Among the diverse substituents in the phenyl ring of the head region, compound
45 with difluoro substituents at the 3- and 4-position was the most potent, leading to the
replacement of 3-OCH3 and 4-OH substituents in 4-gingerol. Compound 45 exhibited
69% RhlR inhibition at a concentration of 100 µM. Structural optimization of compound
45 resulted in the discovery of compound 43 (Table 6), which was the most potent RhlR
antagonist with 86% inhibition at 100 µM, with an IC50 value of 26 µM in the E. coli RhlR
reporter system. The reduction of the ketone group in compound 43 to alcohol resulted
in a slight decrease in RhlR antagonism. Although the absolute configuration had little
effect on RhlR inhibition, the (R)-enantiomer (46) was more potent than the corresponding
(S)-enantiomer. Molecular docking studies of compound 43 with the RhlR homology model
suggested that the strong π-π stacking interaction of the 3,4-difluorophenyl ring with Tyr 71
residue, which is one of the key amino acids that interact with BHL-based RhlR modulators.
Molecular docking studies of the RhlR homology model with BHL analogs using Glide
software by Ravi et al. also proposed that the native auto-inducer interacts strongly with
the two amino acids (Thr 57 and Tyr 71) in the active site of RhlR [43]. Moreover, compound
43 displayed strong inhibition of biofilm formation in static and dynamic settings and
the reduction of virulence factor production (elastase, rhamnolipid, and pyocyanin) in
P. aeruginosa. In addition, compound 43 did not cause toxicity to human lung epithelial
cells and alleviated the infectivity of P. aeruginosa in Tenebrio molitor larvae [44].

Table 6. Gingerol-based RhlR antagonists.
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(4-Gingerol)
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3. Discussion and Conclusions

Recent SAR studies have shown the structural characteristics of RhlR-targeted agonists
and antagonists. In general, receptor antagonists are more bulky in molecular size and
have additional binding subpockets, compared to the corresponding agonists when they
compete against the same active site of the target protein. As summarized in Figure 3,
RhlR-targeted antagonists are slightly bulkier than the agonists. Homoserine lactone,
homocysteine thiolactone, and cyclopentanone in the head region are commonly found
in both RhlR-targeted agonists and antagonists, suggesting that a hydrophilic functional
group in the head region acts as the anchor region for binding to RhlR. Replacement of
the homoserine lactone with cyclopentane, tetrahydrofuran, and γ-lactam ring makes the
parent molecule less hydrophilic, which leads to more antagonistic properties. In addition,
introduction of the substituted phenyl ring in the head region renders the parent molecule
an RhlR antagonist. In the middle region, structural modification is relatively limited
compared to the head and tail regions. The sulfonamide or alkynylketone groups can
be utilized as surrogates of the amide group for RhlR antagonists. In the tail region, the
branched alkyls (e.g., isobutyl and isopropyl) and the cycloalkyl rings (e.g., cyclobutane
and cyclopentane) were more favorable for RhlR agonism, compared with the n-propyl
group in BHL. In the case of RhlR-targeted antagonists, the more bulky moieties including
2,4-dichlorophenylmethyl, p-substituted phenoxymethyl and p-substituted phenylmethyl
are preferred in the tail region. However, there have been few reports on RhlR-targeted
modulators to establish comprehensive SAR studies. Most QS inhibitors of P. aeruginosa
target LasR because it is located at the top of the P. aeruginosa QS network hierarchy.
From a viewpoint of drug discovery and development of RhlR-targeted modulators, X-ray
crystal structures of RhlR in the presence or absence of a ligand should be determined
and utilized. The lack of a RhlR 3D structure is a major obstacle to the discovery and
development of novel potent and selective RhlR-targeted modulators through structure-
based drug design.
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P. aeruginosa is a leading cause of airway infections in patients with cystic fibrosis
(CF). In isolates from CF patients with chronic P. aeruginosa infections, LasR mutations
are commonly observed [24,45,46]. In these CF isolates, RhlR plays a key role in encoding
virulence factors in a LasR-independent manner [28]. Dandekar et al. studied E90, a CF
isolate which contains a single-base-pair deletion in lasR and uses RhlI/RhlR to mediate QS.
RhlR produces QS-regulated virulence factors in E90 isolates, and it was the critical deter-
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minant of cytotoxicity in a 3-D lung epithelium cell model [28]. In general, the BHL/RhlR
system activates the expression of genes encoding virulence factors including pyocyanin,
rhamnolipid, and elastase [28,47]. However, Bassler and co-workers found that RhlR also
responded in the absence of BHL and was responsible for BHL-independent transcription
activities related to biofilm formation and virulence factor production [48]. The P. aerug-
inosa ∆rhlI mutant was virulent in animal infection models while the ∆rhlR mutant was
avirulent, suggesting that BHL-independent regulation by RhlR may be more important for
pathogenicity in P. aeruginosa infection [48]. The importance of RhlR was also supported by
Ferrandon et al. who found that rhlI mutants were more virulent than rhlR mutants both in
fly and in nematode intestinal infection models [49]. Furthermore, other studies show that
in addition to atypical strains, the QS system can be flexible under certain environmental
conditions, particularly for phosphate limitation [50,51]. When P. aeruginosa establishes
infections, the phosphate level of patients undergoing chemotherapy or surgery is 0.03 mM,
which is extremely low compared to healthy people (1.25 mM) [52]. Under phosphate-
limiting conditions, the production of virulence factors in P. aeruginosa was increased [53,54].
Moreover, Soto-Aceves et al. discovered that LasR is indispensable to activate QS response,
which suggested that RhlR is at the top of the QS hierarchy [29]. This phenomenon is sup-
ported by the fact that the activity of elastase, a LasR-specific virulence factor, is dependent
on the Rhl system under phosphate-limiting conditions.

Overall, RhlR is an important QS transcription factor and may be a potential target
for the treatment of P. aeruginosa infections, particularly in CF patients. Therefore, small
molecule modulators targeting RhlR may be developed as novel antimicrobial agents for
the control of P. aeruginosa infections. RhlR X-ray crystal structure, structural optimization
of current RhlR-targeted agonists/antagonists, comprehensive in vivo efficacy studies,
and synergistic effects with antibiotics will help develop and optimize the next generation
of RhlR-targeted modulators. These efforts will be of use to promote preclinical and clinical
studies, which may produce a proof-of-concept of targeting RhlR as a new therapeutic
strategy to control P. aeruginosa infections.
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