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Analytical and clinical validation of a novel in-house
deep-sequencing method for minimal residual disease
monitoring in a phase II trial for multiple myeloma
Leukemia (2017) 31, 1446–1449; doi:10.1038/leu.2017.58

The first step for the cure of multiple myeloma (MM) is to achieve
a complete response (CR);1,2 however, regardless of CR
improvement, most patients experience disease progression or
relapse in part due to the persistence of low levels of clonal
plasma cells after treatment (minimal residual disease (MRD)).3 In
addition, many patients who achieve MRD-negative status also
relapse, indicating that the sensitivity and specificity of traditional
techniques for MRD assessment can be improved.4 At

present, multiparameter flow cytometry (MFC), allele-specific
oligonucleotide PCR and high-throughput sequencing (NGS) are
the three high-sensitivity techniques available for MRD quantifica-
tion in MM.3,5,6 A growing body of evidence strongly suggests that
detection of subclinical levels of MRD with this high-sensitivity
methods provides powerful independent prognostic
information.7,8 MFC is the most widely available technique with
excellent sensitivity and applicability; however, there is variability
in sensitivity, panels and performance between laboratories, and
requires high level of expertise.9 On the other hand, in previous
work, we have shown that NGS of immunoglobulin (IG)
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rearranged genes is an effective technology to identify and
quantify pathological clonal cells in MM with a sensitivity of at
least 0.001%.7,10 However, this NGS technology is a proprietary
multiplex PCR that is performed at centralized laboratories
increasing the turn-around time for the results. Furthermore, the
NGS
method for MRD quantification in MM needs additional
clinical validation to prove its utility for patient risk stratification,
as well as to evaluate the efficacy of different treatment
schemes.
In the present study, we describe and analytically validate a

simplified in-house deep-sequencing method to identify and
quantify MRD in MM patients from 1 µg of DNA. The method uses
the standardized primers developed by the Biomed-2 concerted
action to amplify all IGH or IGK sequences in a patient sample.11

Libraries were prepared by ligation of specific adaptor oligos and
sequenced either on an Ion S5 (ThermoFisher Scientifc, Palo Alto,
CA, USA) or on a MiSeq sequencer (Illumina, San Diego, CA, USA).
The sequencing data were analyzed with a set of specific
mathematical and bioinformatics tools to identify and quantitate
the clone-specific sequence (clonotype) present on each sample
(code patent pending). A clonotype was identified when at least
400 identical sequencing reads were obtained, or was present at a
frequency of 41%.
We analyzed MRD by deep sequencing in bone marrow (BM)

samples from 73 MM patients of which DNA was available for
testing (Bioproject PRJNA360043). Patients were enrolled in the
phase 2 trial for newly diagnosed elderly MM patients PETHEMA/
GEM2010MAS65 study (www.clinicaltrials.gov as #NCT01237249);
patients were randomized to receive 9 cycles of bortezomib/

melphalan/prednisone (VMP) followed by 9 cycles of lenalidomide/
dexamethasone (Rd; sequential arm, n= 38) vs 18 alternating
cycles of VMP/Rd (alternating arm, n= 35).12 Nighty-five percent
(n= 69) of the patients experienced a CR according to the
International Myeloma Working Group (IMWG).13 Median follow-
up of the series was 3 years.
Statistical analyses were performed with the SPSS program

version 21.0 (IBM, Armonk, NY, USA). Linear regression was used to
compare different dilutions of the DNA samples. The Spearman
correlation coefficient was used to compare MFC data with NGS
data. Overall survival (OS) and progression-free survival (PFS) were
estimated by Kaplan–Meier survival analysis and statistical
differences assessed via log-rank and Wilcoxon analyses.
With our approach of deep sequencing, a clonotype was

detected in the 97% (71 out of 73) of MM patients, indicating a
specificity similar to the clinical specificity reported in the original
validation studies of the Biomed-2 method (98%),11 slightly higher
to the previously described NGS assay for IG quantification (91%),7

and comparable to 8c-MFC.8 Clonotypes were not detected in
normal tonsil and BM samples, indicating the high specificity
of the assay. This method also presents a very good analytical
sensitivity of at least 10 − 5, as determined from a 10-fold
dilution curve of commercial control monoclonal and
polyclonal DNAs (Figure 1a). With the same primer combina-
tions, the analytical sensitivity of Biomed-2 amplification to
detect a clonal population was 10 − 2 for IGH and IGK,11

consequently, applying deep-sequencing technologies to the
Biomed-2 design highly improves the sensitivity of clonal
identification. In addition, the method also shows high
reproducibility between runs and different NGS platforms

Figure 1. Performance characteristics of the NGS assay. (a) Plot of the dynamic range, limit of quantification (LOQ) and limit of detection (LOD)
of the method from a 10-fold dilution curve. The vertical axis represents the ratio of MRD values to curve dilution and the horizontal axis
represents the logarithm value for curve dilution. R2 = 0.98 and 0.96 for IGH and IGK genes, respectively, Po0.0001. (b) Progression-free
survival (PFS) and overall survival (OS) plots according to MRD levels. MRD-negative values (blue) and MRD-positive values (Red). The
threshold for negative values was 10− 5.
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(99.2%, 91 samples tested in duplicate in different sequencing
runs), and is very precise for samples with MRD-negative values
(median CV 8.1%, range 3.9–39).
As demonstrated in several trials, a prolonged therapy is an

effective approach to improve survival in elderly patients. This was
the basis for the 18 cycles explored in the GEM10mas65 clinical
trial (VMP+Ld combination), which yielded excellent clinical
results.12,14 When we analyzed the molecular response in these
elderly MM patients, we found that the proportion of patients
achieving an MRD-negative status is significantly higher after 18
cycles of treatment (27% (n= 19) vs 11.5% (n= 8) after 18 and 9
cycles, respectively, P= 0.04), confirming that a prolonged
treatment improves the rate of molecular responses. Similar to
the data obtained with other MRD methods,7,8,15 the achievement
of molecular responses measured by our NGS method is able to
predict 3-year survival in patients enrolled in the GEM10 clinical
trial. Median PFS was 35 months vs not reached for patients with
MRD-positive and -negative values, respectively (hazard ratio
(HR) = 2.76, 95% confidence interval (CI) 1.21–6.25, P= 0.01;
Figure 1b). Median OS was also prolonged in MRD-negative
patients compared with MRD-positive patients, with 3-year OS
rates of 100% and 45%, respectively (median OS of 50 months vs
not reached respectively, HR = 3.66, 95% CI 0.98–13.67, P= 0.05).
Hence, achieving a molecular response as determined by this new
deep-sequencing method results in improved PFS and OS.
The high efficacy of the treatment based on VMP and Rd in a

sequential or alternating scheme (CR rates of 42% and 40%,
and PFS of 74% and 80%, respectively) was demonstrated
previously.8,12 In our present study, when we applied the NGS
method to assess MRD negativity, more patients in the sequential
treatment than in the alternating arm achieved a molecular

response (36% (n= 13) vs 20% (n= 7), respectively). Nonetheless,
we observed no significant difference in OS between both
treatment arms. Taken together, the data show that patients
could not only benefit from a prolonged treatment of 18 cycles
but also suggest that 18 cycles of treatment in a sequential
scheme can be associated with higher number of molecular
responses and prolonged PFS. However, these results should be
interpreted carefully because the low number of patients analyzed
in the study, and further testing is needed in order to draw
stronger conclusions.
Sixty-six of these patients were also analyzed for MRD by MFC

using an eight-color monoclonal antibody combination.8 The
levels of MRD obtained with our method have a high degree of
correlation with those assessed by 8c-MFC (total 66 patients,
n= 175 samples, Spearman coefficient R= 0.7917, Po0.0001;
n= 109 post-treatment samples, R= 0.6388, Po0.0001), with a
global 89% concordance between MFC and NGS data (Figure 2a).
Accordingly, there were no significant differences in terms of PFS
and OS between the data obtained by our in-house method and
MFC. Nevertheless, patients with discordant results between these
two technologies, show an intermediate median PFS (46 months)
as compared to double-positive (32 months) or double-negative
(not reached) MRD values (P= 0.0063; Figure 2b). At the time of
the analysis, the OS for patients with discordant results was similar
to that of NGS MRD-negative patients (not reached) versus a
median of 50-month survival for MRD-positive patients
(P= 0.0835).
Due to the need of new response criteria that allows the

identification of deeper responses than the now defined as clinical
CR, the International Myeloma Working Group (IMGW) has defined
new response categories of MRD negativity.13 One of them is

Figure 2. Comparison between deep-sequencing (NGS) and multiparameter flow cytometry (8c-MFC) data. (a) Scatter plot showing
correlation of MRD values between deep sequencing and eight-color MFC. Numbers on upper left and lower right indicates samples with
discordant results. Spearman correlation coefficient R= 0.7917, Po0.0001. (b) Progression-free survival (PFS) and overall survival (OS) plots of
patients grouped according to concordance of MRD levels between NGS and 8c-MFC. Data corresponds to patients with MRD-negative values
(MRDo10− 5) by both methods (blue); MRD-positive values (MRD410− 5) by both methods (red); and MRD with discrepant data between NGS
and 8c-FCM (green).
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sequencing MRD negative, reflecting the importance of the
sensitivity of deep-sequencing methodology applied to the
detection of very low numbers of tumor cells. In the new criteria,
the IMGW recommends both deep-sequencing or next-generation
flow to assess MRD in the BM, depending on the availability of the
techniques at each center. As shown in the high degree of
correlation of this study, this new method to measure MRD in MM
by deep sequencing could be used to define MRD negativity by
sequencing as defined in the new criteria of the IMWG.
In summary, our data confirm the clinical application of

quantifying MRD levels by our in-house deep-sequencing method
in MM patients. Our method shows a high analytical reproduci-
bility and can be implemented in any laboratory with NGS
capability, can be applied to the majority of MM patients with a
short turn-round time, has a sensitivity of 10− 5 and can be fully
automated (from DNA extraction to data analysis), and thus easily
standardized minimizing lab-to-lab variation.
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