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Abstract

In this paper we perform a genome-wide analysis of H. sapiens promoters. To this aim, we developed and combined two
mathematical methods that allow us to (i) classify promoters into groups characterized by specific global structural features,
and (ii) recover, in full generality, any regular sequence in the different classes of promoters. One of the main findings of this
analysis is that H. sapiens promoters can be classified into three main groups. Two of them are distinguished by the
prevalence of weak or strong nucleotides and are characterized by short compositionally biased sequences, while the most
frequent regular sequences in the third group are strongly correlated with transposons. Taking advantage of the generality
of these mathematical procedures, we have compared the promoter database of H. sapiens with those of other species. We
have found that the above-mentioned features characterize also the evolutionary content appearing in mammalian
promoters, at variance with ancestral species in the phylogenetic tree, that exhibit a definitely lower level of differentiation
among promoters.
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Introduction

Non–coding regions of DNA contain important functional

elements that mainly concern regulatory activities and changes in

gene expression. Recently, such functionality has been defined as

the participation in at least one reproducible biochemical event,

for instance TF association, chromatin structure- or histone-

modification [1]. Moreover, there is a widespread consensus in

identifying the non-coding DNA as the major substrate for critical

changes. They are expected to drive phenotypic modifications and

differences between species or individuals, thus representing the

basis for evolution as well as for disease-associated regulatory

variants [2–5]. The variability of non-coding DNA appears to be

correlated with organism complexity, thus supporting the conjec-

ture that it is of primary importance for the genetic programming

of complex eukaryotes [6,7].

In the presence of this new challenging scenario for genomics,

several research groups are nowadays devoting considerable efforts

to the study of non–coding DNA regions. Traditional in silico

approaches are based on comparative genomics, that relies upon

evolutionary conservation as a basic property for identifying

functional regions. For instance, pairwise or multiple sequence

alignments have been used for predicting non-coding RNA

transcripts or Transcription Factor (TF) binding sites [8–13]. By

comparing genomic DNA from closely and distantly related

species, functional elements may be recognized on the basis of

their conservation. Comparative analyses can be applied also

within a species to find paralogous regions deriving from

duplication events within a genome [14] or even function-related

patterns based on sequence similarities [15]. These sequence-

based analyses, together with experimental techniques [16–18],

have proved quite effective for predicting functional non-coding

sequences and their biological implications [19]. On the other

hand, as a consequence of the variability of regulatory regions, it is

quite difficult to establish the accuracy of such methods in estimating

the TF binding or the transcriptional output [20,21]. In fact, it is well

known that, at variance with coding sequences that are well conserved

even across distantly related species, regulatory regions are relatively

flexible, since most TFs tolerate considerable variations in target

sequences [22]. The high turnover rate both in adjacent putatively

non-functional DNA and in duplicated TF binding sites often disrupts

sequence conservation and makes alignments impossible (e.g., see [23–

25]. Moreover, transcriptional rewiring [26] may explain events of

sequence similarity loss, but retention of similar function. Accordingly,

in non-coding DNA, sequence homology may not necessarily

correspond to functional homology.

For all these reasons the comparative approach among specific

sequence elements in the non-coding regions of DNA is certainly

useful, but insufficient to obtain an exhaustive description of DNA

double helix functional properties. Many other approaches have

been proposed to fill the gap. Among them we just mention the

various techniques that run motif-finding algorithms on sets of

sequences and incorporate the information of experimentally

known TF binding sites in position-specific weight matrices [27–

29], or rely on the study of the three–dimensional structure of
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DNA [30,31] and on neural network optimization procedures

[32,33].

In this paper we focus our study on promoters, because they are

known to play a crucial role in the expression and regulation of

genes [1].

In two previous works [15,34] evidence was found of a

correlation between the properties of promoter sequences and

the kind of genes they regulate. In particular, base composition

analysis (BCA) and specific entropic indicators were employed for

identifying structural similarities among different classes of

promoters [35,36]. Moreover, the region around the TSS was

shown to exhibit a very distinctive structural profile, which seems

to be actively maintained by non–neutral selective constraints.

Such structural profile is primarily related to a non–random

distribution of nucleotides along the promoter close to the TSS

[15,34]. Another relevant outcome of these analyses concerns the

importance of the role played by the different chemo-physical

properties of the weak and strong nucleotides, thus indicating a

possible relation also with the mechanisms associated to the double

helix opening and bendability [37–40].

In this paper we perform a genome-wide analysis of promoter

sequences. In particular the analysis is focused on H. sapiens but a

comparison with other species is also presented. To this aim, we

developed and combined two mathematical methods that allow us

to (i) classify promoters into groups characterized by specific

structural features, and (ii) recover, in full generality, any regular

sequence in the different classes of promoters. Our goal is to

highlight the global properties of the promoters that, at variance

with the DNA coding regions, appear as a combination of random

assemblies of nucleotides, alternating with fairly regular sequences.

We focus our attention on regular sequences because many of

them have been shown to posses peculiar structural properties

involved in regulatory functions [38,39,41,41–44].

The first method makes use of a clustering algorithm, that

groups promoters by exploiting an alignment procedure [45–47]

that takes into account the whole sequence (see section Spectral

Clustering 0 in Methods). The second method identifies regular

sequences characterizing the different clusters. In this framework,

the promoter is modelled as a chain of oscillators according to the

Peyrard–Bishop model [48–50] (see section Spectral method for

identification of regular sequences in Methods): from the analysis of the

vibrational properties of the promoter chain it is possible to

identify all the regular sequences.

In section Clustering of promoters we report the results of the

clustering procedure and we show that H. sapiens promoters can be

classified into four main groups featuring different structural

properties. The next two sections (Regular nucleotide sequences in

promoters and Transposons and regular sequences) are devoted to

discussing the relevance of the different content of regular

sequences in the four clusters detected. In particular, we show

that the most frequent regular sequences in two of the four clusters

are strongly correlated with transposons: this constitutes one of the

main biologically relevant results reported in this manuscript. The

results about the comparison among different species, extensively

discussed in file Text S1, indicate that, even in mammals, the most

frequent regular sequences are benchmarks for different species - a

completely opposite situation with respect to the coding compo-

nent of DNA that is highly conserved.

Results and Discussion

Clustering of promoters
The database of H. sapiens promoters used in this paper contains

32122 sequences associated to protein–coding genes (see section

Databases in Methods). Each promoter is represented by the 1000

nucleotides upstream of the TSS of all annotated genes.

A first classification of the promoters of this database was

proposed in [15]. It relied upon the heuristic criterion of

subdividing the database into two classes determined by the

presence of the TATA-box (see section TATA–box in Methods).

This criterion was inspired by the conjecture that these two classes

are usually related to different promoter regulatory activity, that is

promoters containing a TATA-box are usually associated with

tissue–specific genes, while TATA-less promoters are related to

housekeeping genes [35]. The analysis of the average base

composition and of suitable entropic indicators showed that

promoters containing the TATA-box (28% of the whole H. sapiens

database) exhibit quite a different nucleotide composition (AT

rich) with respect to the group of TATA–less promoters (CG rich)

[35,51]. This was a very interesting result, if one considers that the

difference between these classes of promoters is not limited to the

region close to the TSS, but it extends over the entire promoter. It

was also pointed out that such differences are correlated with the

presence of homogeneous sequences, whose composition charac-

terizes the two groups of promoters [15].

In this paper we adopt a general clustering strategy of H. sapiens

promoters that takes into account the global properties of the

whole promoter instead of specific short regulatory motifs. The

clustering procedure described in section Spectral Clustering of

Methods is based on the spectral analysis of a similarity matrix: the

entries of such matrix are obtained by an alignment algorithm that

evaluates the similarity between promoters. The robustness of the

method has been first verified by comparing two different

alignment algorithms, namely Needleman–Wunsch [45] and

Waterman-Smith [46]. We have found that, although the entries

of the similarity matrix are quite different, both alignment

algorithms yield essentially the same cluster organization.

Accordingly, we have decided to report here only the result of

the Needleman–Wunsch alignment algorithm, whose parameters

have been fixed by a suitable optimization procedure (see section

Sequences alignment in Methods). The main computational limita-

tions of this clustering procedure stem from the alignment protocol

and from the diagonalization of the similarity matrices. Therefore

we have been able to consider similarity matrices of rank up to

2880, meaning that each run of the clustering algorithm can be

applied to a sample of 2880 promoters. Taking advantage of the

criterion employed in [15], each sample has been obtained by a

random selection with equal probability of TATA and TATA–less

promoters. This unbiased choice has been adopted to guarantee a

comparison between numerically equivalent samples of sequences

belonging to both promoter groups.

As shown in section The Normalized Laplacian Matrix in Methods,

the eigenvalues of the Laplacian matrix, associated to the similarity

matrix, highlight the presence of four clusters for H. sapiens.

We have also checked the robustness of the results by

considering other sampling procedures. For instance, by choosing

28% of TATA and 72% of TATA-less promoters (according to

their percentage in the database), or by a purely random sampling

of promoters from the whole database, we still identify four clusters

(apart from the number of promoters attributed to each cluster). In

Fig. 1 we report the distribution of points in the clustering space.

In this representation, as described in section Clustering Algorithm of

Methods, each point represents a promoter: promoters with a high

similarity score correspond to near points. Each of the 2880

promoters has been unambiguously associated to one of the four

clusters with the procedure described in section Clustering algorithm

of Methods. In panel A of Fig. 1 we make use of a four–color

representation, where each color corresponds to a cluster, while in

Genome-Wide Analysis of Promoters
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panel B we show, by a two-color representation, the partition into

TATA and TATA–less promoters. The former (latter) are

preferentially located on the left (right) side. Accordingly, we can

conclude that our clustering algorithm yields a different and more

refined classification of promoter sequences with respect to the

mere partition of the sample into TATA and TATA–less

promoters [15]. In fact, our clustering method takes into account

global properties of promoters, while the one adopted in [15] relies

upon a local criterion, i.e. the presence of the TATA–box in a

specific promoter region.

Such a difference also emerges from the comparison of the BCA

for the two families of TATA and TATA-less promoters of the

whole database (see Fig. 2) with the one of promoters in the four

clusters (see Fig. 3). The latter exhibit two clusters dominated by

CG and AT nucleotides, denoted as cluster 1 (C1) and cluster 4

(C4), respectively; the other clusters , 2 (C2) and 3 (C3), on the

contrary, are characterized by a more uniform distribution of

nucleotides. The clusters (that correspond to those of panel A of

Fig. 1) contain 934 (C1), 408 (C2), 409 (C3) and 1129 (C4)

promoters (see also Fig. 4). We observe a different content of

TATA promoters in each clusters: in C1 the percentage is about

28%, in C4 is 67% while in C2 and C3 it is 51%.

It is known from the literature that the region around the TSS

of animal promoters is typically CG enriched [52,53]. On the

other hand, the result of our clustering procedure indicates that a

strong CG bias is present all along the extension of a specific subset

of promoters, i.e. those contained in C1. Although a commonly

accepted explanation of the CG enrichment in mammalian

promoters is the presence of the so-called CpG islands, in a

previous work [15] it has been shown that all the strong

dinucleotide combinations increase with the same rate towards

the TSS in mammalian promoters. The same scenario is

recovered here for the promoters in C1 (see Fig. S11). For more

details, see section CpG dinucleotide analysis in file Text S1.

The same partition into four clusters has been obtained also for

P. troglodytes and M. musculus (see Fig. S1). This suggests that, at

least for mammals, there is a general organization of promoters

into structurally similar clusters.

This clustering method, that takes into account the entire

promoter, has been applied also to species different from

mammals. For instance, we have studied D. rerio and A. thaliana,

but in this case we do not observe any indication of a clustering. As

shown in section Clustering and BCA of other species in file Text S1, a

clustering for these species can be recovered by limiting the

alignment algorithm to a shorter and more specialized region of

the promoter, i.e. the first 100 nucleotides upstream the TSS. This

seems to suggest that regions much further than 100 nucleotides

from the TSS can be considered intergenic regions, that do not

correspond to any specific function. This conjecture is also

confirmed by other studies of the functional regions of the genome

in different species [15,22,34].

Altogether, the clustering analysis indicates that promoters in

mammals exhibit common features, that depend on global

structural properties. Conversely, in other species the clustering

strategy is effective only when limited to relatively small regions

(typically 100 nucleotides) close to the TSS.

Now, the main question concerns the identification of the

structural features characterizing the different clusters.

Regular nucleotide sequences in promoters
The complex structure of nucleotide sequences in promoters is

due to the alternation of regular and disordered regions. As

discussed in Methods (see section Spectral method for identification of

regular sequences), these regions can be completely identified by

computing the eigenvalues and the eigenvectors of the Hessian

Matrix derived from the harmonic approximation of a simple

double-strand DNA model [48–50]. The parameters of the model

have been chosen according to phenomenological information.

One major limitation of this simple model is that it can distinguish

only between weak and strong nucleotides. It could be argued that

this binary representation introduces a strong bias, because a

regular sequence in a weak (W) and strong (S) binary code is not

necessarily regular in the natural (A, T, C, G) quaternary code. On

purely heuristic grounds, we can say that in most of the promoters

many ‘‘regular’’ sequences in the binary code are still ‘‘regular’’ in

the quaternary code. Moreover, as testified by the results discussed

hereafter, we have checked that a good deal of the regular

sequences in the binary code (that may appear less regular in the

quaternary code) still play a relevant role in characterizing

structural features of the different clusters. We want to recall that

the use of the (W, S) binary code has revealed effective also for

analyzing promoter sequences by entropic indicators [15].

We have found that regular sequences are distributed all along

the promoters and cover a relevant portion of them: on average,

about 40% of the promoter length in H. sapiens, P. troglodytes and

M. musculus, while they reach 50% in D. rerio and A. thaliana (see

Fig. 4).

Figure 1. Distribution of points in the clustering space (see Methods) relative to the alignment of 2880 human promoters. Each point
represents a promoter of the sample. A. The color code represents the four clusters. B. The color code represents the TATA (blue dots) and TATA–less
(orange dots) classification.
doi:10.1371/journal.pone.0085260.g001
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In this section, we focus on the investigation of the properties of

the regular sequences in the four clusters of H. sapiens. Although

they have been identified in the (W,S) binary code, it is worth

representing them in the natural quaternary code. Given the huge

number of regular sequences in each cluster (see sec. Global statistics

on regular sequences in H. sapiens in file Text S1), we decided to focus

our analysis only on the 15 most frequent regular sequences,

conjecturing that their overrepresentation is related to their

importance. Anyway, we do not claim that they are the only

interesting ones.

The most frequent regular sequences found in C1 and C4 (see

Fig. 5) extend over 7 nucleotides, i.e. the minimum length of a

regular sequence detected by the algorithm (see section Determi-

nation of regular sequences in Methods). These short sequences exhibit

a prevalence of S-nucleotides in C1 and of W-nucleotides in C4,

consistently with the results obtained from the BCA (see Fig. 3).

Figure 2. BCA of human promoters. BCA of the entire repertoire of human promoters (panel A) and of the two sets of TATA and TATA-less
promoters (panels B and C). We report the frequency r of each of the four nucleotides A (black), T (blue), C (red) and G (green) as a function of the
position l along the promoter (0 corresponds to the TSS). Figure from [15].
doi:10.1371/journal.pone.0085260.g002

Figure 3. BCA of each of the clusters obtained with the clustering algorithm for H. sapiens. We report the frequency r of each of the four
nucleotides A (black), T (blue), C (red) and G (green) as a function of the position l along the promoter (0 corresponds to the TSS).
doi:10.1371/journal.pone.0085260.g003

Genome-Wide Analysis of Promoters
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Their structure as well as their frequency in C1 and C4 are

essentially similar. In most cases they are composed of a

homogeneous sequence of five nucleotides flanked by two identical

nucleotides of different nature in the (W,S) binary code, namely

TCCCCCT, ACCCCCA, TGGGGGT, AGGGGGA,

CTTTTTC, GAAAAAG, GTTTTTG. A first interesting quan-

titative feature is that each of these sequences appears in

approximately 10% of the promoters of the cluster (see Fig. 5).

We have also counted how many times each sequence is contained

in these host promoters. The large majority contain the regular

sequence just once, while only a small fraction of them contains it

at most twice. In fact, the average number of each of these regular

sequences in host promoters amounts to approximately 1.1: this

indicates that each sequence is mostly spread across different

promoters.

Also sequence AGGAGGA (as well as its complementary

TCCTCCT) appears among the most frequent ones in all clusters.

This sequence is fundamental in Prokaryotes, since it corresponds

to a consensus sequence for the ribosome-binding site [54]. Its

structural properties have been investigated [55,56] together with

its presence in promoters, where it has been found to interact with

a stage-specific factor during the late stages of erythropoiesis [57].

One could wonder if overexpressed regular sequences in C1 and

C4 are correlated with any biologically relevant function. For

instance, taking inspiration from the literature, they could be

associated with structural properties of the double helix [41,43,58],

with the binding of basal transcription factors and RNA

polymerase to DNA [21,44], or to the possibility that homoge-

neous tracts could play the role of hotspots for mutations [42,59].

On the same ground, one cannot exclude that they could interact

with specific TF [21,60]: we have checked this possibility with

various tools and databases (i.e., [61–63]), but we have not found

unambiguous outcomes corresponding to these motifs. Anyway, a

verification of such conjectures is worthwhile, but goes beyond the

aims of this manuscript and will be considered elsewhere. On the

other hand, we have selected these sequences on the basis of their

regularity and frequency, so that they are not necessarily

associated with the specificity of regulatory signal typical of a TF

binding site. In their turn, TF binding sites are variously dislocated

along the genome (in enhancers, introns, etc.) and they are niether

necessarily overexpressed nor regular, as they need a high

information content for the specificity of their signal [20,21].

Anyway, more relevant features differentiate C1 and C4 from

C2 and C3, whose regular sequences typically exhibit a different

structure. First of all, in C2 and C3 there are long regular

sequences, up to 19 nucleotides (i.e. CTAATTTTTGTATTTT-

TAG and CTAAAAATACAAAAATTAG), among the most

frequent ones. Moreover, the most frequent regular sequences

appear in about 48% of promoters, at variance with C1 and C4,

where they cover at most 14% of the promoters of the cluster. Last

but not least, almost all regular sequences found in C2 have a

companion sequence in C3 that corresponds to its reverse

complement. As we are going to discuss in the following section,

this observation indicates a relation of the most frequent regular

sequences in C2 and C3 with transposons. This is by far the most

interesting and distinctive feature of regular sequences in C2 and

C3.

We want to conclude this section by adding two remarks.

Our analysis indicates that the clustering algorithm is able to

detect specific similarities among promoters. In C1 and C4

similarities seem to stem just from the prevalence of S or W

nucleotides, respectively, while in C2 and C3 they are mostly

associated to the presence of specific regular sequences.

With regard to the comparison with other species, we want to

point out that P. troglodytes exhibits the same most frequent regular

sequences (including the 19–nucleotide one) found for H. sapiens.

However, M. musculus exhibits rather different features (see Fig.

S3). In D. rerio and A. thaliana the search for regular sequences has

been performed in all the 1000 nucleotides of each promoter, even

if the clusters differentiate only in the 100 nucleotides upstream the

TSS. We have found that, at variance with mammals, the most

frequent regular sequences are essentially the same in all the

clusters (see Fig. S4). This is not completely unexpected, because of

the low level of differentiation between promoters outside a small

region near the TSS.

Transposons and regular sequences
In order to identify correlations of regular sequences with

specific elements in promoters, we have focused our attention on

transposons, that are conjectured to be associated with promoter

evolution, while playing a role in gene regulation and expression

[64–66]. In fact, the observation of the reverse complementarity of

regular sequences in C2 and C3 corresponds to a typical feature of

transposons, that can indifferently intrude on both of the DNA

strands. It is worth to recall here that the promoters in the

Figure 4. Occurrence of regular sequences in the clusters of promoters of different species. A. Average fraction of the promoter occupied
by regular sequences. B. Number of promoters within the clusters.
doi:10.1371/journal.pone.0085260.g004

Genome-Wide Analysis of Promoters

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e85260



database of H. sapiens belong to a specific strand (see section

Databases in Methods).

First of all we have identified (via the RepeatMasker software

[67]) all transposons present in the promoters distributed in the

four clusters of H. sapiens. We have found that C2 and C3 contain

a large number of transposons, with a majority of Alu ones. On the

contrary, C1 and C4 contain a smaller number of transposons,

where Alu are quite rare (see Fig. 6).

The overabundance of Alu elements found in C2 and C3 could

be read as a straightforward consequence of the fact that the Alu

family is the most frequent dispersed repeat of the human genome:

over one million copies of repeat elements, with a non–uniform

distribution [65]. Our results have the merit of identifying the

biases in their distributions among the different clusters of

promoters.

A similar scenario is observed also for P. troglodytes and M.

musculus, while in D. rerio and A. thaliana the content of transposons

is approximately the same in all clusters (see Figs. S5, S6, S7, S8).

In order to disclose the conjectured relation between the most

expressed regular sequences in C2 and C3 and transposons, we

performed the following analysis. First, we computed the

percentage of times each sequence belongs to a transposon

(reported in the right column of Fig. 5). Then, we compared this

result with the percentage of the cluster covered by transposons,

which represents an estimation of the percentage we would expect

if the sequence were equally distributed inside and outside the

transposons. We have found that in C2 and C3 all the most

expressed regular sequences appear in transposons with frequency

much higher than the fraction of the cluster covered by

transposons (that amounts to ^44–45%). Therefore, such

sequences are much more likely to be located inside than outside

a transposon: in some cases the probability is actually close to 1. In

particular, the sequences with the highest probabilities (e.g.

CTAATTTTTGTATTTTTAG) belong to the aforementioned

Alu family. This is a strong indication that Alus are responsible of

the enrichment of C2 and C3 with these specific sequences. On

the other hand, the same analysis performed on clusters C1 and

C4 shows that the most frequent regular sequences appear

essentially equally distributed inside or outside the transposons.

Altogether, we have obtained evidence that such distinctive

features are strongly related to the discrimination of the different

clusters in H. sapiens. Moreover, according to this observation, C2

and C3 should be considered as a unique cluster: as already

mentioned, their apparently different features are the mere

consequence of the insertion of transposons in different promoter

strands, that yields the reverse complementarity characterizing

regular sequences in these clusters.

In section Transposons of file Text S1 we have reported also the

results obtained via the RepeatMasker software [67] for the other

species considered in this paper, namely P. troglodytes, M. musculus,

D. rerio and A. thaliana. For the first two species we observe very

similar features with H. sapiens: in Fig. S3 we show that the

correlation between the most-expressed regular sequences in C2

and C3 and transposons is preserved. In accordance with the

known divergence of transposable elements between primates and

mice [25,68], the regular sequences in C2 and C3 of M. musculus

are in most cases different from those of H. sapiens and P. troglodytes.

In the two other species transposons are equally distributed in

all clusters. There is still a correlation between some regular

sequences and transposons in D. rerio, while such a correlation is

absent in A. thaliana.

Conclusions

In this manuscript we performed a genome-wide analysis of H.

sapiens promoters by exploiting a fully general mathematical

procedure based on the combination of two spectral methods. The

first one amounts to a clustering algorithm that allows us to classify

promoters according to global similarities. The second spectral

method is capable of detecting any regular sequence in each

Figure 5. The most frequent regular sequences found in the
clusters of H. sapiens. We report the percentage of promoters of the
cluster in which the sequence appears at least once (left column), and
the percentage of times the sequence is found inside a transposon
(right column): it is calculated dividing the number of times it appears
in a transposon by the total number of times it appears in the cluster.
doi:10.1371/journal.pone.0085260.g005

Genome-Wide Analysis of Promoters
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promoter, without imposing any preliminary constraint. The

clustering analysis showed that H. sapiens promoters can be pooled

into four main groups. Two of the clusters are distinguished by the

prevalence of weak or strong nucleotides and are characterized by

short compositionally biased sequences. In the two remaining

clusters regular regions are found to be correlated with transpo-

sons, that are known to play a major role in favoring evolutionary

changes in cis-regulatory regions, as conjectured by some authors

[25,64,65,68]. A posteriori, we are therefore led to conclude that

these two clusters actually represent a single one.

In summary, the main biologically relevant findings consist in

the following: (i) promoters can be classified according to common

global properties of the whole sequence and not on the basis of the

presence of specific patterns in specific positions (as for example in

the usual TATA/TATA-less classification or other specific short

regulatory motifs); (ii) promoters with the highest content of

transposons group together in C2 and C3; (iii) the most expressed

regular sequences of these clusters are essentially located inside

transposons; (iv) conversely, in clusters C1 and C4 (where strong

and weak nucleotides are respectively dominant) the most

expressed regular sequences appear equally distributed along the

promoters without any specific relation with transposons. More-

over, the generality of the unbiased methods, presented in this

manuscript, allowed us to extend them to the investigation of

promoter databases of other species. In file Text S1 we showed

that the comparison of H. sapiens with other mammalian species

points out that such species seem to be generally characterized by

the presence of the same cluster organization. On the other hand,

while the promoter structural properties of H. sapiens and P.

troglodytes are almost identical, we find that M. musculus exhibits

some differentiation in the most frequent regular sequences as well

as in the correlation with transposons. An even more pronounced

differentiation with respect to mammalian species is found in the

promoters of a fish, D. rerio, and of a plant A. thaliana. At variance

with mammalian promoters, where the information content

spreads all over the promoter length, we have found that the

clustering of promoters in these latter species is associated with a

relatively short region (&100 nucleotides) close to the TSS. Such a

sharp differentiation of promoters structure in different species

indicates that these DNA components are suitable candidates also

for investigating the effects of evolutionary selection on DNA.

All the above mentioned results pave the way to new

investigations. For example, some of the found regular sequences,

because of their close–to–homogeneous composition, can be

associated with known functional patterns: for instance, just to

cite some examples, it is well known the effect of poly(A) sequences

on the bendability of the double helix and the wrapping around

nucleosomes [43,58]; moreover in [41] authors claim that

Figure 6. Distribution of the different families of transposons in the four clusters of H. sapiens. We report the total percentage of
nucleotides in the cluster covered by transposons (pie chart) and the percentage of nucleotides covered by each family of transposons (histogram).
Note the different scales in the histograms.
doi:10.1371/journal.pone.0085260.g006
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poly(dA:dT) and poly(dC:dG) tracts have a higher propensity for

nonspecific TF-DNA binding, speeding up the stochastic search

process for specific TF binding sites.

On the other hand, one cannot exclude that other regular

sequences could also be eventually found to be associated with yet

unexplored functional properties. More generally, one can guess

that the overall ensemble of regular sequences constitute a sort of

substrate with peculiar conformations, in which more irregular

disordered sequences, endowed with a higher information content,

are dispersed and play their role in specifying the regulatory signal

[20,44]. Accordingly, one could further guess that irregular and

regular sequences in promoters may undergo different evolution-

ary processes: the first ones need sequence conservation, while the

others may tolerate sequence variability. In the latter case

conservation may involve certain conformational properties

conferred for instance by sequence composition and correlations,

periodicity, the length of regularity etc. We want to conclude by

stressing again that the unbiased methods presented in this paper

can be applied independently from conservation hypothesis or

motif knowledge.

Methods

Databases
The promoters of H. sapiens, M. musculus and D. rerio have been

downloaded from DBTSS (Version 6.0), a database of TSSs,

obtained from a collection of experimentally-determined 59-end

sequences of full-length cDNAs [69]. P. troglodytes promoters have

been downloaded from ECRbase, a database which provides a

comprehensive collection of promoters generated by using

expressed sequence tag (EST) and mRNA data [70]. The

promoters of A. thaliana have been downloaded from a database

where annotation of genes is largely based on sequenced cDNAs

and ESTs alignments with the genome, that is TAIR (The

Arabidopsis Information Resource) web site [71] (released in

March 2008).

TATA–box
Following Yang et al. [72] , the TATA-box consensus sequence

has been searched from position l~{80 to l~{1 in the top

strand of each promoter by an exact–match search. It corresponds

to the degenerate sequence HWHWWWWR (coded according to

IUPAC nomenclature), which identifies 576 sequences (in the

nucleotide quaternary code). In order to fit the structural definition

of the interaction with the TATA–binding protein, 44 specific

strings have been excluded, so that the actually employed

sequences reduce to 532 elements. Each promoter is called TATA

if a TATA box consensus sequence is found at least once,

otherwise it is called TATA-less. We have searched all the same

degenerate boxes in the sets of promoter sequences of all the

investigated species.

Spectral clustering
The aim of the procedure described in this section is to divide

the collected promoters into groups depending on the similarity

between the sequences. The method is structured into three main

steps: the first one consists in aligning each sequence with all the

others (pairwise alignment) so as to obtain a matrix of similarity

scores. Then, the analysis of the spectral properties of the

Laplacian matrix calculated from the similarity matrix enables

one to determine the appropriate number of groups for the

clustering procedure. The last step, based on the k–means

algorithm, associates each sequence to one of the clusters.

Sequences alignment. The basic idea of a sequence

alignment is to identify regions of similarity that may be related

with functional or structural properties as well as evolutionary

relationships. Clearly, any alignment procedure cannot be based

on a perfect match between sequences, but it has to take into

account important biological features such as mutations and

insertions or deletions occurred during the evolution. For this

reason, the standard approach to this problem is to implement

computational methods that make use of a substitution matrix to

assign positive and negative scores to nucleotide matches or

mismatches, and a gap penalty for matching a nucleotide in one

Figure 7. Eigenvalues of the Laplacian matrix. First 50 eigenvalues in ascending order of the normalized Laplacian matrix relative to the
alignment of 2880 H. sapiens promoters. The method used is the Needleman–Wunsch with GAPOPEN~20 and GAPEXTEND~0:5 for panel A,
GAPEXTEND~1:0 for panel B.
doi:10.1371/journal.pone.0085260.g007
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sequence to a gap in the other one. These algorithms, in general,

fall into two categories: global and local techniques. A global

algorithm spans the entire length of the sequence, while a local

alignment focuses on identifying regions of similarity within long

sequences that are often widely different overall. In this paper we

have made use of the two most popular alignment methods, the

Needleman–Wunsch global algorithm [45] and the Smith–

Waterman local algorithm [46] implemented in the EMBOSS

package version 6.3.1 [47].

A key aspect of the procedure, which may give rise to a marked

difference in the best match score calculated by the two

algorithms, is the choice of the penalty value to be assigned to

the introduction of a new gap in the alignment (GAPOPEN) and

the value for each consecutive gap (GAPEXTEND); the scoring

matrix for the nucleotide substitution has been taken equal to the

standard EDNAfull matrix for both methods. Unfortunately

there’s no way to set a priori the optimal choice of parameters

and thus the best option is to tune the values depending on the

results obtained. Regarding our work, the trials we performed

suggest to use a high GAPOPEN value (typically set equal to 20)

and a low GAPEXTEND penalty (0.5 or 1) in order not to

penalize long gap sequences. This setting favors the scores of very

similar sequences yielding an easier detection of the correct

number of clusters (see section The normalized Laplacian matrix).

Moreover, in the EMBOSS code, gaps inserted at the beginning or

at the end of the sequence have no penalty. In this way, we do not

observe a significant difference between the two algorithms, and

the outcome of aligning N promoters gives the same similarity

matrix S in both cases.

The normalized Laplacian matrix. A convenient way to

represent the N|N entries sij of the symmetric similarity matrix

S, is to introduce a network whose nodes coincide with the

sequences, while the entry sij represents the weighted link between

sequence i and j. For the purpose of our work, however, dealing

with a full connected network is not the best approach. The risk is

that the noise induced by the fact that even the alignment of two

random sequences gives a positive score, may hide the real

common features among promoters, making the clustering

procedure unfruitful. For this reason, it is of paramount

importance to substitute S with a weighted adjacency matrix W ,

for which two nodes are connected only if their alignment score is

larger that a certain threshold s�, namely wij~sij if sij§s� and

wij~0 otherwise. To estimate s�, we have associated to each set of

N analyzed promoters, the corresponding N reshuffled sequences,

namely the sequences obtained random rearranging the nucleo-

tides of each promoters. Then we have performed the alignment,

and calculated s� as the arithmetic mean of sij . To check the

correctness of s�, we have monitored s� as a function of N and we

have observed the convergence of s� to a constant value for N

approaching the values used in our simulations (N~1440,

N~2880; the choice N~2880 is due to the constraints on both

the computational time and the size of the matrix to be stored).

Finally, in order to manage a set of more homogeneous data, we

have operated the normalization dij?wij=maxfwijg.
Following [73], once an appropriate adjacency matrix is

obtained, the first step of the clustering procedure is the

determination of the number of clusters. For this purpose, we

introduce the normalized Laplacian Lsym~D{1=2(D{W )D{1=2

where the degree matrix D is defined as the diagonal matrix with

entries di~
PN

j~1 wij . In some particularly successful cases, Lsym

has a block structure, and the multiplicity of its null eigenvalue

determines the number of connected components. In real cases,

however, data is well mixed, and Lsym has a unique null eigenvalue

corresponding to one connected component, which includes the

whole data set. The solution of the problem comes from the matrix

perturbation theory [74]. Indeed, given the spectrum

l1ƒl2ƒ . . . ƒlN of Lsym, the information about the number

of clusters is carried by those eigenvalues wh ich are located close

to the null one. The idea is that the actual Lsym can be read as a

perturbation of an ideal block matrix, and thus the first k values of

the spectrum act as fluctuations of the corresponding null

eigenvector of the ideal case, with multiplicity k. In practice, the

more the first k eigenvalues are distant from the others, the more

effective will be the separation of data into the k groups. Fig. 7

helps to understand this approach. Both panels show the first part

of the spectrum of Lsym associated to the alignment of 2880 H.

sapiens promoters with the global algorithm. The first value is zero,

and then three consecutive eigenvalues, located far from the

others, follow. Accordingly, the resulting number of clusters is 4.

Figure 8. Eigenvectors of the Hessian matrix with different properties of delocalization. The eigenvector e201(i), in panel A, has
comparable values of participation number and extension (j^11 and D^14), while the eigenvector e763(i), in panel B, has a small participation
number, j^2, but very large extension (D^40). In the insets an enlargement of the region of delocalization is shown. Data refer to the promoter of
H. sapiens with Entrez GeneID 9542 (the promoter of the neuregulin-2 gene). Entrez Gene is the gene-specific database at the National Center of
Biotechnology Information (NCBI) [76].
doi:10.1371/journal.pone.0085260.g008
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The distance from the fourth eigenvalue to the fifth one is larger in

panel B where we used a higher GAPEXTEND value.

Clustering algorithm. We are now able to apply the spectral

clustering algorithm in order to assign each promoter to one of the

clusters. The starting point is the computation of the first k
eigenvectors u1, . . . ,uk of Lsym, so as to form a new matrix

U[RN|k containing the vectors u1, . . . ,uk as columns. Let

T[RN|k be the matrix obtained from U by normalizing the

rows to norm 1, namely, ti,j~ui,j=
P

k u2
i,k

� �1=2

. For i~1, . . . ,N

we denote by yi[Rk the vector corresponding to the i{th row of

T . The last point consists in applying the k–means algorithm to the

points yi so as to find A1, . . . ,Ak clusters. The iterative procedure

of the algorithm works as follows: first, select k random points as

initial centroids. Then, form k clusters assigning each point yi to its

closest centroid, according to Euclidean distance. Recompute the

centroids as the mean of the points of each cl uster. Repeat until

the difference between the centroids coordinates of two consec-

utive steps reaches a fixed tolerance. For instance, in panel A of

Fig. 1 this tolerance was fixed to 10{5.

Spectral method for identification of regular sequences
Nucleotide sequences in promoters are characterized by the

alternation of regular and disordered regions of different length. In

particular, the regular ones exhibit various structures, ranging

from homogeneous to periodic and palindromic. In this section we

describe a method for the identification of all these regular

sequences starting from the properties of a mechanical model of

the DNA chain. It is worth pointing out that the method is based

on a definition of regularity of finite–length regions in a promoter,

that combines suitable quantitative indicators.

In practice, we adopt the model introduced by Peyrard and

Bishop [48–50] (see section Peyrard-Bishop model). This model

simplifies the molecular structure of the DNA by considering only

one strand and neglecting the double-helix structure. It takes

explicitly into account the nonlinear interactions between the

nucleotides and, despite its apparent simplicity, it is quite effective

for reproducing the dynamics of DNA at physiological tempera-

tures. For our purposes, it is sufficient to consider the harmonic

approximation of this model, that is valid in the low–temperature

limit. In this sense, what remains of the information contained in

the Peyrard-Bishop model are the presence of nearest–neighbor

and on–site harmonic interactions and the phenomenological

parameters defining their strength (see Eq. (3)). In section Normal

modes we show that the properties of the chain in the harmonic

regime are completely determined by the features of the Hessian

matrix of the model.

Finally, in section Determination of regular sequences, we describe the

procedure for the determination of the regular sequences using the

eigenvectors of the Hessian matrix.

At variance with the notation adopted for labeling the position

of nucleotides in a promoter (namely, l~{1000, � � � ,{1), in what

follows we adopt the standard numeration for the index i of the

sites in an oscillator chain, namely i~1, � � � ,L (with L~1000 for

promoters).

Peyrard-Bishop model
In the Peyrard-Bishop model each nucleotide i~1,:::,L is

associated with one degree of freedom yi, that corresponds to the

displacement of the nucleotide from its equilibrium position. This

displacement is in the the direction of the hydrogen bonds

connecting a nucleotide to its complementary in the opposite

strand. The state of the chain is completely determined by the

vector~yy~(y1,:::,yL). The interaction due to the hydrogen bonds is

modeled by a Morse potential. Moreover, the model contains a

stacking interaction between nearest neighbor nucleotides: the

strength of this interaction decreases when the complementary

nucleotides are farther. The total potential energy U(~yy) is given by

X
i

K

2
(1zre{a(yiz1zyi ))(yiz1{yi)

2zdi(e
{aiyi {1)2

� �
ð1Þ

The parameters K , r and a refer to the stacking interactions

between two consecutive nucleotides; while the parameters di and

ai define the depth and the width of the Morse potential,

respectively. In order to model heterogeneuos DNA sequences two

different values for the couple (di, ai) are considered according to

the two possible kind of nucleotides, weak (W) and strong (S). The

former has two hydrogen bonds, while the latter has three

hydrogen bonds. Therefore, the depth for the S Morse potential is

chosen 1.5 times the one of the W Morse potential. The model is

characterized by a dichotomic disorder along the chain: every

nucleotide can be associated to the couple of values (dW ,aW ) or

(dS,aS). The ground state of the model (i.e., the state of minimal

energy) corresponds to a configuration of the chain with~yy~~00. For

the promoters analyzed in this paper we have L~1000, while the

parameter set is the one adopted in [75] (in order to avoid

convergence problems in the algorithm for the diagonalization of

the Hessian matrix of the potential U we chose K~0:030 eV/Å2

instead of 0:025 eV/Å2).

Normal modes
The normal modes of the Peyrard–Bishop model of the DNA

chain represent small oscillations around the ground state. In

order to fully characterize them we need to know the frequencies

and the amplitudes of oscillations of every nucleotide (that is

equivalent to a harmonic oscillator). A normal mode is in fact a

collective motion where every nucleotide vibrates with the same

frequency but with a different amplitude. As the chain has L

degrees of freedom there are L different ways of oscillation.

Figure 9. Start site and end site of an eigenvector. Determination
of the effective extension (region in between the dashed lines) of a
delocalized eigenvector overlying regular sequences. Notice the very
small components of the eigenvectors aside the regular region. A
portion of the sequence is reported both in quaternary and in binary
code. Data refer to the promoter of H. sapiens with Entrez GeneID 54808
(the promoter of the dymeclin gene).
doi:10.1371/journal.pone.0085260.g009
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Approximation of the potential energy. From a mathe-

matical point of view the normal–mode approach corresponds to

consider a Taylor series expansion of the potential energy around

the minimum ~yy~~00. At the second order it reads

U(~yy)^U(~00)z+U(~00)T~yyz
1

2
~yyT H(~00)~yy ð2Þ

where Hij~
L2U

LyiLyj

is the symmetric Hessian matrix of the

potential energy. Since in the minimum of the potential

U(~00)~~00 and +U(~00)~~00, Eq.(2) reduces to

U(~yy)^
1

2
~yyT H(~00)~yy~

1

2
(
XL

i~1

Aiy
2
i z2B

XL{1

i~1

yiyiz1) ð3Þ

where: Ai~½2dia
2
i z2(1zr)K � for i~2, � � � ,L{1, Ai~½2dia

2
i z

(1zr)K � for i~1,L and B~{(1zr)K . This amounts to the

harmonic approximation, where the properties of the potential

energy are summarized in the Hessian matrix evaluated in the

minimum of the potential.

Hessian matrix: eigenvalues and eigenvectors. By a

suitable change of coordinates ~yy?~xx, the quadratic form (3) can

be rewritten in a diagonal form by a standard procedure (this is done

by solving the spectral problem for the Hessian matrix, i.e.,

Hd~AT HA where A is an orthogonal matrix AT~A{1, Hd is the

Hessian matrix in diagonal form and by setting~yy~A~xx). In the new

variables, U reads as the energy associated to L harmonic springs

U(~xx)^
1

2
~xxT Hd~xx~

1

2

XL

k~1

lkx2
k ð4Þ

where Hd is the diagonal form of the Hessian matrix and lk are the

eigenvalues.

The eigenvectors ek(i) of the Hessian matrix (where i~1,:::,L is

the nucleotide index relative to the TSS) are the eigenmodes of the

DNA chain.

Properties of the eigenvectors. Regular sequences in the

promoters are recovered by looking at eigenvectors of the Hessian

matrix with suitable features of delocalization according to the

method described in section Determination of regular sequences. In

order to apply this procedure, the following indicators have been

used to fully characterize the eigenvectors.

1. the eigenvector center of mass, xcm
k , signals the position of the center

of the eigenvector along the promoter chain and it is defined by

xcm
k ~

PL
i~1 Dek(i)DiPL
i~1 Dek(i)D

, ð5Þ

2. the eigenvector extension along the chain is quantified by

Dk~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(

PL
i~1 Dek(i)Di2PL
i~1 Dek(i)D

){(xcm
k )2

s
ð6Þ

3. the eigenvector participation number, jk, is a measure of the degree

of delocalization of the eigenvector and it is defined by

jk~(
XL

i~1

Dek(i)D4){1; ð7Þ

for an eigenvector localized on a single site j^1, while for a

completely delocalized eigenvector j^L (the eigenvectors are

normalized to unity, i.e.
PL

i~1 Dek(i)D2~1).

We want to point out that both the extension and the

participation number are necessary to define the properties of

the eigenvectors, because the two indicators are not always

positively correlated (see Fig. S10). In fact, for some eigenvectors

the degree of delocalization essentially coincides with the extension

of the eigenvector (see panel A of Fig. 8). On the other hand, there

are eigenvectors having very small participation number despite

the very large extension, and this is typically due to the presence of

very large components on a few sites and much smaller

components on many sites in between (see panel B of Fig. 8).

Determination of regular sequences
By regular sequence we mean a region of a promoter that

exhibits any spatial regularity in the weak-strong binary code.

Eigenvectors with large enough degree of delocalization, deter-

mined by the participation number jk, generally extend over

regular regions. Accordingly, the method for the identification of

the regular sequences, that we are going to describe in detail,

needs from the very beginning a conventional definition of

delocalized eigenvectors and of their effective extension along the

sequence (criteria I and II).

I. We consider delocalized those eigenvectors with participation

number exceeding a fixed threshold value, i.e. jk§3:9, that

typically correspond to a region of at least 7 nucleotides. This

heuristic choice is justified by the fact that many regular motifs

of biological interest correspond to such a size (e.g, the

TATA–box, that contains 8 nucleotides).

Figure 10. Regular and disordered sequences of a promoter.
The regular sequences (highlighted in the black frames) are determined
by the delocalized eigenvectors of the Hessian matrix. For the sake of
clarity, for each of the three examples shown here we report just two of
the eigenvectors, whose total number is 10 (green case), 16 (blue case)
and 16 (red case). The sequence of the promoter is reported both in
quaternary and in binary code. The curves refer to eigenvectors n. 988,
577, 567, 998, 946, 627 (resp. from the top to the bottom) of promoter
with Entrez GeneID 9542 of H. sapiens.
doi:10.1371/journal.pone.0085260.g010
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II. The start-site, istart, and end-site, iend , of a delocalized

eigenvector are identified according to the following condi-

tions,

istart : Dek(istart{1)Dƒh and Dek(istart)Dwh,

iend : Dek(iend{1)D§h and Dek(iend )Dvh,

with h~0:05. The heuristic choice of the value of the

threshold h allows to remove the ambiguity that can be

introduced by very small components of the eigenvectors (see

Fig. 9).

Moreover, we use the property that the eigenvectors of an

isolated regular region overlap with the eigenvectors of the whole

promoter in that region.

A regular region of the promoter composed of n nucleotides has

exactly n eigenvectors and if we could ideally neglect border effects

also the whole promoter would have n eigenvectors extending over

the regular region. Actually, in practical cases this condition on the

number of the eigenvectors of the whole promoter can be only

approximatively satisfied. This technical point is discussed in file

Text S1 (see also Fig. S9).

Therefore, the procedure for the determination of regular

sequences is summarized in the following steps:

1. identification of the start-site and of the end-site for all the

delocalized eigenvectors (see criteria I and II);

2. determination of the number of eigenvectors between the start-

site and the end-site and comparison with the number of

nucleotides contained in the same region: these quantities are

assumed to be equivalent within a 30% tolerance.

In Fig. 10 we show some examples of regular sequences

determined by delocalized eigenvectors. Following this procedure

we were able to rule out false identifications.

Repeat masker
Trasposons were identified by RepeatMasker [67], version

3.3.0, a program that screens DNA sequences for interspersed

repeats. The output of the program is a detailed annotation of the

repeats that are present in the query sequence. The options were

chosen as follows:

Search engine: abblast

Speed/sensitivity: Default

DNA source: Human for H. sapiens, Mammal for P. troglodytes,

Mouse for M. musculus, Danio for D. rerio, Arabidopsis thaliana for

A. thaliana.

Comparison species: none

Alignment options: no alignments returned

Masking options: Repetitive sequences in lower case

Contamination check: No contamination check

Repeat options: Don’t mask simple repeats or low complexity

DNA

Artifact check: Report E. coli IS artifacts

Matrix: RepeatMasker choice

Divergence cutoff: none

Supporting Information

Figure S1 BCA of each of the clusters obtained with the
clustering algorithm for P. troglodytes (panel A) and M.
musculus (panel B). We report the frequency r of each of the

four nucleotides A (black), T (blue), C (red) and G (green) as a

function of the position l along the promoter (0 corresponds to the

TSS).

(TIFF)

Figure S2 BCA of each of the clusters obtained with the
clustering algorithm for D. rerio (panel A) and A.
thaliana (panel B). We report the frequency r of each of the

four nucleotides A (black), T (blue), C (red) and G (green) as a

function of the position l along the promoter (0 corresponds to the

TSS). Note that alignment and clustering are performed taking

into account only 100 nucleotides before the TSS.

(TIFF)

Figure S3 The most frequent regular sequences found
in the clusters of P. troglodytes (panel A) and M.
musculus (panel B). We report the percentage of promoters

of the cluster in which the sequence appears at least once (left

column), and the percentage of times the sequence is found inside

a transposon (right column): it is calculated dividing the number of

times it appears in a transposon by the total number of times it

appears in the cluster.

(TIFF)

Figure S4 The most frequent regular sequences found
in the entire sample of 2880 promoters of D. rerio (panel
A) and A. thaliana (panel B). We report the percentage of

promoters in which the sequence appears at least once (left

column), and the percentage of times the sequence is found inside

a transposon (right column): it is calculated dividing the number of

times it appears in a transposon by the total number of times it

appears in the cluster.

(TIFF)

Figure S5 Distribution of the different families of
transposons in the four clusters of P. troglodytes. We

report the total percentage of nucleotides in the cluster covered by

transposons (pie chart) and the percentage of nucleotides covered

by each family of transposons (histogram). Note the different scales

in the histograms.

(TIFF)

Figure S6 Distribution of the different families of
transposons in the four clusters of M. musculus. It is

shown the total percentage of nucleotides in the cluster covered by

transposons (pie chart) and the percentage of nucleotides covered

by each family of transposons (histogram). Note the different scales

in the histograms.

(TIFF)

Figure S7 Distribution of the different families of
transposons in the four clusters of D. rerio. It is shown

the total percentage of nucleotides in the cluster covered by

transposons (pie chart) and the percentage of nucleotides covered

by each family of transposons (histogram).

(TIFF)

Figure S8 Distribution of the different families of
transposons in the two clusters of A. thaliana. It is shown

the total percentage of nucleotides in the cluster covered by

transposons (pie chart) and the percentage of nucleotides covered

by each family of transposons (histogram).

(TIFF)

Figure S9 Participation number vs. center of mass.
Participation number, jk, as a function of the eigenvector center of

mass, xcm
k , for the whole promoter, (red) squares, and for an

isolated region of the promoter composed of the first 200
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nucleotides, (green) triangles. Data refer to the promoter of H.

sapiens with Entrez GeneID 9542.

(TIFF)

Figure S10 Eigenvector extension, Dk, as a function of
the participation number, jk. The (red) dashed circles refer to

eigenvectors with different properties of localization. The

eigenvector e201(i) (see Fig. 8 in Methods) has comparable values

of j and D. While e763(i) (see Fig. 8 in Methods) has a small

participation number, j^2, but large extension (D^40). Data

refer to the promoter of H. sapiens with Entrez GeneID 9542.

(TIFF)

Figure S11 CG content and CpG islands. We report

dinucleotide density S as a function of the position along the

promoter (0 corresponds to the TSS). Data are obtained analysing

the promoters of C1.

(TIFF)

Figure S12 Histogram of the length distribution of the
regular sequences in the clusters of H. sapiens. We report

the frequency of each length L as a function of L.

(TIFF)

Text S1 Additional remarks on Supporting Informa-
tion.

(PDF)

Table S1 Number of regular sequences. We report the

total number of regular sequences found in the clusters of H. sapiens

(first row) and the number of the corresponding distinct sequences

(second row).

(JPG)
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