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THE BIGGER PICTURE Transformer neural networks have emerged as the preeminent models for natural
language processing, seeing production-level use with Google search and translation algorithms. These
models have had a major impact on context learning from text in many fields, e.g., health care, finance,
manufacturing; however, there have been no empirical advances to date in electric mobility.
Given the digital transformations in energy and transportation, there are growing opportunities for real-time
analysis of critical energy infrastructure. A large, untapped source of EV mobility data is unstructured text
generated bymobile app users reviewing charging stations. Using transformer-based deep learning, we pre-
sentmultilabel classification of charging station reviewswith performance exceeding human experts in some
cases. This paves the way for automatic discovery and real-time tracking of EV user experiences, which can
inform local and regional policies to address climate change.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The transportation sector is amajor contributor to greenhouse gas (GHG) emissions and is a driver of adverse
health effects globally. Increasingly, government policies have promoted the adoption of electric vehicles
(EVs) as a solution to mitigate GHG emissions. However, government analysts have failed to fully utilize
consumer data in decisions related to charging infrastructure. This is because a large share of EV data is un-
structured text, which presents challenges for data discovery. In this article, we deploy advances in trans-
former-based deep learning to discover topics of attention in a nationally representative sample of user
reviews. We report classification accuracies greater than 91% (F1 scores of 0.83), outperforming previously
leading algorithms in this domain. We describe applications of these deep learning models for public policy
analysis and large-scale implementation. This capability can boost intelligence for the EV charging market,
which is expected to grow to US$27.6 billion by 2027.
INTRODUCTION

In recent years, there has been a growing emphasis on vehicle

electrification as a means to mitigate the effects of greenhouse

gas emissions1 and related health impacts from the transporta-

tion sector.2 For example, typical calculations suggest that elec-

tric vehicles (EVs) reduce emissions from 244 to 98 g/km, and

this number could further decrease to 10 g/km with renewable

energy integration.3 The environmental benefits range by fuel
This is an open access article under the CC BY-N
type, with reported carbon intensities of 8,887 g CO2 per gallon

of gasoline and 10,180 g CO2 per gallon of diesel.4 Government-

driven incentives for switching to EVs, including utility rebates,

tax credits, exemptions, and other policies, have been rolled

out inmanyUS states.5–7 In this effort, public charging infrastruc-

ture remains a critical complementary asset for consumers in

building range confidence for trip planning and in EV purchase

decisions.8–10 Prior behavioral research has shown that policies

designed to enhance EV adoption have largely focused on
Patterns 2, 100195, February 12, 2021 ª 2020 The Authors. 1
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increasing the quantity of cars and connected infrastructure as

opposed to the quality of the charging experience.11 However,

a fundamental challenge to deploying large-scale EV infrastruc-

ture is regular assessments of quality.

Private digital platforms such as mobility apps for locating

charging stations and other services have become increasingly

popular. Reports by third-party platform owners suggest there

are already over 3 million user reviews of EV charging stations in

the public domain.12–15 In this paper, we evaluate whether trans-

former-based deep learning models can automatically discover

experiences about EV charging behavior from unstructured data

and whether supervised deep learning models perform better

than human benchmarks, particularly in complex technology

areas. Because mobile apps facilitate exchanges of user texts

on the platform, multiple topics of discussion exist in EV charging

reviews. For example, a review states: ‘‘Fast charger working fine.

Don’t mind the $7 to charge, do mind the over-the-phone 10 min

credit card transaction.’’ A multilabel classification algorithm

may be able to discover that the station is functional, that a user

reports an acceptable cost, and that a user reports issues with

customer service. Consequently, text classification algorithms

thatcanautomaticallyperformmultilabel classificationareneeded

to interpret the data.

Being able to do multilabel classification on these reviews is

important for three principal reasons. First, these algorithms

can enable analysis of massive digital data. This is important

because behavioral evidence about charging experiences has

primarily been inferred through data from government surveys

or simulations. These survey-based approaches have major lim-

itations, as they are often slow and costly to collect, are limited to

regional sampling, and are often subject to self-report or recency

bias. Second, multilabel algorithms with digital data can charac-

terize phenomena across different EV networks and regions.

Some industry analysts have criticized EV mobility data for

poor network interoperability, which prevents data from easily

being accessed, shared, and collected.16 This type of multila-

beled output is also important for application programming inter-

face (API) standardization across the industry, such as with

emerging but not yet widely accepted technology standards,

including the Open Charge Point Protocol17 that would help

with real-time data sharing across regions. Third, this capability

may be critical for standardizing software and mobile app devel-

opment in future stages of data science maturity (see https://

www.cell.com/patterns/dsml) to detect behavioral failures in

near real-time from user-generated data.

Modern computational algorithms from natural language pro-

cessing (NLP) could uniquely address the need for fast, real-time

consumer intelligence related to electric mobility, but these algo-

rithms need to be appropriately tailored to domains to be useful.

Large-scale analysis of unstructured EV user data remains diffi-

cult to carry out, especially when there are multiple topics

discussed in each review and the datasets are imbalanced.

Imbalanced data create challenges for models to learn important

but less frequently occurring labels and often lead to algorithmic

bias. In this paper, we demonstrate the use of deep neural net-

works to automatically discover insights for topic analysis. We

use supervised learning to overcome prior challenges with unsu-

pervised methods that could produce clusters with very little

theoretical or social meaning. We provide a proof of concept
2 Patterns 2, 100195, February 12, 2021
for the complex task of multilabel topic classification in this

domain, which builds on an earlier demonstration of binary senti-

ment classification with NLP.11 We apply transformer neural net-

works, a recent class of pre-trained contextual languagemodels,

to accurately detect long-tail discussion topics with imbalanced

data, a capability that has been elusive with prior approaches.

Prior research demonstrated the efficacy of convolutional neu-

ral networks (CNNs)18–21 and long short-term memory (LSTM), a

commonly used variant of recurrent neural networks21,22 for

NLP. These models have been recently applied to sentiment

classification and single-label topic classification tasks in this

domain. As a result, the use of NLP has increased our under-

standing of potential EV charging infrastructure issues, such as

the prevalence of negative consumer experiences in urban loca-

tions compared with non-urban locations.11,23,24 Although these

models showed promise for binary classification of short texts,

generalizing these models to reliably identify multiple discussion

topics automatically from text presents researchers with an un-

solved challenge of underdetection, particularly in corpora with

wide-ranging topics and imbalances in the training data. Prior

research using sentiment analysis indicates negative user expe-

riences in EV charging station reviews, but it has not been able to

extract the specific causes.11 As a result, multilabel topic classi-

fication is needed to understand behavioral foundations of user

interactions in electric mobility.

In this paper,weachieve state-of-the-artmultilabel topic classi-

fication in this domain using the transformer-based25 deep neural

networks BERT, which stands for bidirectional encoder represen-

tations,26 and XLNet, which integrates ideas from Transformer-

XL27architectures. We benchmark the performance of these

transformer models against classification results obtained from

adapted CNNs and LSTMs. We also evaluate the potential for su-

per-human performance of the classifiers by comparing human

benchmarks from crowd-annotated training data with expert-an-

notated training data and transformer models. The extent of this

improvement could significantly accelerate automated research

evaluation using large-scale consumer data for performance

assessment and regional policy analysis.We discuss implications

for scalable deployment, real-time detection of failures, andman-

agement of infrastructure in sustainable transportation systems.

RESULTS AND DISCUSSION

Discovering topics
Charging station reviews can be considered asynchronous so-

cial interactions within a community of EV drivers. To charac-

terize user experiences, we introduce 8 main topics and 32

sub-topics thatmake up a typology of charging behavior. This ty-

pology allows for easier identification of behavioral issues with

the charging process (Table 1). The definitions we use for super-

vised learning are as follows: Functionality refers to comments

describing whether particular features or services are working

properly at a charging station. Range anxiety refers to comments

regarding EV drivers’ fear of running out of fuel mid-trip and com-

ments concerning tactics to avoid running out of fuel. Availability

refers to comments concerning whether charging stations are

available for use at a given location. Cost refers to comments

about the amount of money required to park and/or charge at

particular locations. User interaction refers to comments in

https://www.cell.com/patterns/dsml
https://www.cell.com/patterns/dsml


Table 2. Overall model performance

Accuracy % (SD) F1 score (SD)

BERT 91.6 (0.13) 0.83 (0.0037)

XLNet 91.6 (0.07) 0.84 (0.0015)

Majority classifier 81.1 (0.00) 0.45 (0.0000)

LSTM 90.3 (0.17) 0.80 (0.0036)

CNN 90.9 (0.12) 0.81 (0.0032)

Models were trained and tested on expert annotated data.

Table 1. EV mobile app typology of user reviews

Topic Sub-topic examples

Functionality general functionality, charger, screen,

power level, connector type, card, reader,

connection, time, error message, station,

mobile application, customer service

Range anxiety trip, range, location accessibility

Availability number of stations available, ICE, general

congestion

Cost parking, charging, payment

User interactions charger etiquette, anticipated time

available, user tips

Location general location, directions, staff,

amenities, points of interest, user activity,

signage

Service time charging rate

Dealership dealership charging experience, competing

brand quality, relationship with dealers

Other general experiences

ICE refers to situations where a charging station is blocked by an internal

combustion engine vehicle.
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which users are directly interacting with other EV drivers in the

community. Location refers to comments about various features

or amenities specific to a charging station location. The Service

time topic refers to comments reporting charging rates (e.g., 10

miles of range per hour charged) experienced in a charging ses-

sion. The Dealership topic refers to comments concerning spe-

cific dealerships and user’s associated charging experiences.

Reviews that do not fall into the previous eight topics refer to

the Other topic, and are relatively rare. For more information on

the robustness of typology, see Supplemental experimental pro-

cedures and Tables S5–S7 in the Supplemental information.

In preliminary experiments, we investigated several unsuper-

vised topic modeling techniques that did not provide theoretically

meaningful clusters. By contrast, our empirically driven typology is

ideally suited to hypothesis testing, spatial analysis, bench-

marking with other corpora in this domain, and real-time tracking

of station failures, all of which are not identifiable with current in-

formation systems. For additional details on how the typology

and coding scheme were developed from prior work and theory,

see Developing the coding scheme for supervised learning.

Transformers beat other deep neural networks
Overall performance

We evaluated the accuracy of BERT and XLNet transformer

models against other leading models, CNN and LSTM, which

were previously dominant architectures in this domain.11,24

Given that we have imbalanced data for machine classification,

we also report the F1 score, which is the harmonic average of

precision and recall and is considered ameasure of detection ef-

ficiency. As shown in Table 2, we achieved high overall accuracy

scores for BERT and XLNet of 91.6% (0.13 SD) and 91.6% (0.07

SD), and F1 scores of 0.83 (0.0037 SD) and 0.84 (0.0015 SD),

respectively. The standard deviations were generated from 10

cross-validation runs. While CNN and LSTM models had slightly

lower accuracy, we find that both transformer models outper-
form the CNN and LSTM models considering both accuracy

and F1 score. We report 2 to 4 percentage point improvements

in the F1 scores for both transformer models. For implementa-

tion details, see Supplemental experimental procedures and Fig-

ure S1. For reference, we provide the hyperparameters used for

the transformer models in Table S1. We also open sourced the

model weights (see Resource availability).

The F1 scores for the transformer models are also a substan-

tial 40 percentage points higher comparedwith themajority clas-

sifier (Table 2). This means the models learned to detect minority

classes effectively. Briefly, the majority classifier provides a

measure of the level of imbalance. For a given category, the ma-

jority classifier simply predicts the most prevalent label. For

example, if 90% of training data has not been selected for a

topic, then the classifier predicts all data as not selected, giving

a high accuracy of 90%. Thus, for highly imbalanced data, a ma-

jority classifier can provide arbitrarily high accuracy without sig-

nificant learning.28 Because it is possible that misclassification

errors may not distribute equally across the topics, in the next

section, we also evaluate the performance by topics.

Increasing detection of imbalanced labels

A key challengewas to evaluatewhether we could improvemulti-

label classifications even in the presence of imbalanced data.

Figure 1A shows a large percentage point increase in accuracy

for all the deep learningmodels tested, comparedwith themajor-

ity classifier. This evidence of learning is especially notable for the

most balanced topics (i.e., Functionality, Location, and Availabil-

ity). As shown in Figure 1B, we report improvements in the F1

scores forBERTandXLNet acrossmost topics versus thebench-

mark models. In particular, this result holds for the relatively

imbalanced topics (i.e., Range anxiety, Service time, and Cost),

which have presented technical hurdles in prior implementa-

tions.24 In comparisonwith thepreviously leadingCNNalgorithm,

BERT and XLNet produce F1 score increases of 1–3 percentage

points on Functionality, Availability, Cost, Location, and Dealer-

ship topics and 5–7 percentage points on User interaction and

Service time topics. For Range anxiety, BERT is within the statis-

tical uncertainty of the CNN performance, while XLNet produces

an increase in the F1 score of 4 percentage points. These

numbers represent considerable improvements in topic level

detection. For detailed point estimates, see Tables S2 and S3.

Given these promising results, next we consider some require-

ments for possible large-scale implementation such as computa-

tion timeand scalability related to the sourcingof the training data.

Computation time
An important metric to consider while running deep learning

models for large-scale deployment is the computation time.
Patterns 2, 100195, February 12, 2021 3



A B Figure 1. Topic level classification perfor-

mance

(A) For the baseline model we use the majority

classifier, which predicts the simple majority for a

given topic. For higher values in accuracy, the

majority classifier reflects more imbalance in the

training and testing data. We find that the deep

learningmodels outperform themajority classifier in

model accuracy, particularly for more frequently

occurring labels, the Functionality, Location, and

Availability topics.

(B)We also compare the relative performance of the

transformermodels with CNNand LSTMclassifiers.

High F1 scores for imbalanced topics indicate

strong detection of true positives. Our results indi-

cate that transformer models, BERT and XLNet,

which achieve similar performance, improve upon

the CNN and LSTM benchmarks in the F1 score

across all topics. The error bars represent upper

and lower 95% confidence intervals.

See also Tables S2 and S3.
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Deep neural networks have recently been criticized for the large

amount of resources needed, such as graphics processing units

(GPUs) and distributed computing clusters, frequently leading to

higher costs of deployment.29 Further, NLP researchers have

also considered the environmental costs of the power consump-

tion and CO2 emissions for computing,30 which necessarily

involve trade-offs. In our application, we report the training times

per epoch for BERT and XLNet as 196 and 346 s, respectively.

These results were generated using four widely available NVIDIA

Tesla P100 GPUs with 16 GB of memory.

We find that the training and testing times are considerably

longer for the transformer models compared with CNN and

LSTM. For transformers, total computing times vary from 1

to 4 h, and for CNN and LSTM, computing times vary from 1

to 90 min, depending on the number of GPUs (see Table S4

for details). We argue that the model performance improve-

ments in the transformer models may be justified for large-

scale deployment. This is because the increase in computa-

tional cost is offset by substantial gains in accuracy and F1

score. When comparing BERT and XLNet within the class of

transformers, we also show BERT to be considerably faster

in total computing time for a comparable level of performance.

Therefore, we argue that, as further enhancements to

BERT and its optimized variants are rapidly advancing in the

literature,31–33 BERT could be a preferred text classification

algorithm for this domain. In the next section, we consider

scalability of the models by evaluating potential sources of

training data.

Trained experts beat the crowd
In Table 3, we compare the machine classification results based

on training data from a crowd of non-experts versus a group of

trained expert annotators. For performance comparison of

models trained with expert- and crowd-annotated data, we

created a ground truth dataset by conducting researcher audits

to ensure 100% agreement on the ground truth labels. See Hu-

man annotation of training data for further details. Not surpris-

ingly, we find that human experts are closer to the ground truth

(random holdout sample; n = 100) in both accuracy and F1 score,
4 Patterns 2, 100195, February 12, 2021
as shown in Table 3. This is consistent with related literature on

limitations to wise crowds.34 In fact, prior research has found

gaps in general public knowledge about EVs and consumer mis-

perceptions.35–38 In the next section, we quantify the perfor-

mance of crowd-trained versus expert-trained transformer

models, using the two experimentally curated sources of training

data.

Crowd-trained models perform poorly

The transformer models trained with crowd-annotated data pro-

duced accuracies of 73.2% (3.85 SD) and 74.2% (4.15 SD) and

F1 scores of 0.53 (0.06 SD) and 0.54 (0.07 SD) for BERT and

XLNet, respectively (see Table 3). By contrast, we see a remark-

able improvement in these results with the expert-trained BERT

and XLNet models, which produced model accuracies of 89.1%

(4.09 SD) and 91.0% (4.70 SD) and F1 scores of 0.82 (0.06 SD)

and 0.85 (0.06 SD), respectively. We discovered that the

enhancement in the F1 score is largely due to gains in the inter-

rater reliability, which is the result of improvements in the quality

of the training data between crowds and experts (see the Fleiss k

score increase from 0.007 to 0.538 in Table 3). We argue that in-

terrater agreement is critical when working with annotated data

from complex domains such as EV mobility. For reference, at

the sub-topic level, values for Fleiss’ k range from �0.001 to

0.019 for the crowd, and from 0.30 to 0.72 for the experts, which

indicates considerable disagreement on the labeling task within

a sample of adults, 18 years and over, representative of the US

population. See Experimental procedures for details on human

annotation experiments.

Although sourcing strategies with online labor pools may be

inexpensive, we find that the cost advantage does not justify

the poor performance (F1 score 0.61, 0.09 SD). These results

indicate that the use of low-cost crowd-sourcing approaches

to build massive training sets is likely not feasible for large-scale

implementation in this domain. This is in stark contrast to other

deep learning domains, such as computer vision, where cheap,

crowd-sourced training data can be easily acquired. For

example, identifying sections of a road or public bus in an image

is an easy task for the average person, but the average person

cannot easily categorize the topics of EV user reviews. To



Table 3. Ground truth evaluation of human performance versus

transformer models

Classifier Training set Accuracy % (SD) F1 score (SD)

BERT Expert

annotated

89.1 (4.09) 0.82 (0.06)

BERT Crowd

annotated

73.2 (3.85) 0.53 (0.06)

XLNet Expert

annotated

91.0 (4.70) 0.85 (0.06)

XLNet Crowd

annotated

74.2 (4.15) 0.54 (0.07)

Crowd (k = 0.007) – 73.9 (6.06) 0.61 (0.09)

Human experts

(k = 0.538)

– 86.0 (4.40) 0.79 (0.07)

Cross validation was for 10 runs.
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provide an example of this, in our experiments, the review, ‘‘.
What an inconvenience when I need to drive to Glendale and I

have a very low charge .,’’ was cognitively difficult for general

crowd annotators to correctly classify as Range anxiety, even

when annotators had unrestricted access to definitions and

related examples. This was not the case for most experts. As a

result, for these complex domains, expert-curated training

data will be required for large-scale implementation. In the next

section, we compare the performance of our best classifiers, us-

ing artificial intelligence versus human intelligence.

Possibility of super-human classification
During hand validations of the transformer-based experiments,

we noticed that some test data that were not correctly labeled

by the human experts were being correctly labeled by the trans-

former models. This caught our attention, as it indicated the pos-

sibility that BERT and XLNet could in some cases exceed the hu-

man experts in multilabel classification. In Table 3, we see that

expert-trained transformer models performed about 3–5 per-

centage points higher in accuracy and 0.03–0.06 points higher

in the F1 score compared with our human experts. In Table 4,

we provide six specific examples of this phenomenon where

the expert-trained transformers do better than human experts.

For example, exceeding human expert benchmarks could

happen in multiple ways. It could be that the algorithm correctly

detects a topic that the human experts did not detect (i.e., re-

views 1 and 2 in Table 4), or that it does not detect a topic that

has been incorrectly labeled by an expert (i.e., reviews 4–6 in Ta-

ble 4), or that the sum of misclassification errors is smaller than

that of human experts (i.e., reviews 3–6 in Table 4). We also pro-

vide quantitativemeasures in accuracy for these examples in Ta-

ble 4.

Although a full investigation of super-human performance for

these transformer neural networks is outside the scope of the

current study, we suggest this as an important future work. Evi-

dence that artificial intelligence can outperform human bench-

marks on multilabel classification tasks can have practical ben-

efits for station managers and investors to be able to

accurately predict system problems or examine customer needs

at high resolution in ways not previously possible.
Applications to local and regional policy
As EV consumer data expands, we comment on the possibility to

apply this computational approach widely to local and regional

policy analysis. We note that, previously, this type of extracted

consumer intelligence has not been easily accessible to policy

makers or governments due to the nature of unstructured data

and issues with data access. For example, the US Department

of Energy’s Alternative Fuels Data Center maintains a list of all

publicly accessible stations in the United States and Canada.

This includes location information, such as station name,

address, phone number, charging level (e.g., L1, L2, or L3), num-

ber of connectors, and operating hours with a developer-friendly

API. However, these aggregated data sources do not typically

include real-time usage or station availability, due to challenges

with network interoperability.16 This means that due to the pres-

ence of different charging standards of manufacturers in regional

EV networks, there remain structural issues with sharing and

receiving EV usage data between regions.

Recently, there has been a movement by a global consortium

of public and private EV infrastructure leaders to promote open

standards such as the Open Charge Point Protocol17 and the

Open Smart Charging Protocol.39 As these technology stan-

dards become more widely adopted, there will be a rapid in-

crease in the amount of real-time data that can be shared with

researchers and analysts. For instance, a growing number of dig-

ital platform providers have begun moving toward open data.

These include platforms such as Open Charge Map, Recharge,

and Google Maps. In the future, it should be possible to easily

merge consumer review data with other spatial features and

information. This could provide a wealth of commonly used

features for analysis such as socioeconomic indicators,

including population, income levels, educational attainment,

age, poverty rates, unemployment, and affordability of nearby

housing. Other important features could include transportation

economic indicators, air pollution, health data, mobile phone

tracking data, point-of-interest information, and local and

regional incentives.

To provide an example of possible data insights for urban pol-

icy, we conducted a spatial analysis of metropolitan and micro-

politan statistical areas (MSAs and mSAs). One of the dominant

topics is Availability, which is predicted when a user reports

whether a given charging station is available for use. In Figure 2,

we visualize the spatial distribution of predicted station availabil-

ity byUS census regions. To create thismap, wemerged the pre-

dicted review topics with counties based on shape files from the

Office of Management and Budget’s (OMB) 2013 specification of

MSAs and mSAs. In the United States, there are 1,167 MSAs

(population larger than 50,000) and 641 mSAs (population greater

than 10,000), and 1,335 non-core-based statistical areas (popu-

lation less than 10,000). To visualize model predictions, we stan-

dardized the predicted frequency of the Availability topic into

quantiles for each census region (West, Midwest, Northeast,

and South), with 0%–44%, rarely; 45%–69%, sometimes;

70%–90%, a moderate amount; and over 90%, a great deal

(see Figure 2). The map reveals areas with high and low pre-

dicted Availability issues in in all core-based statistical areas.

Using this approach, we find that predicted station availability

issues are not necessarily concentrated in the large central

metro counties (MSAs over 1 million population), but rather
Patterns 2, 100195, February 12, 2021 5



Table 4. Examples where expert-trained transformers exceed human benchmarks

Ground truth Human expert

Expert-trained transformers

BERT XLNet

Labels Labels Acc. (%) Labels Acc. (%) Labels Acc. (%)

1. ‘‘. unit says

decommissioned

but it will still release

the charger after a

long pause.’’

Functionality User

interaction

75 Functionality 100 Functionality 100

2. ‘‘Thanks very busy

dealership but happy

to allow use of qcdc.’’

Functionality,

Availability,

Dealership

Functionality,

Dealership

87.5 Functionality,

Availability,

Dealership

100 Functionality,

Availability,

Dealership

100

3. ‘‘Charging on the quick

charger - will be done

by 12:15.’’

Functionality,

User interaction

Functionality,

Location

75 User interaction 87.5 User interaction 87.5

4. ‘‘Went from 18-82%

in 27 min! First time DC

charging and met

another nice Leaf

owner who showed

me how to use the

machine. Thanks for

the charge!’’

Functionality,

Service time

Functionality,

Availability,

Location, User

interaction,

Dealership

62.5 Service time 87.5 Functionality,

Service time,

Dealership

87.5

5. ‘‘The CHAdeMO charger

does work .. Nissan

Hill had to move an ICE

for me to gain access,

but did so quickly. The

CHAdeMO did not cost

me any $ Charged quick!

Don’t hesitate to use.’’

Functionality,

Availability,

Cost,

Dealership

Functionality,

Availability, Cost,

User interaction,

Location, Service

time, Dealership

62.5 Functionality,

Cost,

Dealership

87.5 Functionality,

Cost, Service

time,

Dealership

75

6. ‘‘So the dealer had all

of their cars being

serviced parked in

every spot including

the quick charger. I

called and asked them

for at least access to the

quick charger and they

agreed but never did

anything so I left and

drove to Larry h nissan.

I was willing to pay

because I was in a

hurry and obviously the

Toyota dealer doesn’t

want my business.’’

Availability,

Cost,

Dealership

Functionality,

Availability, User

interaction, Location,

Dealership

50 Availability,

Dealership

87.5 Availability,

Location,

Dealership

75
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away from the city centers, such as smaller mSAs of population

less than 50,000. This is particularly true in the West (e.g., Ore-

gon, Utah, Colorado, Wyoming, New Mexico) and Midwest

(e.g., South Dakota and Nebraska) and Hawaii. By contrast, for

the South (e.g., Texas, Alabama, Florida, North Carolina, South

Carolina, Tennessee) and Northeast regions (e.g., New York,

New Jersey, Massachusetts, Maryland, Pennsylvania), we find

the highest frequency of availability issues in the major MSAs

for the period of analysis. One primary insight from this analysis

is that mSAs could be underserved with regard to station avail-

ability. In additional analyses, we also used our methodology
6 Patterns 2, 100195, February 12, 2021
to detect whether a specific station is functioning. Based on

the rate of consumers leaving reviews at charging stations

across the United States, we find that the deep learning algo-

rithms can detect the functioning of a certain station, daily. For

further details of these estimates, see Supplemental experi-

mental procedures. This type of detection could also be done

with any of our introduced topics and with expanded sample da-

tasets from network providers.

Given the proliferation of EV policies worldwide, this spatial

analysis could be expanded globally, for example, in the Euro-

pean Union, policies such as Alternative Fuels Infrastructure



Availability

Not M

Figure 2. Predicted discussion frequency of station availability for US metropolitan and micropolitan statistical areas

The map reveals areas with high and low discussion frequency for predicted Availability issues in all metropolitan statistical areas (e.g., population greater than

50,000). Micropolitan statistical areas (e.g., population 10,000–49,999) have higher Availability discussions in some states in the West and Midwest regions. The

algorithms predict that many micropolitan statistical areas could be underserved with regard to station availability.
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Directives (previously known as theDirective on Alternative Fuels

Infrastructure).40 In addition, the European Commission has sup-

ported implementation of fast charging infrastructure through

the Trans-European Network for Transport and Connecting Eu-

rope Facility Transport programs.40,41 This type of national-scale

infrastructure expansion in the EuropeanUnion is part of an over-

all strategy by the EuropeanUnion to reduceCO2 emissions from

the transportation sector by 60% by 2050.42

This capability to deploy accurate and more efficient deep

learning models can be applied to evaluate other charging infra-

structure rollout policies that aim to increase the number of

charge points, reduce charging congestion, promote vehicle-

to-grid and overnight charging, as well as solar adoption.43 For

recent reviews on how charging behavior can guide charging

infrastructure implementation policy, see van der Kam et al.43

and McCollum et al.44 Other applications that use artificial intel-

ligence and NLP to discover hard-to-reveal patterns in unstruc-
tured data, especially those that merge spatial information,

should generate fruitful areas of future inquiry.

Concluding remarks
In this study, we report state-of-the-art results for multilabel

topic classification of consumer reviews in EV infrastructure.

This represents a potential step change in our ability to aggre-

gate data and insights for EV business model development

and public policy advisory. Implementing automated topic

modeling solutions has been challenging because of the tech-

nical nature of the corpus and training data imbalances. Our

experimental protocols highlight the importance of the quality

of training data annotations in the data processing pipeline. First,

human expert annotators outperform the general crowd in both

accuracy and F1 score metrics. This is due to improvements in

the interrater reliability that is critical while working with data

from complex domains. Second, improvements in training data
Patterns 2, 100195, February 12, 2021 7
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quality also produce more accurate and reliable detection. This

is seen in the approximate increase of 15 percentage points in

accuracy and 50% improvement in the F1 score in the expert-

trained transformer models compared with the crowd-trained

models (Table 3). Third, when the models are trained on top of

high-quality expert curated training data, surprisingly, the trans-

former neural networks can outperform even human experts.

This indicates evidence of super-human classification on imbal-

anced corpora. As deep learning models have often been criti-

cized for their black-box nature, we suggest technical enhance-

ments that focus on model interpretability as future work, such

as through the use of rationales,45 influence functions,46 or

sequence tagging approaches47 that can offer deeper insights

on the models and the reasons for their predictions. This is an

area of active research.

Further applications of methods that we propose, particularly

those that integrate artificial intelligence with real-time data and

spatial analysis, can greatly enhance newways of thinking about

infrastructure management as well as economic and policy anal-

ysis. Other opportunities abound.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be

directed to and will be fulfilled by the lead contact, Dr. Omar I. Asensio

(asensio@gatech.edu).

Materials availability

The trained model weights for BERT and XLNet generated in this study have

been deposited in Figshare: https://doi.org/10.6084/m9.figshare.

12612092.v1.

Data and code availability

The anonymized datasets and code generated during this study have been

deposited in the Zenodo: https://doi.org/10.5281/zenodo.4276350 The raw

data may not be posted publicly due to privacy restrictions.
Data

We reanalyzed data derived from a nationally representative collection of un-

structured consumer reviews from 12,720 charging station locations across

the United States. It comprised 127,257 reviews, all written in English, by

29,532 registered and unregistered EV drivers across a 4-year duration from

2011 to 2015.11,23,48

The spatial coverage of the dataset includes reviews from 750 MSAs (309

large MSAs of population 1 million or more; 228 medium MSAs of population

250,000–999,999; 213 small MSAs of population 50,000–249,999). This also

includes 294 mSAs (i.e., population 10,000–49,999) and 232 non-core-based

statistical areas (i.e., population less than 10,000). This spatial coverage is

based on the 2013 OMB delineation of MSAs and mSAs.

The data are statistically representative of the entire US EV market, which

includes all major EV networks and a mix of both public and private stations,

urban and rural stations, and both low and highly rated stations. The data

include the text of consumer reviews and contains other useful indicators

such as the timestamp of the reviews and the car make and model. We also

geo-coded the station location and related points of interest using the Google

Places API. However, the dataset does not contain EV transactions data, such

as how many kilowatt hours were transferred. The data are also observable

only on condition of a user checking in and posting a review.

This type of data is expanding globally and we estimate that there are

already over 3.2 million reviews through 2020 across more than 15 charge sta-

tion locator apps.12–16 This includes English-language reviews as well as re-

views in over 42 languages on all continents, such as Ukrainian, Russian,

Spanish, French, German, Finnish, Italian, Croatian, Icelandic, Haitian-Creole,
8 Patterns 2, 100195, February 12, 2021
Ganda, Sudanese, Kinyarwanda, Afrikaans, Nyanja, Korean, Mandarin, Japa-

nese, Indonesian, and Cebuano.

Developing the coding scheme for supervised learning

We developed the coding scheme for our typology from prior work and theory

using three strategies. First, we reviewed the extant literature to capture the

most important potential behavioral issues for EV drivers. This led to identifica-

tion of Range anxiety,6,49–52 Dealership practices,53–55 Cost,6,52,56–58 Service

time,6,52,56,58 Availability issues,59,60 User interaction,61–63 station Function-

ality,11,58,64 and Location.11 Second, to find evidence of the importance of

these topics from the data, we hand-coded 8,953 randomly selected reviews

to validate the 8 topics from prior literature and used these to generate 34 sub-

topics for classification. We found that only 1% of the reviews were unclassi-

fiable according to our 8 main categories (i.e., Other). Third, to validate the

coding scheme, we also interviewed industry experts and practitioners, which

allowed us to further refine our main topics and sub-topics shown in Table 1.

This included informal communications with representatives from firms such

as General Motors, ChargePoint, ReCharge Technologies, Electrada, Electrify

America, and charging station managers (e.g., representatives from Ford and

Georgia Tech Parking and Transportation Services) who were not directly

involved in the research.

Human annotation of training data

A common criticism with deep neural networks is the high cost and annotator

skill requirements for implementations in specialized corpora. We evaluated

possible methods to lower implementation costs, such as crowd sourcing

by using online labor pools for human annotation. This led us to conduct hu-

man annotator experiments with two training sets, each labeled by a crowd

of non-experts and a small group of trained experts. Given the known possible

biases with historical data, we investigated whether protocols related to the la-

beling of the training data could have an impact on performance.65,66

The crowd and expert annotators each labeled a random sample of 10,652

reviews. We used an 80:10:10 split for training, validation, and testing, which

met our objective of having equal amounts of training data for both annotator

groups. We conducted statistical tests to determine whether the sampled

training dataset was representative of the full dataset in key observable station

characteristics. We confirmed that the training dataset was statistically repre-

sentative in themix of urban and non-urban stations (t test, p = 0.426) and pub-

lic and private stations (t test, p = 0.709), as well as by station points of interest

(t test, p = 0.802), e.g., retail, shopping, workplace, transit centers, etc.We also

found that the training data were not statistically different in topic distribution

from the predictions of the full dataset (Kolmogorov-Smirnov test, p = 0.9801).

Crowd annotators

For the crowd-sourced training data sample, 1,000 US adults (age 18+) were

pre-recruited via a Qualtrics online panel using their popular online survey plat-

form. The crowd was statistically sampled on the basis of age, income, educa-

tion, and sex, representative of the US population. This is important to mitigate

possible human rater biases that could arise when discussing environmental

topics. To enhance understanding of the domain-specific terminology for the

general crowd, definitions and examples for the topics and sub-topics as

shown in Table 1 were provided for annotation along with a supporting dia-

gram containing typical components of an EV charging station (see Figures

S2 and S3). We report the Fleiss k for crowd annotators as 0.007.

Expert annotators

For the expert-sourced training data sample, five student annotators with

technical backgrounds were recruited and trained in a facilitated focus group.

They were instructed to recognize the domain-specific topics using a detailed

training manual for the annotation. To support scientific replication and to

document the protocols, we have open sourced this training manual.67 These

protocols were developed in consultation with EV industry experts who have

been in contact with the researchers. Although our expert annotators have

been trained to recognize domain-specific terminology, we acknowledge

that we were not able to compare the performance of our expert annotators

with that of EV industry professionals due to cost reasons. Despite this limita-

tion, we find that our human experts were two orders of magnitude more reli-

able in the annotation (76-fold increase in our reliability measure) than the

crowd annotators (k = 0.538 and k = 0.007, respectively). See Model metrics

under Performance measures for additional details on computing Fleiss’ k.

mailto:asensio@gatech.edu
https://doi.org/10.6084/m9.figshare.12612092.v1
https://doi.org/10.6084/m9.figshare.12612092.v1
https://doi.org/10.5281/zenodo.4276350
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To provide a greater control over the labeling task, we developed a custom

web application used by the expert annotators as shown in Figure S3. The web

app provides efficient database support for random sampling from a large da-

taset and overcomes latency and scaling challenges that we encountered dur-

ing crowd annotation in popular survey software.

Ground truth labels

To generate the ground truth labels, we followed the same training protocols

used by the expert annotators. Then, we randomly sampled 100 overlapping

reviews that were annotated by both annotator groups to enable performance

comparisons. On this sample, we conducted an additional round of researcher

audits that validated 100% agreement on the annotations. Given that the hu-

man experts exhibited some level of disagreement (Fleiss’ k = 0.538, Table 3),

this sample was used to benchmark the performance of the US crowd and the

human experts. The results of these comparisons as well as their statistical un-

certainty are reported in Table 3. To generate the uncertainty, we performed a

cross validation using block randomization with 10 equal-sized blocks of

ground truth data.

Performance measures

Model metrics

To assessmodel performance,we report themicro-averaging F1 score, which is

a standard metric for classifier performance on detection of false positives and

false negatives. We used standard measures for multilabel accuracy, where an-

notators could choose multiple labels per review. Our overall accuracy metric

accounts for partially correct matches. By convention, this is equivalent to 1 �
Hamming loss, where the Hamming loss is an xor calculation of the dissimilarity

(i.e., a fraction of wrong labels compared with the total number of labels). For L

categories classified on a sample of size N, the accuracy can be calculated as:

Overall Accuracy = 1� Hamming Loss

=1� 1

jNj,jLj
XjNj

i = 1

XjLj

j = 1

xor
�
yi;j; zi;j

� : (Equation 1)

For example, if a multilabel prediction [1, 1, 1, 0] had a true label [1, 1, 1, 1],

the accuracy is 3/4 or 75%.

Interrater Reliability

To measure the interrater agreement level among the annotators, we used

Fleiss’ k, which allows for themeasurement of agreement betweenmultiple an-

notators (i.e., more than 2). It is calculated as shown below:

k =
P� Pe

1� Pe

; (Equation 2)

where P is the average number of agreements on all annotations between rater

pairs for the reviews, and Pe is the sum of squares of the probability share for

the assignment to a topic. As k is bounded between �1 and 1, when k is less

than 0, agreement between raters is occurring below what would be expected

at random, while a k above 0 means that agreement between raters is occur-

ring at more than what would be expected by random chance.68 For more in-

formation, see Fleiss.69
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