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Abstract
Background: The original spotted array technology with competitive hybridization of two
experimental samples and measuring relative expression levels is increasingly displaced by more
accurate platforms that allow determining absolute expression values for a single sample (for
example, Affymetrix GeneChip and Illumina BeadChip). Unfortunately, cross-platform comparisons
show a disappointingly low concordance between lists of regulated genes between the latter two
platforms.

Results: Whereas expression values determined with a single Affymetrix GeneChip represent
single measurements, the expression results obtained with Illumina BeadChip are essentially
statistical means from several dozens of identical probes. In the case of multiple technical replicates,
the data require, therefore, different stistical treatment depending on the platform. The key is the
computation of the squared standard deviation within replicates in the case of the Illumina data as
weighted mean of the square of the standard deviations of the individual experiments. With an
Illumina spike experiment, we demonstrate dramatically improved significance of spiked genes over
all relevant concentration ranges. The re-evaluation of two published Illumina datasets (membrane
type-1 matrix metalloproteinase expression in mammary epithelial cells by Golubkov et al. Cancer
Research (2006) 66, 10460; spermatogenesis in normal and teratozoospermic men, Platts et al.
Human Molecular Genetics (2007) 16, 763) significantly identified more biologically relevant genes
as transcriptionally regulated targets and, thus, additional biological pathways involved.

Conclusion: The results in this work show that it is important to process Illumina BeadChip data
in a modified statistical procedure and to compute the standard deviation in experiments with
technical replicates from the standard errors of individual BeadChips. This change leads also to an
improved concordance with Affymetrix GeneChip results as the spermatogenesis dataset re-
evaluation demonstrates.
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Background
Microarrays that rely on hybridization with DNA probes
pioneered large-scale expression studies. After the intro-
duction of spotted array technology in the mid 90s,
microarrays have steadily gained popularity for explora-
tory gene expression analysis. A spotted array experiment
requires both the treated and control samples to be
labeled with different dyes and to be competitively
hybridized on the same array. The expression level is
expressed as a ratio between the intensities between the
two labels. Spotted arrays are plagued by accuracy and
sensitivity problems that are only partly remedied by the
measuring only relative expression. Dye bias and repeata-
bility remain unsatisfactory.

In recent years, Affymetrix GeneChip and Illumina Bead-
Chip have emerged as two of the most popular microarray
platforms. From the experimental design viewpoint, the
GeneChip and BeadChip offer flexibility in terms of their
ability to measure absolute expression values for each
experimental sample independently. The growing
amount of publicly available microarray data has
prompted researchers to explore ways to compare results
between experiments across the different platforms. This
task signifies the first step in producing consistent and
trusted results to support meaningful biological discovery.
Yet, it is more difficult than it appears superficially. Even
a simple variant of the problem like comparing results
from the same sample across different platforms is not
trivial. The first step requires the statistically significant
changes in gene expression to be determined between
treatment conditions for each platform. The platform-spe-
cific gene lists generated by applying the same significance
threshold are finally compared. In general, the concord-
ance between these gene lists is disappointingly low. Nev-
ertheless, recent works have shown that concordance
improvements can be made by filtering for gene nucle-
otide sequence identity [1-4], by suppressing lower inten-
sity genes [5] or by aligning gene lists with continuous
measures of differential gene expression [6].

During our evaluation of cross-platform comparison
between Affymetrix and Illumina, we stumbled upon
another, quite surprising reason for the low concordance.
Given the specific design of Illumina arrays [7-10], it
appears that the data derived from them requires specific
statistical treatment different from that of more classical
microarrays. Notably, the Affymetrix GeneChip and Illu-
mina BeadChip have one stark difference in their designs.
In a nutshell, many instances of a unique probe design are
synthesized onto a group of adjacent discrete features or
cells on the GeneChip. Consequently, each group of cells
will target a particular gene. In the case of Illumina Bead-
Chip, a unit of bead coated with hundred of thousands of
probes is analogous to a group of cells on GeneChip. Fur-

thermore, multiple beads of a probe design are immobi-
lized onto randomized positions on the BeadChip.
Therefore, given a probe design, a gene is only measured
once on the GeneChip, whereas it is measured typically
about 30 times on the Beadchip. But instead of delivering
the individual bead intensities (possible with appropriate
scanner modifications), the mean and standard error (i.e.,
the standard deviation divided by the square root of the
number of beads) of the bead intensities, known as the
summary data, are usually reported.

Thus, Affymetrix GeneChips provide individual measure-
ment results but the Illumina BeadChips generate means
and standard errors for subsets of bead intensity measure-
ments. Therefore, the summary data of a BeadChip exper-
iment requires a different statistical interpretation
compared with the individual measurements in the case
of GeneChip data, especially in cases of multiple technical
replicates. If the average of the bead intensities delivered
by a single Illumina BeadChip is fed into standard expres-
sion profile analysis software (for example, GeneSpring),
the standard deviation over technical replicates is calcu-
lated from the deviations of the subset means from the
overall mean. But more correctly, the overall standard
error is to be computed by taking into account also the
standard deviations obtained from the individual Bead-
Chips.

In this paper, we will first present a derivation for the cor-
rect summary statistic applicable to Illumina BeadChips
data. Furthermore, this summary statistic will be applied
to one control experiment with artificial spikes and, also,
it will be used for the re-evaluation of two published bio-
logical experiments. In all cases, the modified treatment is
contrasted against the standard one. In the control exper-
iment [11], we will demonstrate a dramatic improvement
in recognizing the spike sequence selection if the cor-
rected summary statistic is applied. In the example of the
MT1-MMP mammary epithelium dataset [7], cell cycle
pathway involvement can be shown with statistical confi-
dence only after applying the correct summary statistic.
Interestingly, cell cycle gene involvement was suggested
by the authors, although their analysis of the data did not
provide strong arguments for it. Then with the sperma-
togenesis cross-platform data [8], we demonstrate that
considerably improved concordance between the Affyme-
trix and Illumina platforms can be achieved with the cor-
rect summary statistic. Our analysis also provides new
evidence for the transcriptional regulation of the N-glycan
biosynthesis, the tight and the adherens junction path-
ways in this context, a finding that is supported also by
independent experimental evidence.
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Results & Discussion
Statistics of Illumina BeadChip & Affymetrix GeneChip 
datasets

The bead intensity of a given gene in a BeadChip is
described with the random variable X. The expression pro-
file experiment is supposed to consist of K technical repli-
cates (independent measurement of arrays on the same
biological sample). Each bead intensity xk,n is an instance

of the random variable X (where k = 1...K replicates, n =
1...Nk beads, Nk is the number of beads in the k-th techni-

cal replicate). We assume that the first Mk beads are

retained after outlier removal (see below). The summary

data includes the mean μk, the standard error 

(where σk is the standard deviation) and the number of

beads Mk (the typical value of Mk is about 30).

The observed BeadChip intensities of gene in the k-th

array are denoted as  (Table

1). However, a typical BeadChip experiment does not
report these individual bead intensities. Instead, the Illu-
mina BeadStudio software first performs an outlier
removal on the bead intensities. Instances with intensities
above three median absolute deviations from the median
are removed. Upon the outlier removal, the mean and
standard error of the bead intensities as well as the
number of beads used in summarization for each gene are
reported (the AVG_signal, BEAD_STDERR, Avg_NBEADS
columns in the Illumina Beadstudio output file).

Using the means and standard errors of all the technical
replicates, the mean μtotal and standard deviation σtotal of
bead intensities of a gene across the K technical replicates
are given as

A proof for equation (2) is supplied in the Appendix 1.
The standard deviation σtotal is composed of two compo-
nents each carrying a different meaning. Given that each
of the K technical replicates represents the same, identical
and independent distribution, one expects the K mean
estimates μk to be relatively similar and, hence, σμ would
be small relative to σtotal and, ideally, close to zero. Since
averaging for each replicate is carried out over about 30
individual measurements, it can be assumed that each
individual μk is likely a good estimate of the population
mean μ if there were no batch variations. Therefore, a
large σμ can be interpreted as batch variation or noise
among the replicates, a considerable part of which, appar-
ently, has systematic origin such as variations in the total
amount of hybridization-ready nucleic acids, etc. Ideally,
K (typically 2–4) should be much larger in order to obtain
a good estimate of σμ. However, this is impractical due to
the high cost of performing large number of microarrays.
Therefore, we suggest to assume σμ ≈ 0 for the case of no
batch variation in equation (5) and to use σwtrep as a good
lower estimate of the summary statistic in testing instead
of σμ (see Appendix 2 for proof).
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Table 1: Intensity output of Illumina & Affymetrix across K technical replicates

Platform Replicate 1 Replicate 2 ∫ Replicate K

Illumina BeadChip (Raw data) ∫

Illumina BeadChip (Summary data) ∫
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This proposed summary statistic is supported by observa-
tions communicated in two recent publications, which
have leveraged on the variation in bead intensities. Dun-
ning et al. [12] showed that differentially expressed gene
detection experienced an increase in statistical power by

using the inverse of  as weights in their linear model.

On the other hand, Lin et al. [13] proposed a variance sta-
bilization transformation that incorporated bead intensi-
ties variation and showed an improvement in
differentially expressed gene detection. Beyond this point,

we shall refer to σtotal with respect to equation (5) instead

of (2).

In the case of a Affymetrix GeneChip experiment, the
measurement for a gene is taken only once in each repli-
cate (see 4th row of Table 1). Consequently, the mean and
standard deviation of a gene across K technical replicates
are given as

The summary statistic [μtotal, σtotal] and [νtotal, ωtotal] are the
parallels between the Illumina and Affymetrix platforms.
However, σtotal has an advantage over ωtotal. Due to multi-

ple copies of the same probe within a single Illumina
array, the standard deviation can be computed for each
array individually. As a result, σtotal offers more protection
against any systematic error than ωtotal (see Appendix 2 for
proof). The lack of systematic error as a confounding fac-
tor in σtotal increases the chance of detecting true biological
differences from the statistical tests.

In any case, the more important concern related to the
analysis of Illumina data is the mistake of treating the
mean estimates of bead intensities as instances of the bead
intensities. Standard gene expression profile analysis soft-
ware (as applied in several published studies [7-10])
assumes that the imported data are bead intensities rather
than mean estimates of bead intensities. Such a software
plainly computes the mean and standard deviation for the
incoming data and the corresponding summary statistic
for the control and the treatment group would be [μtotal,
σμ]control and [μtotal, σμ ]treatment respectively. The summary
statistic σμ is incorrect since it measures only the batch var-
iation and not at all variation in bead intensities. The cor-
rect summary statistic should be [μtotal, σwtrep]control and
[μtotal, σwtrep]treatment. The emphasis of using σwtrep instead of
σμ as the summary statistic is not statistical hair splitting
but this issue affects the biological interpretation as we
can see from the following three examples.

Illumina spike data: improvement in p value ranking
Chudin et al. [14] provided Illumina BeadChip data for
34 spikes (varying concentrations from 0.01 to 1000 pM)
against a background of human cRNA. To examine the
effects of using σμ instead of σwtrep as summary statistic,
each pair of spike experiments at adjacent concentrations
were compared (Table 2). In each array, there are 34 spike
and 48730 non-spike transcript probes. This is equivalent
to 34 true alternative hypotheses and 48730 true null
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Table 2: Number of TP and FP genes based on P-value ranking. 

σμ σwtrep

Concentration (in pM) TP FP TP FP No. of common TP

0.01 vs 0 0 34 0 34 0
0.03 vs 0.01 0 34 0 34 0
0.1 vs 0.03 7 27 9 25 7
0.3 vs 0.1 14 20 22 12 14
1 vs 0.3 30 4 33 1 30
3 vs 1 30 4 34 0 30
10 vs 3 33 1 34 0 33
30 vs 10 34 0 34 0 34
100 vs 30 33 1 34 0 33
300 vs 100 4 30 26 8 4
1000 vs 300 9 25 16 18 8

The first column indicates the 11 test cases of pair-wise treatment conditions. The second and third columns indicate the number of TP and FP 
genes respectively for using σμ as the summary statistic. Similarly, column four and five indicate the results for using σwtrep. The last column indicates 
the result for the number of common TP genes found by both σμ and σwtrep.
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hypotheses. Ideally, the P-values of the 34 alternate
hypotheses will appear on one extremity of the Schweder-
Spojotvoll plot [15]. Upon computing and sorting the P-
values of the pair-wise t-tests (after array normalization as
in Materials and methods), each of the 34 smallest P-val-
ues was examined to see if it belongs to a true positive
(TP) or false positive (FP) gene.

The number of identified TP genes by the statistic σwtrep is
generally higher than that by σμ (Table 2). In particular, an
improvement from 7 (0.1 and 0.03 pM comparison) or 14
(0.3 versus 0.1 pM) to 9 and 22 recovered spikes in the
low concentration range of 0.03–0.3 pM is encouraging.
Note that this region spans the endogenous gene expres-
sion level and, hence, it is critical to obtain good differen-
tially expressed gene identification here. An improvement
was also achieved in the high concentration region. But in
practice, gene expression will not reach such level to lever-
age on it. Note that the detection limit was 0.25 pM while
the saturation point was about 300 pM [11].

Most importantly, the TP genes found by σμ is a subset of
those found by σwtrep. This means that more TP genes
found by σwtrep had moved into the first 34 ranks to dis-

place only other FP genes. For that to happen, the P-values
must have been re-ranked by the statistic so that the TP
genes are more statistically significant than the FP genes.

This means that σμ is not a good estimate for the standard
deviation. Figure 1 shows a plot of mean bead intensities
μtotal against the standard deviation of mean estimates σμ
and variation in bead intensities σwtrep of the human back-
ground cRNA (i.e. 0 pM spike data). 'Heteroskedasticity'
means that the larger intensities tend to have larger varia-
tions, a common observation with many types of micro-
array data. The 'heteroskedasticity' nature of the
relationship between the mean bead intensities μtotal and
the variation in bead intensities σwtrep is apparent (in red
in Figure 1). On the other hand, a trend of growth in the
standard deviation of mean estimates σμ with increase of
mean intensities across the dynamic range is not certain
(in blue in Figure 1) and even σμ = const cannot be
excluded (the case of purely systematic error). Given that
the number of technical replicates K is only four, obtain-
ing good estimates for σμ especially in the higher intensi-
ties region is impossible. As such, we strongly advocate
the use of equation (5), which only relies on σwtrep for

Relationship between σμ, σwtrep and μtotalFigure 1
Relationship between σμ, σwtrep and μtotal. We show the plot of mean estimates of bead intensities μtotal against standard 
deviation in mean estimates σμ and bead intensities σwtrep of 0 pM spike concentration data.
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computing the correct summary statistic, instead of equa-
tion (2).

MT1-MMP data: proof for cell cycle pathway involvement
Golubkov et al. [7] published the expression profiles of
mammary epithelial cells without and after transfection
with a plasmid carrying the membrane type-1 matrix met-
alloproteinase (MT1-MMT) gene recorded with the Illu-
mina platform. Originally, the expression data was first
normalized using the "normalize.quantiles" [16] routine
of Bioconductor and then imported into GeneSpring for
Welch's t-test (thus, using σμ as the summary statistic). A
total of 207 differentially expressed genes were deter-
mined with cutoff criteria of p ≤ 0.05 and absolute fold
change (FC) of at least 2.

In this work, the original expression data was first normal-
ized (see Array normalization procedure section) prior to
statistical treatment. Welch's t test was then performed for
both σμ and σwtrep, which yielded 215 and 218 differen-
tially expressed genes respectively upon applying the same
cutoff criteria. For the three lists consisting of 207, 215
and 218 gene candidates, RefSeq IDs were extracted. The
resulting 202, 200 and 203 RefSeq IDs were then sepa-
rately submitted to NIH DAVID [17] for KEGG pathway
mapping. Furthermore, 19815 RefSeq IDs were extracted
from the Illumina Human-6 Expression BeadChip anno-
tation file and submitted to DAVID as the background list.

With reference to Table 3, only KEGG pathways with
EASE[18] score ≤ 0.05 and count ≥ 5 are shown. In a nut-
shell, the EASE score is a P- value of a more conservative
version of the Fisher's exact test while count denotes the
number of genes in the differentially expressed gene list
that belongs to a particular pathway. Notably, our analysis
with the statistic σμ essentially repeats the outcome of the
work by Golubkov et al. with respect to the pathways
(Table 3) and regulated genes (the overlap between the
two lists includes 176 genes out of 200 and 202 genes
respectively); thus, the differences in the normalization
had a small effect.

Application of the statistic σwtrep dramatically influences
the result. Suddenly, additional cell cycle genes are signif-
icantly regulated in transfected cells and the cell cycle
pathway pops up in the DAVID analysis. Table 4 high-
lights the two genes out of a total of six significantly up-
regulated genes from the elucidated cell cycle pathway.
These two genes, Cyclin A1 and CDC45L, are found by
σwtrep but not by σμ. Consequently, the addition of these
two genes resulted in an improved EASE score of 0.04
(from 0.29). The elucidation of this pathway has substan-
tiated the authors' claim with statistically significant
expression arguments that the cell cycle is disrupted with
observable mitotic spindle aberrations and aneuploidy in
the 184B5-MT cells [7].

Human spermatogenesis data: proof for the N-glycan, the 
tight and the adherens junction pathway involvement
Platts et al. [8] studied RNA expression in ejaculates of
normal and zoospermic men both with the Affymetrix
and the Illumina platforms. The Affymetrix expression
data of 13 normal and 8 teratozoospermic men was proc-
essed by the MBEI (PM-MM) algorithm after invariant set
normalization to obtain the gene expression values using
the DChip software [19]. The Illumina BeadChip study
included only 5 out of the 13 normal but all zoospermic
examples. The authors used the same procedure for eluci-
dating differentially expressed genes in both cases [8].

In this work, 5 out of the 13 normal and the 8 teratozo-
ospermic samples from the Affymetrix experiment that
were used by Platts et al. in their Illumina experiment (N1,
N5, N6, N11, N12) were re-analyzed. The gene-level data
was normalized (see Materials and methods), followed by
a pair-wise t-test with ν and ω as the summary statistic
(equations 6 and 7). This resulted in a total of 11932 dif-
ferentially expressed genes (6861 RefSeq IDs) after apply-
ing cutoff criteria of p ≤ 0.01 and |FC| ≥ 2. In a similar
fashion, the expression data from the corresponding 5
normal and 8 teratozoospermic of the Illumina experi-
ment was normalized and statistically treated for both σμ
and σwtrep. Using the same cutoff criteria, the two analyses
yielded 2464 DEGs (2109 RefSeq IDs) and 4149 DEGs
(3316 RefSeq IDs) respectively. Since the number of dif-
ferentially expressed genes for σwtrep is increased for the
same cutoff criteria, this statistic exhibited a higher statis-
tical power.

The three RefSeq ID lists were submitted to DAVID for
KEGG pathway mapping. For Affymetrix, the background
list was set to a list of 39647 ReqSeq IDs that was extracted
from the HG-U133 (version 2) annotation file. For Illu-
mina, the same list of 19815 RefSeq IDs from MT1-MMP
example (see previous section) was submitted as the back-
ground.

Table 3: KEGG pathways elucidated from the MT1-MMP data. 

KEGG pathway σμ
[7]

σμ σwtrep

HSA01430 : Cell communication ✓ ✓ ✓

HSA04540 : Gap junction ✓ ✓ ✓

HSA04610 : Complement and coagulation cascades ✓ ✓ ✓

HSA04110 : Cell cycle ✓

The first column indicates the name of the KEGG pathways. Only 
KEGG pathways with EASE score ≤ 0.05 and count ≥ 5 are included. 
The second to fourth columns indicate KEGG pathway found by 
Golubkov V.S. et. al. [7], σμ and σwtrep respectively. Cutoff criteria of 
EASE score ≤ 0.05 and count ≥ 5 was applied.
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Analogous to Table 3, only KEGG pathways with EASE
score ≤ 0.05 and count ≥ 5 are shown in Table 5. The elu-
cidation of the proteosome and ubiquitin mediated pro-
teolysis pathways by the re-analyzed Affymetrix
expression data is consistent with the authors' finding that
there is a severe suppression of the proteosomal RNAs
associated with the ubiquitin-proteasomal pathway
(UPP) in the teratozoospermic samples. On the other

hand, the Illumina analysis revealed the proteosome but
not the ubiquitin mediated proteolysis pathway. Even
though the count for the ubiquitin-mediated proteolysis
pathway had increased from 11 to 15 when σwtrep was used
instead of σμ, this increase only improved the EASE score
from 0.07 to 0.066. This marginally missed the signifi-
cance cutoff of ≤ 0.05. But more interestingly, the Illu-
mina analysis was able to elucidate a few pathways

Table 4: Cell cycle genes in the MT1-MMP data. 

σμ [7] σwtrep

Gene Symbol RefSeq ID log2 FC p value log2 FC p value Gene Description

CCNA1 NM_003914 - ≥ 0.05 1.12 0.00 Cyclin A1
CDC45L NM_003504 - ≥ 0.05 1.05 0.00 CDC45 cell division cycle 45-like

CCNB1 NM_031966 1.30 < 0.05 1.44 0.00 Cyclin B1
CCNB2 NM_004701 1.27 < 0.05 1.39 0.00 Cyclin B2
CDC2 NM_033379 1.10 < 0.05 1.20 0.00 cell division cycle 2, G1 to S and G2 to M
CDC20 NM_001255 2.02 < 0.05 2.01 0.00 Cell division cycle 20 homolog

The first, second and last column indicate the gene symbol, the RefSeq ID and the description of each cell cycle gene respectively. The third and 
fourth columns indicate the logarithm fold change and the P-value of each gene found by Golubkov V.S. et. al. [7], which is analogous to using σμ as 
the summary statistic. The fifth and sixth columns indicate the logarithm fold change and the P-value of each gene found by using σwtrep as the 
summary statistic. Cutoff criteria of p ≤ 0.05 and |FC| ≥ 2 were applied. The genes in the upper section were found only by the σwtrep statistic, 
whereas the genes in the lower section were detected with significance by both statistics.

Table 5: KEGG pathways elucidated from the human spermatogenesis data. 

KEGG pathway Affymetrix Illumina

ω σwtrep σμ

HSA00190 : Oxidative phosphorylation ✓ ✓ ✓

HSA00970 : Aminoacyl-tRNA synthetases ✓ ✓ ✓

HSA03010 : Ribosome ✓ ✓ ✓

HSA03050 : Proteosome ✓ ✓ ✓

HSA00010 : Glycolysis/Gluconeogenesis ✓ ✓

HSA00030 : Pentose phosphate pathway ✓ ✓

HSA00193 : ATP synthesis ✓ ✓

HSA00530 : Aminosugars metabolism ✓ ✓

HSA00640 : Propanoate metabolism ✓ ✓

HSA03020 : RNA polymerase ✓ ✓

HSA03060 : Protein export ✓ ✓

HSA04110 : Cell cycle ✓ ✓

MMU03010 : Ribosome ✓ ✓

HSA04120 : Ubiquitin mediated proteolysis ✓

HSA00020 : Citrate cycle (TCA cycle) ✓

HSA00240 : Pyrimidine metabolism ✓

HSA00251 : Glutamate metabolism ✓

HSA00510 : N-glycan biosynthesis ✓

HSA03022 : Basal transcription factors ✓

HSA04520 : Adherens junction ✓

HSA04530 : Tight junction ✓

HSA00620 : Pyruvate metabolism ✓

The first column indicates the name of the KEGG pathways. Only KEGG pathways with EASE score ≤ 0.05 and count ≥ 5 are included. The second 
column indicates KEGG pathways found by Affymetrix. The third and fourth columns indicate the KEGG pathways found by using σμ and σwtrep 
respectively. Cutoff criteria of EASE score ≤ 0.05 and count ≥ 5 were applied.
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involved in spermatogenesis [20], like the N-glycan bio-
synthesis [21-23], adherens and tight junction [24-26]
when σwtrep was used as the summary statistic.

Table 6 highlights 8 out of 17 genes from the elucidated
N-glycan pathway that are found by σwtrep but not σμ.
Using σwtrep as the summary statistic, the P-values for these
8 genes were improved. With the addition of these 8
genes, the EASE score improved from 0.143 to 0.003.
More notably, genes with biological evidence on the role
of N-glycan biosynthesis pathway in spermatogenesis
begin to surface with the application of the correct sum-
mary statistic. There is independent experimental evi-
dence that proves the involvement of the detected genes.
For example, beta-1,4-galactosyltransferase-I (B4GALT1)
is found to bind with ZP3 receptors on the sperm surface
[27]. Also, there is a reported increase in dehydrodolichyl
diphosphate synthase (DHDDS) activity in prepuberal
rats during early stages of spermatogenesis [28,29].
MAN2A2 is also found to be implicated in male infertility
of the alpha-mannosidase IIx (MX) gene knockout mouse
[21-23].

In the case of the tight junction pathway, 17 out of 37
genes from this elucidated pathway are found by σwtrep but
not σμ (Table 7). The improvement in the P-values of
these additional 17 genes effected a marked improvement
in EASE score from 0.206 to 0.012. For the adherens junc-

tion pathway, 14 out of 26 genes are found only by σwtrep
(Table 8). Consequently, the EASE score improved dra-
matically from 0.527 to 0.037. As a result of applying the
correct summary statistic, the genes CLDN1, CSNK2A2,
CTNNA1, JAM3, and TJP1 have surfaced from the analy-
sis. Claudin-1 (CLDN1) is involved in the developmental
regulation of the tight junctions in mouse testis [30],
while casein kinase 2, alpha prime polypeptide
(CSNK2A2) null male mice are infertile and their cells
from spermatogonia to early spermatids suffer nuclear
envelope protrusions, outer membrane swelling and
inner membrane disruption [31]. Also, the assembly of
adherens junctions between Sertoli and germ cells was
associated with a transient induction in the steady-state
mRNA and protein levels of cadherins and catenins. In
particular, alpha-catenin (CTNNA1) expression was seen
in semi-quantitative reverse transcription polymerase
chain reaction and immunoblotting [32]. Furthermore,
the expression of zona occludens 1 (TJP1) in rats is regu-
lated in vitro during the assembly of inter-Sertoli tight
junctions during spermatogenesis [33] while JAM-3 is a
protein required for spermatid differentiation [34].

The concordance between the three RefSeq lists was next
investigated. The results are shown in Figure 2. Through
the derivation of a parallel summary statistic to the
Affymetrix one, an addition of 423 concordance RefSeq
IDs was recovered. This is an increase of 45% (423 out of

Table 6: N-glycan biosynthesis genes in human spermatogenesis data.

σμ σwtrep

Gene Symbol RefSeq ID log2 FC p value log2 FC p value Gene Description

B4GALT1 NM_001497 -0.45 0.499 -1.08 0.000 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1
DDOST NM_005216 -2.22 0.067 -1.18 0.000 dolichyl-diphosphooligosaccharide-protein glycosyltransferase
DHDDS NM_024887 3.60 0.049 3.62 0.000 dehydrodolichyl diphosphate synthase
DPM1 NM_003859 -0.65 0.320 -1.06 0.000 dolichyl-phosphate mannosyltransferase polypeptide 1, catalytic subunit
GANAB NM_198334 1.45 0.045 2.12 0.000 glucosidase, alpha; neutral AB
MAN1A2 NM_006699 -1.27 0.019 -1.28 0.000 mannosidase, alpha, class 1A, member 2
MAN2A2 NM_006122 -0.81 0.001 -1.06 0.000 mannosidase, alpha, class 2A, member 2
UGCGL2 NM_020121 -0.97 0.003 -1.25 0.000 UDP-glucose ceramide glucosyltransferase-like 2

ALG2 NM_033087 -2.18 0.000 -2.20 0.000 asparagine-linked glycosylation 2 homolog (S. cerevisiae, alpha-1,3-
mannosyltransferase)

ALG5 NM_013338 -1.90 0.000 -1.71 0.000 asparagine-linked glycosylation 5 homolog (S. cerevisiae, dolichyl-phosphate beta-
glucosyltransferase)

ALG8 NM_024079 -1.36 0.001 -1.52 0.000 asparagine-linked glycosylation 8 homolog (S. cerevisiae, alpha-1,3-
glucosyltransferase)

B4GALT2 NM_003780 2.33 0.006 2.29 0.000 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 2
MAN2A1 NM_002372 -1.21 0.055 -1.33 0.000 mannosidase, alpha, class 2A, member 1
MGAT4A NM_012214 -1.84 0.001 -1.72 0.000 mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, 

isozyme A
OGT NM_181673 -2.31 0.009 -2.12 0.000 O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-

acetylglucosamine:polypeptide-N-acetylglucosaminyl transferase)
RPN1 NM_002950 -1.46 0.001 -1.51 0.000 ribophorin I
RPN2 NM_002951 -1.95 0.000 -2.00 0.000 ribophorin II

The first, second and last column indicate the gene symbol, the RefSeq ID and the description of each N-glycan biosynthesis gene respectively. The 
third and fourth columns indicate the logarithm fold change and the P-value of each gene found by using σμ as the summary statistic. The fifth and 
sixth columns indicate the logarithm fold change and the P-value of each gene found by using σwtrep as the summary statistic. The cutoff criteria p ≤ 
0.01 and |FC| ≥ 2 were applied. The first 8 genes are found to be statistically significant by σwtrep only, the rest was found with both statistics.
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Table 7: Tight junction genes in human spermatogenesis data. 

σμ σwtrep

Gene Symbol RefSeq ID log2 FC P-value log2 FC P-value Gene Description

ACTG1 NM_001614 -0.81 0.064 -1.14 0.000 actin, gamma 1
CLDN1 NM_021101 -2.47 0.059 -1.63 0.000 claudin 1
CLDN16 NM_006580 -1.20 0.019 -1.55 0.000 claudin 16
CLDN5 NM_003277 1.15 0.286 1.42 0.000 claudin 5 (transmembrane protein deleted in velocardiofacial syndrome)
CLDN6 NM_021195 2.48 0.135 1.88 0.000 claudin 6
CSNK2A2 NM_001896 -1.00 0.014 -1.57 0.000 casein kinase 2, alpha prime polypeptide
CTNNA1 NM_001903 -0.93 0.009 -1.04 0.000 catenin (cadherin-associated protein), alpha 1, 102 kDa
EXOC3 NM_007277 -1.26 0.019 -1.43 0.000 exocyst complex component 3
EXOC4 NM_021807 -0.78 0.012 -1.04 0.000 exocyst complex component 4
GNAI2 NM_002070 1.02 0.110 1.52 0.000 guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 

2
JAM3 NM_032801 -0.86 0.005 -1.07 0.000 junctional adhesion molecule 3
KRAS NM_004985 -2.85 0.032 -2.43 0.000 v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
MYH9 NM_002473 1.09 0.183 1.02 0.000 myosin, heavy chain 9, non-muscle
PPP2R2B NM_181676 -1.22 0.020 -1.97 0.000 protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform
PPP2R3A NM_002718 1.42 0.013 1.50 0.000 protein phosphatase 2 (formerly 2A), regulatory subunit B", alpha
RAB13 NM_002870 -1.17 0.118 -1.68 0.000 RAB13, member RAS oncogene family
TJP1 NM_175610 -2.63 0.038 -2.10 0.000 tight junction protein 1 (zona occludens 1)

AKT3 NM_181690 -1.16 0.001 -1.16 0.000 v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)
CDC42 NM_044472 -1.67 0.001 -1.51 0.000 cell division cycle 42 (GTP binding protein, 25 kDa)
CLDN11 NM_005602 -2.03 0.000 -2.06 0.000 claudin 11 (oligodendrocyte transmembrane protein)
CLDN14 NM_012130 2.92 0.006 2.90 0.000 claudin 14
CSDA NM_003651 -2.28 0.000 -2.48 0.000 cold shock domain protein A
CSNK2B NM_001320 -2.61 0.006 -2.69 0.000 casein kinase 2, beta polypeptide
CTNNA2 NM_004389 -1.64 0.002 -1.88 0.000 catenin (cadherin-associated protein), alpha 2
CTTN NM_138565 -1.91 0.008 -2.05 0.000 cortactin
EPB41L3 NM_012307 -1.85 0.001 -1.71 0.000 erythrocyte membrane protein band 4.1-like 3
MYH10 NM_005964 -1.34 0.000 -1.35 0.000 myosin, heavy chain 10, non-muscle
MYL6 NM_079423 -1.62 0.000 -1.78 0.000 myosin, light chain 6, alkali, smooth muscle and non-muscle
PPP2CA NM_002715 -2.69 0.002 -2.40 0.000 protein phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform
PPP2CB NM_004156 -1.43 0.005 -1.83 0.000 protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform
PPP2R1B NM_181699 -2.14 0.003 -2.34 0.000 protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform
PPP2R1B NM_181699 -1.47 0.011 -1.18 0.000 protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform
PPP2R2A NM_002717 -1.53 0.002 -1.86 0.000 protein phosphatase 2 (formerly 2A), regulatory subunit B, alpha isoform
PPP2R2B NM_181677 2.51 0.007 2.29 0.000 protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform
PRKCH NM_006255 -1.20 0.002 -1.03 0.000 protein kinase C, eta
PTEN NM_000314 -2.30 0.004 -1.61 0.000 phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
RHOA NM_001664 -1.81 0.001 -1.58 0.000 ras homolog gene family, member A

CTNNA3 NM_013266 -1.03 0.007 -0.92 0.000 catenin (cadherin-associated protein), alpha 3

The first, second and last column indicate the gene symbol, the RefSeq ID and the description of each Tight junction gene respectively. The third 
and fourth columns indicate the logarithm fold change and the P-value of each gene found by using σμ as the summary statistic. The fifth and sixth 
columns indicate the logarithm fold change and the P-value of each gene found by using σwtrep as the summary statistic. A cutoff criteria of p ≤ 0.01 
and |FC| ≥ 2 was applied. The first 17 genes are found to be statistically significant by σwtrep only. The last row contain a gene excluded by σwtrep due 
to |FC| ≤ 2 although p ≤ 0.01. The genes upper in the section were found only by the σwtrep statistic, the remainder was found with both approaches 
except of the last gene entry recovered only by the σμ statistic (it was filtered out due the fold change criterion).

942) in the concordance region. The correct summary sta-
tistic also improved gene discovery. Out of the 916 RefSeq
IDs that were unique to the analysis by σwtrep, 8 (B4GALT1,
DHDDS, MAN2A2, CLDN1, CSNK2A2, CTNNA1, JAM3,
TJP1) were validated spermatogenesis genes from the N-
glycan biosynthesis, tight and adherens junction path-
ways. These pathways were not reported by Affymetrix.
Another interesting observation is that the RefSeq list
obtained with σμ as a statistic almost formed a subset of
the list yielded by σwtrep. In total, 93.7% of its ReqSeq IDs
were found within the list generated with σwtrep. At first

glance, it seems that the effect of using σμ rather than σwtrep
does not seem detrimental. However, the rankings of the
P-values in this overlapped region were not preserved,
similar to the case of our Illumina spike experiments anal-
ysis. As such, the top 100 candidate list for example will
be quite different when σμ instead of σwtrep is used.

Conclusion
Due to the specific statistical nature of the Illumina Bead-
Chip summary data as means and standard deviations of
subsets of measurements, the typical statistical workflow
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(page number not for citation purposes)



Biology Direct 2008, 3:23 http://www.biology-direct.com/content/3/1/23
Table 8: Adherens junction genes in human spermatogenesis data. 

σμ σwtrep

Gene Symbol RefSeq ID log2 FC P-value log2 FC P-value Gene Description

ACTG1 NM_001614 -0.81 0.064 -1.14 0.000 actin, gamma 1
BAIAP2 NM_006340 1.32 0.016 1.27 0.000 BAI1-associated protein 2
CREBBP NM_004380 -0.98 0.002 -1.11 0.000 CREB binding protein (Rubinstein-Taybi syndrome)
CSNK2A2 NM_001896 -1.00 0.014 -1.57 0.000 Casein kinase 2, alpha prime polypeptide
CTNNA1 NM_001903 -0.93 0.009 -1.04 0.000 catenin (cadherin-associated protein), alpha 1, 102 kDa
FER NM_005246 -1.37 0.015 -1.73 0.000 fer (fps/fes related) tyrosine kinase (phosphoprotein NCP94)
IQGAP1 NM_003870 -2.66 0.026 -2.27 0.000 IQ motif containing GTPase activating protein 1
MAPK1 NM_002745 -1.56 0.014 -1.34 0.000 mitogen-activated protein kinase 1
MAPK3 NM_002746 1.75 0.042 1.88 0.000 mitogen-activated protein kinase 3
PTPRF NM_130440 -0.91 0.000 -1.10 0.000 protein tyrosine phosphatase, receptor type, F
SMAD2 NM_005901 -1.27 0.027 -1.59 0.000 SMAD family member 2
TCF7 NM_003202 3.13 0.045 2.90 0.000 transcription factor 7 (T-cell specific, HMG-box)
TJP1 NM_175610 -2.63 0.038 -2.10 0.000 tight junction protein 1 (zona occludens 1)
WASL NM_003941 -1.99 0.047 -1.42 0.000 Wiskott-Aldrich syndrome-like

ACP1 NM_004300 -1.82 0.009 -1.66 0.000 acid phosphatase 1, soluble
ACP1 NM_007099 -1.77 0.000 -1.70 0.000 acid phosphatase 1, soluble
CDC42 NM_044472 -1.67 0.001 -1.51 0.000 cell division cycle 42 (GTP binding protein, 25 kDa)
CSNK2B NM_001320 -2.61 0.006 -2.69 0.000 casein kinase 2, beta polypeptide
CTNNA2 NM_004389 -1.64 0.002 -1.88 0.000 catenin (cadherin-associated protein), alpha 2
MAP3K7 NM_145333 -1.52 0.000 -1.39 0.000 mitogen-activated protein kinase kinase kinase 7
MAPK1 NM_138957 -1.19 0.005 -1.23 0.000 mitogen-activated protein kinase 1
MAPK1 NM_138957 -1.68 0.002 -2.03 0.000 mitogen-activated protein kinase 1
RHOA NM_001664 -1.81 0.001 -1.58 0.000 ras homolog gene family, member A
SMAD4 NM_005359 -1.02 0.000 -1.07 0.000 SMAD family member 4
SORBS1 NM_015385 1.86 0.001 1.99 0.000 sorbin and SH3 domain containing 1
WASF3 NM_006646 -1.62 0.002 -1.80 0.000 WAS protein family, member 3

CTNNA3 NM_013266 -1.03 0.007 -0.92 0.000 catenin (cadherin-associated protein), alpha 3

The first, second and last column indicate the gene symbol, the RefSeq ID and the description of each Tight junction gene respectively. The third 
and fourth columns indicate the logarithm fold change and the P-value of each gene found by using σμ as the summary statistic. The fifth and sixth 
columns indicate the logarithm fold change and the P-value of each gene found by using σwtrep as the summary statistic. Cutoff criteria of p ≤ 0.01 and 
|FC| ≥ 2 were applied. The first 14 genes are found to be statistically significant by σwtrep only. The lower part of the table lists genes found by both 
statistics except for the last row that contains a gene excluded by σwtrep due to |FC| ≤ 2 (although p ≤ 0.01).

of finding differentially expressed genes cannot be applied
to this data directly. To remedy this situation, σwtrep is pro-
posed as correct summary statistic of the Illumina Bead-
Chip. Our work has shown that the same Illumina
BeadChip data from published experiments churns out
better differentially expressed gene selection after apply-
ing our proposed summary statistic.

This was particularly evident in the low concentration
range of the Illumina spike experiment [11,14]. Given
that this range is typical for the endogenous gene expres-
sion, the improvement should also be observed in biolog-
ical experiments as well. Indeed, the superior statistical
significance contributed markedly to more successful bio-
logical pathway elucidations. This was demonstrated with
the MT1-MMP [7] data as well as the human sperma-
togenesis [8] data. For these two examples, more relevant
differentially expressed genes were revealed when our pro-
posed summary statistic was applied. In fact, a number of
these genes has already been independently validated in

Venn diagram of gene list overlapFigure 2
Venn diagram of gene list overlap. The Venn diagram of 
the distribution of differentially expressed genes (based on 
the cutoff criteria p ≤ 0.01 and |FC| ≥ 2) between Affymetrix 
and Illumina spermatogenesis datasets is presented.
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the literature [21,27-34]. Their biological significance was
demonstrated through functional studies like gene knock-
out, mutagenesis and quantification studies like RT-PCR
and immunoblotting. Finally in the context of cross-plat-
form comparison between Affymetrix and Illumina, more
concordant results were recovered for the spermatogenesis
expression profile [8]. This should not be surprising
because our summary statistic is a close parallel to that of
Affymetrix.

To conclude, our work is most relevant and imperative to
any investigator who wants to derive more accurate differ-
entially expressed gene lists from Illumina data.

Materials and methods
The Illumina spike experiment
We exploited the dataset from a published artificial spike
experiment [11,14]; the complete dataset was obtained as
a personal communication by Semyon Kruglyak [See
additional file 1]. In total, 4 versions for each of eight arti-
ficial polyadenylated RNAs (bla, cat, cre, e1a, gfp, gst, gus,
lux) were generated by the authors. Although it was not
mentioned in [11,14], the dataset contains two versions
of another artificial polyadenylated RNA (neo). Therefore,
there are altogether 34 unique labeled and spiked 50 mers
against a human cRNA background for each of the spike
concentrations. The pooled spike RNAs were tested at a
total of twelve different concentrations (0, 0.01, 0.03, 0.1,
0.3, 1, 3, 10, 30, 100, 300, 1000) pM. Each of the spiked
and labeled samples (at 1.5 μg per sample) was hybrid-
ized in quadruplicates across 48 arrays on eight different
Human-6 Expression BeadChips.

The MT1-MMT (membrane type-1 matrix 
metalloproteinase) experiment
This dataset available as NCBI GEO GSE5095 was com-
plemented with replicate-specific standard errors and
number of beads in a private communication by Vladislav
S. Golubkov. In the experiment, 184B5 human normal
mammary epithelial cells were transfected with MT1-
MMP [7]. Total RNA was then isolated from the 184B5-
MT and 184B5 cell culture, following DNA-chip RNA
expression profiling using Illumina Human-6 Expression
BeadChips.

The human spermatogenesis experiment
The published expression profile dataset NCBI GEO
GSE6969 from human ejaculates was used [8]. In the
experiment, the samples were collected from 17 normal
fertile men and 14 teratozoospermic men aged between
21 to 57. Upon RNA isolation of the spermatozoa, RNA
expression profiling was carried out on both the Affyme-
trix and Illumina platform. 4 out of 17 normal and 6 out
of 14 teratozoospermic samples are profiled by the Illu-
mina Human-8 Expression BeadChips while the remain-

ing 13 normal and 8 teratozoospermic samples were
profiled by the Affymetrix HG-U133 (version 2) Gene-
Chips. In addition, 5 out of these 13 normal samples and
the same 8 teratozoospermic samples were profiled again
by the Illumina Human-6 Expression BeadChips.

Array normalization procedure
Our proposed procedure is inspired by quantile normali-
zation and by the scaling method used by Affymetrix [16].
The quantile normalization variant is applied to groups of
technical replicates with the goal to achieve equal spread
in the distribution of the bead intensities for each array.
Then, the scaling method is applied to all the arrays to
ensure that the medians of all arrays are equal.

For the sake of simplicity, the normalization procedure
illustrated below will be based on only one treatment con-
dition. The same steps will be repeated for other treatment
conditions. Therefore, an arbitrary gene g from an array
consisting of a total of G genes with K technical replicates
each will have summary data μg,k, σg,k, Mg,k where g =
1,...,G and k = 1,...,K.

Log-transformation is first applied on the mean bead
intensities for all readings. The k-th technical replicate of
gene g after undergoing log-transformation is depicted as
log2(μg,k).

First, normalization within the replicate is performed. For
the k-th technical replicate, the median and standard devi-
ation for the log mean bead intensities within replicate are
calculated as

The median-of-medians within replicate and its corre-
sponding standard deviation, hereby depicted as

MOMwtrep and  respectively, are given as

Therefore, the normalized log mean bead intensities
within replicate for the k-th technical replicate of gene g is
defined as
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The median for the normalized log mean bead intensities
within the k-th replicate is then re-calculated in a similar
fashion as before, where

The median-of-medians across replicates, depicted as
MOMacrep, is defined as

Therefore, the normalized log mean bead intensities
across replicates will be

The normalized log mean bead intensities across repli-
cates are then transformed back to the original scale,
where

and the corresponding standard deviation is now

σg,k,norm = scaleσ * σg,k

Therefore, after undergoing the array normalization pro-
cedure, an arbitrary gene g from an array consisting of a
total of G genes with K technical replicates each will now
have the summary data μg,k,norm, σg,k,norm, Mg,k where g =
1,..., G and k = 1,...,K.

Assume that one treatment condition is replicated K times
in the Beadchip, i.e., k = 1,...,K. When the mean estimates
μg,k are being treated as the intensity values xg,k,1, the mean
and the incorrect summary statistic of the variance of this
treatment condition are given as

Note that  is equivalent to equation (3).

On the other hand, when no misinterpretation of the
summary statistic has occurred, the mean and variance are
given as

μg = median(μg,1,norm,...,μg,K,norm)

ng = Mg,k*

Note that  is now equivalent to equation (5).

Statistical test procedure
A pair-wise t-test [35] infers if differences exist between
the two populations sampled. Furthermore, given 2 treat-
ment conditions c1 and c2, an arbitrary gene g will have
two pair of readings μg,c1, σg,c1, ng,c1 and μg,c2, σg,c2, ng,c2.
Then if the two treated samples came from normal popu-
lations and if both have equal variances, then the t value
for the difference between the two treatment conditions is
given as

where ,

 and the degree of free-

dom is given as ν = ng,c1 + ng,c2-2. However, if the two treat-

ment samples do not have equal variances, the t value is
given as

The degree of freedom is given as

 .

This is known as the Welch's t test. For a 2-sided alternate
hypothesis HA : μg,c1 ≠ μg,c2, reject H0 : μg,c1 = μg,c2 if |t|≥
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tα(2),ν. It should be noted that the array normalization pro-
cedure has been applied before the statistical treatment.
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FP: false positive; MT1-MMT: membrane type-1 matrix
metalloproteinase; TP: true positive.
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Wong, Loh and Eisenhaber present a novel statistical
method for evaluating gene expression data produced
using the Illumina BeadChip technology. The fundamen-
tal insight that led to the new statistical method is their
appreciation that Affymetrix GeneChip microarrays pro-
duce single gene expression measurements, while use of
Illumina BeadChips yields mean expression values from
dozens of identical probes. Therefore, Illumina BeadChip
data must be treated differently. Specifically, when techni-
cal replicates are available, the standard deviations across
replicates for Illumina BeadChip data are best computed
as weighted means of the square of the standard devia-
tions of individual measures. In other words, the standard
deviations for data sets with technical replicates should be
computed from standard errors of individual Illumina
BeadChip measures. When this adjustment is applied to
several test data sets, the performance of the Illumina
BeadChips improves markedly.

While I am not qualified to evaluate the statistical details
of their method, the results of its application to the three
test data sets appear to be quite convincing. As such, this
work represents an important technical development with
direct relevance to any study that uses Illumina BeadChip
technology.

One of the measures used by the authors to indicate the
success of their statistic is increased concordance between
lists of differentially expressed genes uncovered by Illu-
mina BeadChip and Affymetrix GeneChip experiments on
a spermatogenesis dataset. However, it would seem that

the increased replicates of the Illumina BeadChip technol-
ogy provides for an inherent advantage over the single-
measure technology employed with Affymetrix Gene-
Chips. If this is indeed the case, then one may expect
improved performance for the Illumina platform relative
to Affymetrix and not merely increased concordance as
was demonstrated for the spermatogenesis dataset. Do the
authors have any sense, or evidence, as to whether the
increased sampling of Illumina provides more resolution
than Affymetrix? For instance, are the new pathways iden-
tified by the Illumina BeadChip analysis of the sperma-
togenesis dataset a function of the superiority of the
platform? Or are the methods complementary, i.e. does
the Affymetrix analysis uncover pathways missed by Illu-
mina irrespective of the use of the statistical innovations
introduced herein?

Authors' response
There is no reason to assume a superiority of either platform
given the same quality of probe sequence design. For example,
one might imagine several Affymetrix chips to be mounted on
the same glass slide and to be hybridized simultaneously (to
resemble the situation of several beads per array). In this case,
both platforms can be used in the mode of exclusion of the
batch-specific constant shift error as described in the text.

I am wondering about the availability of their method.
The authors conclude that the work is relevant, even
imperative, to any investigator looking for differentially
expressed genes in Illumina data? How are those investi-
gators to use this method – on a web server, as a BioPerl
object, as an R routine?

Authors' response
Presently, our code is implemented in Matlab and be obtained
on request. It would be straightforward to implement an R ver-
sion of it so that it can tie back to the bioconductor package in
R. Nevertheless, it should not be difficult for any scientist in the
area to modify their existing workflow similar to ours based on
the equations presented in this paper just by using σwtrep as
standard deviation.

Reviewer's report 2
Mark J. Dunning, Computational Biology Group, Department
of Oncology, University of Cambridge, Cancer Research UK
Cambridge Research Institute

In my opinion, Wong et. al is a useful addition to the topic
of analysis of Illumina data. Whilst the number of publi-
cations using Illumina data are growing rapidly, very few
authors have tackled the issue of how such data should be
analysed. Wong et al. do a very good job of explaining
why the usual statistical tests, such as applied to Affyme-
trix may not be appropriate for Illumina data and that the
extra information provided with an Illumina experiment
Page 13 of 17
(page number not for citation purposes)



Biology Direct 2008, 3:23 http://www.biology-direct.com/content/3/1/23
(i.e. accurate gene-specific variances) can produce a more
powerful test. It is especially pleasing to see that they are
able to pick up biologically relevant results using the new
summary statistic.

The investigation into the performance of σwtrep is well pre-
sented. However, a detail in the re-analysis of Golubkov et
al. seems to be missing. In the original paper, genes were
filtered using the detection scores obtained from Illu-
mina's software. It does not seem that these scores were
supplied in GEO, so were these scores also available to
Wong et al. as part of their re-analysis? If not, how did
they go about reproducing the filtering performed in Gol-
ubkov et al.?

Authors' response
Indeed, the data stored in GEO is insufficient to carry out the
calculations both in the paper of Golubkov et al. and in this
work. We received the standard errors and number of beads
through a private communication from Golubkov et al. Our
first re-analysis aimed at repeating the work of Golubkov et al.
differed from their approach in two aspects. On the one hand,
we had another normalization algorithm (see Methods sec-
tion); on the other hand, we did not carry out filtering. Just to
note, the detection score P is calculated from Z-scores of inten-
sities shifted by the background (intensity of negative control
spots) and scaled with its standard deviation. In pairwise com-
parisons involving the Welch's test using the wrong summary
statistic σμ, the differences of intensities do not depend on their
previous correction by a constant background. Regardless of
these two differences in our re-analysis, the results are essen-
tially identical to the case of Golubkov et al.: The cell cycle path-
way did not appear as significantly regulated.

The results supplied in the paper were enough to convince
me that the summary statistic σwtrep is better than current
alternatives. However, I'm afraid I was a bit unsure of the
connection between σwtrep and the normalization method
proposed by the authors. Can I still use σwtrep in my differ-
ential expression analysis if I use the usual quantile nor-
malization?

Authors' response

The summary statistic σwtrep can be used with the usual

quantile normalization or any normalization methods.

One only has to ensure that the standard deviation σk of

the corresponding μk be adjusted by a transformation fac-

tor i.e. σk(normalized) = Aσk where . After

which, σwtrep is computed using equation (4).

What motivated the authors to propose this method of
normalization? However, I feel that the description of the

normalization procedure was not that easy to follow and
would benefit from a small worked example if possible.
Do the authors plan to make any of the methodology pre-
sented in the paper available in open-source software?

Authors' response
In a typical Illumina BeadChip experiment, different treatment
conditions should be hybridized within a chip, while their cor-
responding technical replicates should be distributed across
chips. The treatment conditions within a chip shall be exposed
to similar systematic and random error. Hence, the differences
in spreads among the arrays or treatment conditions should ide-
ally reflect true biological differences. The motivation of our
normalization method is to create a two-step normalization pro-
cedure whereby the first step forces the same median and spread
only among technical replicates while the second step simply
ensures that the medians across all the arrays are common. As
such, the spreads among the various treatment conditions need
not be the same, thus preserving true differences. The software
(as a Matlab program) is available on request.

Aside from these questions, and suggestions to improve
readability supplied separately to the authors, I am happy
for this manuscript to be published.

Specific Comments for the authors:

• Bottom of Page 2: "But instead of delivering the individ-
ual bead intensities, the mean and standard error (i.e. the
standard deviation divided by the square root of the
number of beads) of the bead intensities, known as the
summary data, are reported."

This statement is possibly a bit misleading as the individ-
ual bead intensities are available with appropriate scanner
modifications (see Dunning et. al). I suggest this state-
ment be changed to acknowledge this, although the sum-
mary data are usually the starting points for analysis when
using Illumina's software.

• Page 3 paragraph 3 – "Furthermore, this summary statis-
tic will..." This should be changed to either "this summary
statistic" or "these summary statistic". I suggest the manu-
script be checked for other similar errors.

• Equation 1 should have the sum going from k = 1..K
rather than i = 1..K

• Page 5 Paragraph 1 – The weights used in Dunning et. al

are the inverse of  rather than σk.

• Page 5 Paragraph 3 -"Due to the multiple copies of the
same probe within a single Illumina array, the standard
variation can be computed...."

A k normlized

k
=

μ
μ

( )

σ k
2
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Should be standard deviation rather than standard varia-
tion?

• Page 6 Paragraph 4 – "On the other hand, a trend of
growth of mean estimates σμ.."

Should this be standard deviation of mean estimates?

Authors' response
The suggested amendments have been made accordingly.

Reviewer's report 3
Shamil Sunyaev, Division of Genetics, Dept. of Medicine,
Brigham & Women's Hospital and Harvard Medical School

This manuscript describes a new statistical method for the
analysis of Illumina BeadChip microarrays. The authors
realized that variance is underestimated for these microar-
rays because the measurements themselves are averaged
over multiple probes. Thus, they suggest a new estimate of
variance to be used in the analysis based on the Welch's t-
test.

The manuscript is well written. The statistical approach is
straightforward but has been convincingly demonstrated
to produce biologically meaningful results. The authors
show that the corrected standard deviation estimate helps
obtaining better results for the spike dataset (Chudin et
al.) and also reveal more biologically relevant genes in the
human spermatogenesis dataset and mammary epithelial
dataset.

As an outsider in this field, I do not understand why the
analysis is based on the t-test, which heavily depends on
sample estimates of variance and assumes normality. It
seems that non-parametric method may suite the problem
better.

Authors' response
First of all, it is important to note that the summary data is
computed using the arithmetic mean and the standard devia-
tion formulas. These formulas are the maximum likelihood esti-
mates (MLEs) of the normal distribution. In other words,
normality is innately assumed on the summary data. Further-
more, the typical sample size for each gene measurement in
Illumina is about 30 and t-test is known to be robust when sam-
ple size is large. More notably, t-test is robust against assump-
tion violations as long as the sample sizes are almost equal and
that only two-tailed hypotheses are considered. These were the
conditions for all our test cases.

Appendix 1

Proof for 

With reference to Table 1, if the individual bead intensi-

ties are available, the mean μtotal and squared standard

deviation  of the total set of bead intensities across K

technical replicates can be computed as

where, for convenience of notation, we introduce

On the other hand, only the summary data are given.

Then the mean μtotal and the squared standard deviation

 of the average bead intensities across K technical rep-

licates are given as

Clearly, the weighted average of the K bead intensity aver-

ages is equal to μtotal (equation 8 and 11). For later usage,

the equation (12) can be transformed by representing μk

by the average of actual bead intensities .

On the other hand, the variance in bead intensities across

K technical replicates  is defined as weighted aver-

age
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As before, the values  are substituted by their defini-

tion in terms of actual measurements. Thus, we obtain for

Minor transformations yield the equation

Obviously, the second term in equation (16) and the first
in equation (13) are identical except for the sign. Together
with equations (8) and (9), this proves that

. Note that, in practice, the number of

beads for each replicate is roughly equal. Hence when Mk

≈ M for k = 1,...,K, the weighted arithmetic averages in the
above equations can be justifiably by normal averages.

Appendix 2
Computation of σtotal under the condition of no systematic 
error

We assume the k-th batch-specific expression vector  in

Table 1 to be composed of a random, batch-independent

component  (with standard deviation σk and batch-

independent mean μ) and batch-specific systematic shift

vector  having equal components sk (thus, with mean sk

and zero standard deviation). Whereas the standard devi-
ation of the k-th replicate is not affected by the constant

systematic error, the mean μk is given as μk = μ + sk. There-

fore, the mean μsys across replicates is

where s denotes the average of the systematic shifts. The

standard deviation  of the means from the K repli-

cates is essentially the standard deviation σs of the system-

atic shifts as is shown with the derivation

Consequently, the standard deviation of bead intensities

 is plagued by the systematic error. On the other

hand, the standard deviation σk of the k-th replicate is not

affected by the batch-specific shift and, therefore, the

batch-specific systematic error does not affect σwtrep. Right-

fully, the systematic error should not be present after array
normalization. Hence, under the assumption of no sys-

tematic error after array normalization, usage of σwtrep as

reliable (lower) estimate of σtotal is justified.
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