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ABSTRACT: Resolvins D3 and E1 are important signaling
molecules in the resolution of inflammation. Here, we report a
convergent and flexible strategy to prepare these natural products
using Hiyama−Denmark coupling of five- and six-membered cyclic
alkenylsiloxanes to connect three resolvin fragments, and control the
stereochemistry of the natural product (Z)-alkenes. The modular
nature of this approach enables the synthesis of novel resolvin
hybrids, opening up opportunities for more-extensive investigations
of resolvin biology.

The resolution of inflammation is a complex process
regulated by a host of different signaling molecules,

including the resolvin, protectin, and maresin pro-resolving
mediators (e.g., 1−4, Figure 1).1 These polyunsaturated fatty

acids, which display nanomolar to picomolar bioactivity,
stimulate a cascade of cellular resolution events involving the
reduction of polymorphonuclear neutrophil infiltration and the
initiation of macrophage clearance of apoptotic cells. Since
numerous diseases are associated with chronic or excessive
inflammation (such as cardiovascular diseases, asthma,
diabetes, and neurodegenerative diseases),2 there is great
interest in the synthesis of these natural products in order to
develop a deeper understanding of their individual roles.,1b3

Resolvins D3 (RvD3, 1) and E1 (RvE1, 2) are typical examples
of these polyhydroxylated lipid mediators, with the former
being the most potent member of the family.4

Subsequent to their initial discovery and isolation by Serhan
et al.,5 the structures and stereochemistry of RvD3 and RvE1
were confirmed by Petasis and Serhan via total synthesis.6 Both

contain a (Z,E)-diene and a (Z,E,E)-triene motif; in these
previous approaches, the isomerization-prone (Z)-alkene of
the triene unit was revealed in the final step via semireduction
of the corresponding enynes with Zn/Ag/Cu. This tactic has
been adopted by others for related resolvins,7 and has enabled
the in vivo testing of the natural products. A further synthesis
of resolvin E1 was disclosed in which the (Z)-configured
double bonds were introduced from a (Z)-alkenyl bromide via
Suzuki coupling, and from a Wittig reaction.8

Here, we describe an alternative strategy in which late-stage
Hiyama−Denmark cross-coupling9 of cyclic alkenylsiloxanes is
used to specifically control the stereochemistry of the (Z)-
alkenes in the resolvin polyene motifs.10 Disconnection at
these alkenes (Scheme 1a) reveals five- and six-membered
cyclic alkenylsiloxanes (5/6 and 7/8, respectively), along with
two alkenyl iodide resolvin “tails” (9 and 10). RvD3 and RvE1
are ideal candidates for this approach, as in previous work
(Scheme 1b),10a we established that five-membered cyclic
diethyl alkenylsiloxanes, prepared by Lindlar hydrogenation of
the corresponding alkynylsiloxanes, undergo Hiyama coupling
more rapidly and under distinct conditions (i.e., KOTMS as
activator), compared to six-membered siloxanes (which require
fluoride as the coupling promoter). We subsequently found
that the more reactive cyclic dimethyl alkenylsiloxanes can be
accessed using benzyldimethylsilanes as latent silanols
(Scheme 1c), with the cyclic siloxane revealed through
fluoride- or (for five-membered rings) base-mediated deben-
zylation.11
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Figure 1. Pro-resolving natural products: Resolvin D3 (RvD3) (1),
resolvin E1 (RvE1) (2), protectin D1 (3), and maresin 1 (4).
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Based on this ring size-dependent reactivity, we planned a
“head-to-tail” coupling strategy involving initial selective
coupling of five-membered siloxanes 5/6 with dienyl halides
7 or 8, followed by coupling of the residual six-membered
siloxane with iodides 9 or 10. Alternatively, we envisaged a
“tail-to-head” approach, in which control would be achieved
through differentiated rates of oxidative addition (I vs Br) in
the initial coupling of iodides 9 or 10 with the central
bromodiene siloxane 8. The modular nature of the synthesis
would allow access to both the natural products and to novel
resolvin analogues by mixing components from the different
synthesis streams. As very few unnatural resolvins have been
studied, this route could open up opportunities for a wider
exploration of the effects of chain length, stereochemistry, and
the nature of the head/tail functionality on resolvin biology.12

The synthesis of the C1−C6 and C1−C7 “head” fragments
5 and 6 (Scheme 2, required for RvD3 and RvE1, respectively)
began with the addition of benzyl(ethynyl)dimethylsilane to
the commercially available acid chlorides 11 and 12. The yields
of these reactions proved quite dependent on chain length,
with 13 formed in 64% yield, but homologue 14 in just 26%
yield; fortunately, the latter could be improved to 52% by use
of an alkynylzinc.13 The resulting ketones were converted to

the enantioenriched propargylic acetates 15 and 16 through
Noyori asymmetric transfer hydrogenation (97%−99% enan-

Scheme 1. (a) A Modular Strategy toward Resolvins D3 and
E1; (b) Selectivity in the Cross-Coupling of Cyclic
Diethylalkenylsiloxanes; (c) Synthesis of Cyclic
Dimethylalkenylsiloxanes from Benzyldimethylsilanes

Scheme 2. Synthesis of Resolvin Building Blocks 5−10
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tiomeric excess (ee)),14 followed by esterification.15 Semi-
hydrogenation to the (Z)-benzyldimethyl alkenylsilanes 17 and
18 proceeded with high yield and selectivity (75%−83%, Z:E >
20:1). These products were treated with TBAF, which effected
debenzylation, in situ deacetylation, and cyclization to give the
cyclic five-membered siloxanes 5 and 6 in excellent yields.
Synthesis of the “middle” fragments 7 and 8 (Scheme

2, common to both RvD3 and RvE1) initially utilized a chiral
pool strategy. The addition of lithium benzyldimethylsilylace-
tylide to TMS-protected (S)-glycidol afforded diol 19 in 98%
yield, which was carried through the Lindlar hydrogenation/
cyclization sequence10a to give the six-membered cyclic
alkenylsiloxane 20 (81%). Parikh−Doering oxidation afforded
an unstable aldehyde, which was used directly in a Wittig
olefination to give enal 21, which displayed greater stability
and could be purified by chromatography. Here, a serendip-
itous discovery was made: residual pyridine from the Parikh−
Doering oxidation improved the yield of the olefination from
32% to 52% (43% overall). 21 was converted to dienyl iodide 7
via Takai iodoolefination (60%, E:Z = 5:1). Synthesis of the
equivalent bromide 8 was achieved in two steps, consisting of
Ramirez olefination (22, 86%), followed by Hirao mono-
debromination using dimethyl phosphite.16 This latter reaction
is known to exhibit variable selectivity for conjugated
systems,17 and indeed the product bromodiene was obtained
as a 2:1 (E,E):(E,Z) mixture. Variation of solvent or
temperature did not affect this ratio, and while the bulkier
diisopropyl phosphite offered a modest improvement (E:Z =
2.5:1), the conversion decreased significantly. Fortunately, the
undesired (E,Z)-dienyl bromide could be removed by
elimination of HBr (refluxing NaOMe),18 followed by
Sonogashira coupling of the resulting enyne with 2-
iodopyridine. Despite the obstacles encountered, this sequence
does illustrate the capacity of the six-membered cyclic
dimethylsiloxane to survive a range of reaction conditions.
To overcome the limitations of this route, a shorter synthesis

was developed, exploiting the Denmark ring-closing metathesis
approach to cyclic dimethylsiloxanes.10b−f (E,E)-5-bromopen-
tadienal 23 was readily accessed from SO3·py by alkaline
hydrolysis and bromination.19 The addition of allylmagnesium
bromide, followed by Sharpless resolution (98% ee),20 afforded
enantio-enriched alcohol 24. Formation of an intermediate
vinyldimethylsilyl ether set the stage for ring-closing metathesis
mediated by the Schrock catalyst,10b−f which proceeded in
excellent yield (87% over two steps).
The resolvin “tail” fragments, destined for coupling with the

central six-membered cyclic siloxane, were prepared via base
mediated ring-opening of α-iodoepoxides 25 and 26 as
developed by Spur21 and Nakata (Scheme 2),22 which
selectively afforded the desired (E)-iodoalkenes 9 and 10
respectively. The configuration of these epoxides was set by
Sharpless epoxidation of the corresponding allylic alcohols 27
and 28.23

With all key fragments in hand, attention turned to assembly
of the resolvin framework. We first studied the “head-to-tail”
strategy which would rely on an enhanced rate of trans-
metalation for the five-membered siloxane over the six-
membered siloxane in the initial cross-coupling, as had been
observed in our earlier work with equivalent diethylsiloxanes
(see Scheme 1, eq 1).10a Indeed, we were pleased to find that
model fluoride-promoted couplings of iodoalkene 29 with
substrates 30 and 31 (Scheme 3, eq 1) revealed significantly
more rapid and higher yielding coupling of the five-membered

ring siloxane 30 (91%). However, attempts to translate this
reactivity difference to selective coupling of 5 in the presence
of the six-membered siloxane in 7 met with failure (Scheme 3,
eq 2), whether using fluoride or KOTMS as the promoter, and
with simultaneous or sequential addition of the reactants; side
reactions including desilylation, homocoupling, and ester
hydrolysis were observed in a variety of model studies. It
appeared that while less reactive toward transmetalation, the
six-membered ring was nonetheless susceptible to rapid ring
opening under the reaction conditions, compromising the
ability of the coupling promoter to mediate selective coupling
of the five-membered ring.
Examination of the “tail-to-head” strategy proved more

fruitful. This approach relies on selectivity in the oxidative
addition of the resolvin vinyl iodide “tails” (9/10) over the
dienyl bromide 8 in the central fragment. We first studied the
coupling of RvD3 iodide 9 with 8 (Scheme 3, eq 3); this
coupling proved sluggish and low yielding (30%), and resulted
in the formation of a byproduct tentatively assigned as
homocoupling of iodide 9.24 However, reaction of the acetate
derivative of the allylic alcohol (35) proceeded at a
significantly higher rate, and delivered product 36 in higher
yield (63%) and without iodide dimerization. The benefit of
acetylation was reinforced in an equivalent model coupling of
dienyl iodide 37 with RvE1 “head” siloxane 5 (Scheme 3, eq
4). Reaction of the free alcohol 37 (to give 39) led to
competing formation of a byproduct assigned as an isomerized
γ-lactone;24 use of the acetate 38 derivative suppressed this
side reaction and proceeded in higher yield (38 → 40, 55%).
We suggest that the free allylic alcohols in 9 or 37 may

Scheme 3. Evaluation of Cross-Coupling Strategies
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interfere with the efficiency of coupling by moderating the
reactivity of the fluoride activator.
Irrespective of the basis of this beneficial effect, the

Hiyama−Denmark coupling had now been validated for the
formation of both C−C bonds, and our attention turned to
completion not only of the natural resolvins 1 and 2, but also
resolvin hybrids by mixing different natural product building
blocks. As such, coupling of 8 and 35 (Scheme 4), followed by
acetylation, afforded dienyl bromide 41 (53%). This was
coupled with siloxanes 5 and 6 to give product alcohols that
were immediately acetylated (42 and 43, respectively; 32%−
40%)in part to aid purification from a γ-lactone formed from
cyclization of the γ-hydroxyester headgroup,25 but also to
impart stability toward long-term storage of these “pro-
resolvins”, compared to the natural products. Resolvin D3
(1)26 and the RvD3/E1 hybrid 44 were revealed in near
quantitative yield upon treatment with lithium hydroxide.
Similar coupling of 8 with iodoalkene acetate 45 gave the
tetraene 46 after acetylation (58%). Coupling of 46 with the
two headgroup siloxanes and acetylation now afforded
triacetate pro-RvE1 47 and hybrid 48. Again, these could be
saponified in high yield on treatment with aqueous lithium
hydroxide to afford resolvin E1 (2)27 and the RvE1/D3 hybrid
49.
In conclusion, resolvins D3 and E1 were prepared in 12

steps in the longest linear sequence (∼20 steps total),
employing Hiyama cross-coupling of cyclic alkenylsiloxanes
in key fragment union transformations. The modular and
convergent nature of the route also enabled the synthesis of
new resolvin analogues. These enantioselective syntheses open
up opportunities for a wider study of the role of these (Z)-
alkenyl polyene natural products in inflammatory response
pathways; studies to this end are ongoing in our group.
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