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Abstract: The preconception period has been recognized as one of the earliest sensitive windows
for human development. Maternal dietary intake during this period may influence the oocyte
quality, as well as placenta and early embryonic development during the first trimester of pregnancy.
Previous studies have found associations between macronutrient intake during preconception and
pregnancy outcomes. However, as food products consist of multiple macro- and micronutrients, it is
difficult to relate this to dietary intake behavior. Therefore, the aim of this study was to investigate the
association between intake of specific food groups during the preconception period with birth weight,
using data from the Perined-Lifelines linked birth cohort. The Perined-Lifelines birth cohort consists
of women who delivered a live-born infant at term after being enrolled in a large population-based
cohort study (The Lifelines Cohort). Information on birth outcome was obtained by linkage to the
Dutch perinatal registry (Perined). In total, we included 1698 women with data available on birth
weight of the offspring and reliable detailed information on dietary intake using a semi-quantitative
food frequency questionnaire obtained before pregnancy. Based on the 2015 Dutch Dietary Guidelines
and recent literature 22 food groups were formulated. Birth weight was converted into gestational
age-adjusted z-scores. Multivariable linear regression was performed, adjusted for intake of other food
groups and covariates (maternal BMI, maternal age, smoking, alcohol, education level, urbanization
level, parity, sex of newborn, ethnicity). Linear regression analysis, adjusted for covariates and intake
of energy (in kcal) (adjusted z score [95% CI], P) showed that intake of food groups “artificially
sweetened products” and “vegetables” was associated with increased birth weight (resp. (β = 0.001
[95% CI 0.000 to 0.001, p = 0.002]), (β = 0.002 [95% CI 0.000 to 0.003, p = 0.03])). Intake of food group
“eggs” was associated with decreased birth weight (β = −0.093 [95% CI −0.174 to −0.013, p = 0.02]).
Intake in food groups was expressed in 10 g per 1000 kcal to be able to draw conclusions on clinical
relevance given the bigger portion size of the food groups. In particular, preconception intake of
“artificially sweetened products” was shown to be associated with increased birth weight. Artificial
sweeteners were introduced into our diets with the intention to reduce caloric intake and normalize
blood glucose levels, without compromising on the preference for sweet food products. Our findings
highlight the need to better understand how artificial sweeteners may affect the metabolism of the
mother and her offspring already from preconception onwards.
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1. Introduction

The first 1000 days of life are known as a critical window for the effect of environmental influences
(including maternal dietary intake) [1] on early growth and development and has become a popular
domain for researchers and health care professionals. Within this window, much of the focus has been
on the infant before and after birth and to a much lesser degree on women during their preconception
period, despite the acknowledgment of the importance of the preconception phase on pregnancy and
later health outcomes for both mother and child. When women are in good health and nutritional
status before pregnancy, this beneficially influences the health of the child in two ways. First, nutrition
may already influence the quality of the oocyte and its environment before conception [2]. Second, after
conception, the first trimester of pregnancy is the period when most fetal organs and the placenta are
formed, and when many women are not yet aware of being pregnant. If women are in an adequate
nutritional status before pregnancy, this may have beneficial effects mainly during this first, important,
part of pregnancy.

Previous studies have investigated the associations between macronutrient intake and birth
weight [3,4]. Although results from these analyses may provide useful insights to generate hypotheses
regarding nutrient intake and outcomes, in practice we do not consume isolated macronutrients.
Consequently, multiple food groups may contribute to the observed associations and it has indeed
been found that food-based scores may have stronger associations with chronic diseases [5]. The effects
of foods likely reflect complex synergistic contributions from and interactions among food structure,
preparation methods, macronutrient quality (e.g., glycemic index and fiber content in case of
carbohydrates), and micronutrients content [5]. In addition, as people modify their nutrient intake
primarily by their choice of foods, dietary recommendations are generally based on epidemiologic
analysis with foods (e.g., food items or groups), as opposed to analysis based on nutrient intake [6].
Therefore, our objective is to further explore the association between intake of food groups and
pregnancy outcome, more specifically the birth weight of the offspring.

We investigate the association of 22 food groups, classified based on the food-based 2015 Dutch
Dietary Guidelines [7,8], and birth weight in the Perined-Lifelines linked birth cohort [9]. Subsequently,
we examined which macronutrients may contribute to the association found between food groups and
birth weight.

2. Materials and Methods

This study was part of the Perined-Lifelines linked birth cohort, a cohort established by linking
the Dutch national birth registry (Perined, [10]) and the population-based Lifelines Cohort Study [11].
The Lifelines Cohort study was conducted according to the principle of the Declaration of Helsinki and
is in accordance with the research code of the University Medical Center Groningen, The Netherlands
(METc number: 2018/506). The linking of data from Lifelines with other existing databases was covered
by the informed consent filled in by the participants.

2.1. Overview of the Perined-Lifelines Linked Birth Cohort

The Perined-Lifelines linked birth cohort was created by linking two existing databases; a large
population-based cohort study (The Lifelines Cohort study, [11]) and the national birth registry
(Perined, [10]), through a “trusted third party” (‘ZorgTTP’ Houten, The Netherlands), facilitated by
Mondriaan project (UMCG)/Lygature (Utrecht, The Netherlands). Lifelines is a multi-disciplinary
prospective population-based cohort study examining in a unique three-generation design the health
and health-related behaviors of 167,729 persons living in the north of The Netherlands. It employs a
broad range of investigative procedures in assessing the biomedical, socio-demographic, behavioral,
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physical, and psychological factors which contribute to the health and disease of the general population,
with a special focus on multi-morbidity and complex genetics. The Perined-Lifelines linked birth cohort
has been described previously in detail [9]. In brief, female participants from the Lifelines Cohort
study who indicated in their first or second follow-up questionnaire to have delivered a child since
the previous questionnaire were selected. The information collected at baseline (e.g., demographical
variables, detailed nutrient intake through a Food Frequency Questionnaire (FFQ)) was considered
as the pre-conceptional information available for that specific pregnancy. Since the Lifelines Cohort
Study does not collect information on pregnancy or pregnancy outcomes, the female participants from
Lifelines were linked with the information on their pregnancy outcomes available via the national birth
registry (Perined). This was done via corresponding pseudonyms in Lifelines and Perined, which was
created based on three personal linking variables (birth date and 4-digits ZIP code of the residential
address of the female participants from Lifelines, and birth date of their child). This resulted in a
Perined-Lifelines linked birth cohort, containing information on dietary intake during the period prior
to conception as well as pregnancy outcomes.

2.2. Study Group

Among the women in the Perined-Lifelines linked pregnancy cohort, the inclusion criteria for the
present analyses were delivery of a live-born baby at term (≥37 weeks’ gestational age) and availability
of information on birth weight of their offspring. Women with unreliable data for dietary intake were
excluded from the analyses. Reliability of reported dietary intake was checked using the Goldberg
cut-off method, which relies on the ratio of reported energy intake and basal metabolic rate [12,13];
a ratio below 0.50 or above 2.75 was considered as not reliable. Additionally, women with an intake
of less than 500 kcal/day were considered as unreliable reported dietary intake [14,15], and therefore
excluded for further analysis.

2.3. Dietary Assessment: Food Groups

Based on evidence underlying the 2015 Dutch Dietary Guidelines, Vinke et al. [16] categorized the
110 items of the FFQ used in the Lifelines Cohort into 22 food groups and labeled them as having a
positive, negative, neutral, or unknown relation with major chronic diseases [7,8]. Nine positive groups
(vegetables, fruit, whole grain products, legumes and nuts, fish, oils and soft margarines, unsweetened
dairy, coffee, and tea), one neutral food group (eggs), three negative groups (red and processed
meat, butter and hard margarines, and sugar-sweetened beverages) and nine unknown groups for
which evidence is either absent or weak (potatoes, refined grain products, white unprocessed meat,
cheese, savory and ready products, sugary products, soups, sweetened dairy, artificially sweetened
products) were identified [8]. The same categorization of food groups was used within the current
study. To represent relative food group intake, taking into account differences in energy intake between
individuals, intake of the food groups was expressed in grams per 1000 kilocalories (kcal) instead of
grams/day. For linear regression analysis, intake in food groups was expressed in 10 g per 1000 kcal
to be able to draw conclusions on clinical relevance given the bigger portion size of the food groups.
Based on recent literature [8], the nine positive and three negative food groups were combined into the
Lifelines Diet Score (LLDS). For each food group (in grams/1000 kcal), intake was divided into quintiles
to score an individual’s consumption compared to others in the study population. The quintiles range
from 0 to 4, with 4 points being awarded to the highest quintile of consumption for positive food
groups, and to the lowest quintile for negative food groups. The sum of the 12 component scores
resulted in the LLDS, ranging from 0 to 48.

2.4. Maternal and Fetal Characteristics

Maternal age was defined as age at enrollment in Lifelines. Maternal education was assigned
in three categories: low (no education, primary school, lower vocational or lower general secondary
education), intermediate (intermediate vocational training or higher secondary education) and high
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(higher vocational or university) education. Maternal BMI was calculated based on measured height
and weight at the Lifelines research sites at enrollment (baseline) to Lifelines. For the description of
food group consumption within the cohort, stratified groups of BMI-quintiles were used. BMI quintiles
were generated by use of the distribution within the study, whereby quintile 1 was defined as “low”
BMI (lowest 20% in this cohort), quintiles 2 to 4 as “normal” BMI (middle 60% of this cohort and used
as the reference) and quintile 5 as “high” BMI (highest 20% in this cohort). Maternal ethnicity was
classified as either “white/European” and ”other.” Maternal alcohol use was divided into “alcohol use”
(defined as alcohol use at moment of baseline/FFQ) and ”no alcohol use” [11]. Urbanization level was
categorized as one, two or >/= three. Birth weight was recorded in grams in Perined and converted
into a gestational age (GA)-adjusted z-score to adjust for variation of birth weight over gestational age.

2.5. Statistical Methods

Continuous variables were summarized by the median and IQR, and comparisons between
groups were made by the Kendall’s tau rank correlation test. The associations between food
group intake (exposure) and birth weight (outcome) were estimated by linear regression analyses.
Maternal characteristics were considered as possible confounders based on a previous study within the
Perined-Lifelines linked birth cohort [4]. Adjusted analyses were performed using multivariable linear
regression analyses. Two multivariable linear regression models were performed for food groups that
showed a significant association with birth weight to investigate which macronutrients within the
food group might contribute to the association found. Model 1 included all main macronutrients (total
protein, total carbohydrates, fat). Model 2 included nutrients quality (animal protein, plant protein, fat,
mono-disaccharides, and polysaccharides). Statistical significance was assumed at p < 0.05. Analyses
were performed in SPSS version 23 (IBM Corp., Armonk, NJ, USA).

3. Results

A total of 2368 women from The Lifelines Cohort Study were linked with their data in Perined.
After excluding women who did not have reliable or missing dietary intake reported (resp. n = 427 and
n = 168), pre-term births (gestational age <37 weeks; n = 110) and unknown sex of the child (n = 1),
1698 women remained available in the analysis. The characteristics of this group of women have
been described in detail previously [4,9]. In short, the average maternal age was 29 years (25th–75th
percentile: 27–32 years). Children were on average born at 39.4 weeks of gestational age with an had
a mean birth weight of 3578 g (SD 472 g). Almost all women were of white (east/west European)
ethnicity (97.8%), and the majority completed higher education (55.8%). The average maternal BMI
was 23.8 kg/m2 (25th–75th percentile: 21.7–26.6), and average energy intake amounted to 1813 kcal/day
(25th–75th percentile: 1545–2141). The average time between the FFQ (baseline) and the delivery of the
child was 13 months (25th–75th percentile: 11–16 months). As described previously, there were no
differences between the group of women with reliable vs. unreliable dietary intake that we consider to
may influence our results in terms of selection bias.

3.1. Food Groups Intake in BMI Quintiles

The median consumption per food group in grams per 1000 kcal over groups of low (quintile 1),
normal (quintile 2–4), and high (quintile 5) BMI is shown in Table 1. The intake of food groups
legumes and nuts, tea, refined grain products, and sugary products decreased over the groups of BMI
(resp. p = 0.003, p = 0.008, p = 0.03, p < 0.001) (Table 1). Intake of food groups eggs, red and processed
meat, and artificially sweetened products increased over the BMI groups (Table 1) (resp. p = 0.05,
p < 0.001 p < 0.001). The median LLDS in the complete cohort was 24 (IQR: 20–28) and decreased
significantly over increasing BMI quintiles (p = 0.006).
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Table 1. Median [p25–p75] consumption of the 22 food groups in the Perined-Lifelines linked birth
cohort (N = 1698) in grams per 1000 kcal/day, stratified by BMI quintiles.

Low BMI (Q1) 1

(20.3 [19.6–20.8])
N = 329 (100%)

Normal BMI (Q2-Q4) 1

(23.8 [22.6–25.5])
N = 1043 (100%)

High (Q5) 1

(30.5 [28.9–32.9])
N = 326 (100%)

p2 Complete Cohort
(N = 1698)

LLDS 3 25 [21–29] 24 [20–28] 23 [19–27] 0.006 24 [20–28]
Energy (in kcal)

Food groups
Vegetables 50.6 [35.2–74.7] 54.7 [36.4–74.8] 53.5 [34.4–79.4] 0.51 53.8 [35.7–76.0]

Fruit 66.6 [37.6–106.8] 65.3 [29.6–109.7] 58.3 [28.4–113.4] 0.57 64.6 [30.5–109.8]
Whole grain products 53.9 [39.5–68.7] 52.5 [36.4–68.2] 50.8 [35.5–67.5] 0.31 52.1 [37.1–68.2]

Legumes and Nuts 7.9 [3.6–13.8] 6.3 [2.7–12.1] 5.8 [1.8–11.5] 0.003 6.4 [2.7–12.4]
Fish 4.8 [1.9–7.9] 5.3 [2.0–8.2] 5.5 [1.7–8.3] 0.51 5.3 [1.9–8.2]

Oils and soft margarines 8.4 [2.5–14.5] 8.7 [3.2–14.9] 8.6 [3.2–14.1] 0.52 8.7 [3.1–14.7]
Unsweetened dairy 65.0 [29.4–117.1] 71.8 [28.6–135.9] 82.3 [25.2–154.3] 0.14 71.3 [27.7–133.2]

Coffee 77.1 [0.0–175.6] 95.3 [0.0–204.0] 58.0 [0.0–191.4] 0.15 85.5 [0.0–194.6]
Tea 186.2 [104.2–290.9] 160.6 [73.3–282.8] 150.7 [61.9–269.7] 0.008 164.8 [77.6–282.1]

Eggs 3.6 [2.4–7.4] 4.0 [2.6–7.4] 4.3 [2.5–9.1] 0.05 4.0 [2.5–7.7]
Red and processed meat 29.5 [20.5–38.5] 33.9 [24.5–42.8] 35.9 [28.3–46.8] <0.001 33.6 [24.6–43.0]

Butter and hard margarines 7.3 [2.4–13.5] 7.7 [2.2–14.5] 8.2 [2.4–14.4] 0.74 7.7 [2.3–14.4]
Sugar-sweetened beverages 61.0 [27.1–127.2] 65.7 [22.6–128.1] 65.0 [24.5–138.7] 0.94 64.7 [24.1–130.3]

Potatoes 28.5 [14.2–42.8] 29.5 [16.0–44.4] 27.7 [15.7–43.9] 0.84 28.9 [15.6–44.2]
Refined grain products 38.7 [27.2–56.2] 36.9 [25.1–53.1] 34.3 [24.6–49.4] 0.03 36.7 [25.4–53.0]

White, unprocessed meat 5.1 [2.9–8.1] 5.9 [3.7–9.0] 6.5 [4.5–9.9] <0.001 5.9 [3.7–9.1]
Cheese 10.1 [5.7–17.3] 9.6 [5.0–16.7] 10.3 [6.1–17.0] 0.18 9.8 [5.4–16.9]

Savory and ready products 50.9 [35.8–69.0] 51.6 [37.5–67.4] 55.4 [40.6–73.2] 0.15 52.1 [37.6–69.3]
Sugary products 40.9 [30.1–51.8] 37.2 [27.1–49.1] 34.6 [23.4–45.6] <0.001 37.4 [26.9–49.3]

Soups 15.1 [9.8–26.2] 15.9 [9.8–27.2] 16.3 [9.2–28.1] 0.77 15.9 [9.7–27.3]
Sweetened dairy products 47.0 [23.9–71.2] 47.7 [22.9–78.9] 48.6 [25.8–79.4] 0.29 47.7 [23.8–77.7]

Artificially sweetened products 12.9 [0.0–47.4] 21.5 [0.07–6.5] 43.9 [4.6–116.6] <0.001 22.2 [0.0–77.4]

Data are median (IQR). 1 Q1 = Quintile 1 ranging from from 17.1–21.2 kg/m2, Q2–Q4 = Quintiles 2–4 ranging from
21.3–27.5 kg/m2, Q5 = Quintile 5 ranging from 27.6–47.3 kg/m2. 2 Two sided p value Kendall’s tau rank correlation
test for continuous characteristics 3 LLDS = Lifelines Diet Score BMI = body mass index.

3.2. Association of Intake of Food Groups and Birth Weight

First, unadjusted linear regression analysis was performed (data not shown); however,
the R-squared of the models was very low and therefore not reliable (R-squared = 0.03). Adjusted
linear regression analysis with adjustment for intake of energy (in kcal), maternal BMI, maternal age,
smoking, alcohol, education level, urbanization level, parity, sex of the newborn, and maternal ethnicity
showed an increase in explained variability of the model (R-squared = 0.15) and was therefore used for
further interpretation of the analysis.

Adjusted linear regression analysis in the complete cohort showed that increased intake of
food group artificially sweetened products was associated with increased birth weight (β = 0.001
[95% CI 0.000 to 0.001, p = 0.002]) (Table 2). To illustrate, per 10 g/1000 kcal intake of artificially
sweetened products a day, birth weight is 0.001 SD higher (1SD = 472 g). As portion sizes of specific
food groups are generally bigger than 10 g, this translates into a relevant further actual increased birth
weight. To illustrate, a normal glass contains 200 g of, for example artificially sweetened beverages.
So, with an intake of 2000 kcal per day, this makes 100 g/1000 kcal, resulting in an effect size of
10 × 0.001 = 0.01 SED = 4.7 g higher birth weight per portion artificially sweetened beverages.

In addition, increased intake of vegetables was associated with increased birth weight (β = 0.002
[95% CI 0.000 to 0.003, p = 0.03]) (Table 2). Increased intake of food group eggs was associated with
decreased birth weight (β =−0.093 [95% CI −0.174 to −0.013, p = 0.02]) (Table 2). When linear regression
analysis was performed in stratified groups of BMI quintiles, no association between food group intake
and birth weight was shown.
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Table 2. Linear regression analyses of Lifelines Diet Score (LLDS) and food groups intake (in 10 g per
1000 kcal/day) in relation to birth weight (n = 1698, 100%).

Adjusted Analysis 1

Analysis Coeff (95% CI) 2 p

LLDS 3
−6.4E

−5 (−0.008 to 0.008) 0.99
Food groups
Vegetables 0.002 (0.000 to 0.003) 0.03

Fruit 0.000 (−0.001 to 0.001) 0.73
Whole grain products −0.001 (−0.004 to 0.002) 0.52

Legumes and Nuts −0.003 (−0.009 to 0.004) 0.41
Fish −0.001 (−0.009 to 0.007) 0.75

Oils and soft margarines 0.003 (−0.005 to 0.010) 0.48
Unsweetened dairy 0.000 (0.000 to 0.001) 0.22

Coffee 0.000 (−0.001 to 0.000) 0.14
Tea 6.26E

−5 (0.000 to 0.000) 0.71
Eggs −0.093 (−0.174 to −0.013) 0.02

Red and& processed meat 0.005 (−0.033 to 0.044) 0.78
Butter and hard margarines 0.045 (−0.031 to 0.121) 0.25
Sugar-sweetened beverages −0.006 (−0.013 to 0.001) 0.08

Potatoes 0.000 (−0.025 to 0.026) 0.98
Refined grain products 0.000 (−0.027 to 0.027) 0.99

White, unprocessed meat −0.033 (−0.132 to 0.067) 0.52
Cheese −0.010 (−0.068 to 0.048) 0.73

Savory and ready products −0.005 (−0.032 to 0.021) 0.70
Sugary products 0.014 (−0.026 to 0.054) 0.50

Soups 0.002 (−0.020 to 0.024) 0.83
Sweetened dairy products −0.002 (−0.014 to 0.009) 0.68

Artificially sweetened products 0.001 (0.000 to 0.001) 0.002
1 Adjusted for intake of energy (in kcal), maternal BMI, maternal age, smoking, alcohol, education level, urbanization
level, parity, sex of newborn, ethnicity, other 21 food groups intake. 2 Coefficients are expressed as z-scores,
i.e., the unit for the coefficients is one standard deviation (SD). 3 Adjusted for intake of energy (in kcal), maternal
BMI, maternal age, smoking, alcohol, education level, urbanization level, parity, sex of newborn, ethnicity.

3.3. Macronutrient Contribution to Associations between Food Groups and Birth Weight

To investigate which macronutrients from food group artificially sweetened products might
contribute to the association found in linear regression analyses, we performed linear regression
analysis with the macronutrients from this food group with birth weight. Analysis was performed
twice; first only main macronutrients (total protein, fat, total carbohydrates), and second with the
sub-macronutrients (nutrient quality) from animal and plant protein (instead of total protein) and
mono- and disaccharides, and polysaccharides (instead of total carbohydrates) were included.

Total and animal protein from artificially sweetened products were significantly associated with
increased birth weight (resp. (β = 0.047 [95% CI 0.004 to 0.089, p = 0.03]) and (β = 0.050 [95% CI 0.009 to
0.093, p = 0.02])) (Table 3). For analysis with macronutrients from food groups vegetables and eggs,
we did not find any significant results.
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Table 3. Linear regression analyses of macronutrients from food group “artificially sweetened products”
(in grams per 1000kcal/day) in relation to birth weight (n = 1698, 100%).

Adjusted Analysis 1

Coeff (95% CI) 2 p

Model 1-main macronutrients
Total protein 0.047 (0.004 to 0.089) 0.03

Total fat −0.003 (−0.034 to 0.027) 0.83
Total carbohydrates −0.001 (−0.025 to 0.022) 0.93

Model 2-nutrient quality
Animal protein 0.050 (0.009 to 0.093) 0.02
Plant protein 3 - - -

Total fat −0.009 (−0.043 to 0.025) 0.59
Mono- and disaccharides −0.004 (−0.027 to 0.020) 0.08

Polysaccharides 0.008 (−0.014 to 0.030) 0.48
1 Adjusted for intake of energy (in kcal), maternal BMI, maternal age, smoking, alcohol, education level, urbanization
level, parity, sex of newborn, ethnicity, other food groups (21) intake. 2 Coefficients are expressed as z-scores,
i.e., the unit for the coefficients is one standard deviation (SD). 3 No correlation between this macronutrient from
this specific food group and birth weight within this model.

4. Discussion

The aim of this study was to investigate the association of maternal diet based on specific food
group intake during the preconception period with the birth weight of the offspring in a linked birth
cohort of a representative group of women in the north of The Netherlands [4,9]. We showed that after
correction for confounders, including maternal BMI and total energy intake, specifically higher intake
of food groups “artificially sweetened products” and “vegetables” were associated with increased
birth weight, and higher intake of food groups “eggs” was associated with decreased birth weight.
In a previous study, we examined the association between preconception macronutrient intake and
birth weight. The advantage of representing diet as specific compounds or group of compounds is that
such information can be directly related to our dietary intake behavior. However, this approach does
not provide any insights into what specific foods may contribute to the associations found.

Our finding that the food group artificially sweetened products was positively associated with
birth weight is intriguing given recent studies carried out by researchers at Israel’s Weizmann Institute.
They examined three artificial sweeteners (saccharin, sucralose, and aspartame) which are often
incorporated into low-caloric snacks and beverages [17]. The research showed that all three sweeteners
may induce metabolic changes such as glucose intolerance which is associated with an increased risk
of diabetes mellitus and obesity. More specifically, they analyzed the possible associations between
consumption of artificial sweeteners, microbiome composition, and metabolic outcomes in 381 of
non-diabetic individuals (44% males and 56% females), and showed that intake of artificial sweeteners
was not only associated with various clinical parameters such as BMI, blood pressure, HbA1 C%,
and fasting glucose levels, but also with the presence of certain microbiota taxa [18]. These data suggest
that artificial sweeteners and their associated microbiomes may play a crucial role in the regulation
of glucose metabolism in humans. Artificial sweeteners stimulate intestinal sugar absorption [19],
cause disruption of the ability of sweet taste to signal caloric consequences [20,21], they cause an
increase in appetite [22], and finally, they elicit impaired glycemic or insulin responses [23].

The fact that we show a positive association between preconception intake of artificially sweetened
products and birth weight may suggest that artificial sweeteners induce similar metabolic changes
during preconception that may affect the offspring’s birth weight. During normal pregnancy, changes
in insulin sensitivity are a normal physiological phenomenon that provides increased nutrient supply
to the fetus. However, if insulin resistance develops and the beta-cell compensation of the pancreas
is inadequate in secreting sufficient insulin to maintain normal glycemia in the mother, gestational
diabetes mellitus may occur [24]. It would be interesting to further explore if and how the intake of
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products with artificial sweeteners may contribute to the pathophysiological mechanisms that also
drive the association between gestational diabetes mellitus and obesity and increased birth weight [25].

We showed that the intake of artificially sweetened products increased over stratified groups
of BMI; however, we adjusted for BMI via linear regression analyses, so our findings cannot fully
be explained by the contribution of BMI. Unfortunately, we do not have information on gestational
weight gain nor on glucose metabolism or occurrence of (gestational) diabetes mellitus available
in this population, which could potentially confound the association with birth weight. However,
the prevalence of diabetes mellitus (type 1 and 2) in the complete Lifelines Cohort Study is low,
e.g., 4% [26], approximately 5% lower than reported by the WHO for the Netherlands [27]. We assume
that the prevalence within the complete Lifelines Cohort Study is approximately the same as within our
cohort of Lifelines participants, and therefore too low to have any major effect on the association found
in this study [28]. In addition, as described in our previous paper, our cohort is relatively healthy in
terms of BMI [4], one of the major risk factors for the development of gestational diabetes mellitus [29].

Within our study, the food group “artificially sweetened products” consists of two main food
items. The first is “light soft drinks/lemonade without sugar,” and the second food item is “dairy
drinks without sugar/with artificial sweeteners.” Given the fact that we found that it was (animal)
protein within this food group that was positively associated with birth weight, this suggests that it
is probably the food item ‘dairy drinks without sugar/with artificial sweeteners’ that is driving the
positive association with birth weight as the other food item does not contain any protein. These results
are in line with results from the Generation R study, a population-based prospective cohort study in
Rotterdam, The Netherlands, who showed that higher intake of protein, especially animal protein, in
early postnatal life was associated with a greater height, weight, and BMI in childhood up to 9 years of
age in the offspring [30].

Besides “artificially sweetened products,” we also found an association between food groups
“vegetables” and “eggs” with birth weight. Results from the Danish National Birth Cohort showed
that fruit and vegetable consumption in pregnancy was positively associated with birth weight in
well-nourished Danish women, especially among lean women [31]. The association between intake of
vegetables and birth weight could potentially be due to the higher vitamins and minerals content of
these foods, e.g., vitamin C and folic acid. In a study from Portsmouth, an increased birth weight was
associated with vitamin C intake in early pregnancy [32]. Given the fact that the group of women in our
cohort represents relatively healthy women with 60% of the women having a normal BMI according
to the WHO classification [4,33], the association in our study may also be, partially, explained by
improved micronutrient intake. As we did not have any information on micronutrient intake, we have
not been able to further investigate this.

Regarding the association found between food groups, eggs, and birth weight, there is less
scientific evidence to support this finding.

For many food groups (e.g., fruits, whole-grain products, red and processed meat) and overall
diet quality (LLDS) we found a clear association with maternal BMI but most were not significantly
associated with birth weight. More specifically we showed that mean diet quality (LLDS) slightly
decreased with increasing BMI [8]. We also showed that on the one hand, sugar containing product
intake decreased with increase of BMI, while on the other intake of artificially sweetened products
increased. This shift in product preference with BMI has been described previously by several large-scale
studies, including the National Health and Nutrition Examination Survey [34]. This supports our
findings, shows our cohort to be representative, and suggests that similar findings can already be
identified in much smaller but focused cohort studies like the Perined-Lifelines linked birth cohort.

As maternal BMI is a stronger predictor for birth weight than dietary intake [4], it is potentially
the diet quality of the mother that can support a healthy pregnancy, but it is not something that is likely
to have an acute effect on the offspring. Obviously, the diet may have already impacted maternal BMI,
which is subsequently translated to the birth weight of their offspring. In this sense, maternal BMI may
simply be the mediator between preconception dietary intake and birth weight.
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Within our analysis we have not corrected for multiple testing given the more exploratory
background of the analysis. Our results are indicating a direction of association between preconception
dietary intake and birth weight. Further research should be performed within large cohorts investigating
the association between dietary intake and birth weight to be able to draw more firm conclusions.

5. Conclusions

In summary, the present study provides information on food group intake and its association
with birth weight in the linked Perined-Lifelines birth cohort. Our findings highlight the need to better
understand how artificial sweeteners may affect the metabolism of mother and her offspring already
from preconception onwards. Future research should be performed within large cohort studies to
further investigate, confirm, and understand the associations found in the present study.
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