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Hematopoietic stem cell transplantation (HSCT) is a curative therapy for patients with
malignant hematologic diseases. Killer immunoglobin-like receptor (KIR) expressed by NK
cells is closely associated with the transplant outcomes, and it has been widely explored
and debated for a few decades. Recently published studies have revealed that inhibitory
KIRs (iKIRs) are educated by their cognate human lymphocyte antigen (HLA) ligands, and
that decreased iKIR-HLA pairs post-transplantation may indicate a reduced NK cell
function and impaired control of the primary disease. However, this theory still needs to be
validated by additional clinical studies. Here we conducted a retrospective analysis of 246
patients who received haploidentical (haplo)-HSCT at our treatment center between
January 2015 and June 2018. Our data suggests that decreased iKIR-HLA C pair
post-HSCT correlated with a significantly higher risk of relapse [hazard risk (HR) = 2.95,
p = 0.019] and reduced overall survival (OS) (HR = 3.74, p = 0.001) and disease-free
survival (DFS) (HR = 4.05, p = 0.0004) in patients with myeloid disease. In conclusion,
decreased iKIR-HLA C pair should be avoided during anti-thymocyte globulin (ATG)-
based haplo-HSCT, especially for patients with myeloid disease.

Keywords: KIR, hematopoietic stem cell transplantation, iKIR-HLA model, relapse, survival
INTRODUCTION

Natural killer (NK) cells act as the first line of defense in the immune system. They can rapidly
recognize autologous cells and eliminate non-self-components without prior antigen presentation
(1, 2). Multiple receptors expressed on NK cells have been implicated in the regulation of their
function, with a particular focus on the activities of killer immunoglobin-like receptors (KIRs).
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It is well accepted that KIR genes and receptors can be divided
into inhibitory and activating functions based on their diverse
activities (3). Inhibitory KIRs (iKIRs) bind human lymphocyte
antigen (HLA) class I molecules in a specific manner, KIR2DL1
recognizes HLA-C2 group allies, KIR2DL2 and KIR2DL3
recognize HLA-C1 group allies, KIR3DL1 recognizes HLA-
Bw4 group allies, and KIR3DL2 recognizes HLA-A3/A11 allies.
Activating KIRs (aKIRs) such as KIR2DS1, KIR2DS2, and
KIR2DS4 recognize HLA C2, HLA C1, and HLA A11,
respectively, but the ligands of the remaining KIRs remain
largely unknown. Based on their chromosomal locations, KIR
genes can be further identified as centromeric (cen) or telomeric
(tel) genes. In addition, KIR genotype AA is made up of only one
aKIR gene: KIR2DS4, while KIR genotype B/x is made up of a
number of more variable aKIR genes (4).

Normally, autoimmune activation is inhibited because
autologous cells express at least one inhibitory HLA ligand;
however, tumor transformed cells downregulate HLA expression
and/or upregulate activating signals that may trigger NK cell
activation (5, 6). Following allogeneic hematopoietic stem cell
transplantation (allo-HSCT), donor-derived NK cells may be
activated as the recipients may not express the same inhibitory
HLA ligands as the donor, preventing their association with the
donor iKIRs. This has led to widespread speculation that NK cell
alloreactivity in graft versus host (GVH) direction may provide
additional benefits to tumor-killing strategies.

The Perugia group first established the KIR ligand-ligand
model (also known as the KIR ligand model) based on HLA
phenotype differences between donors and recipients. In this
model, they assumed that donor-derived NK cells might kill
recipient cells because the HLA ligands presented by the donor
might be absent in the recipient. When they evaluated T cell-
depleted (TCD) transplants without post-transplant
immunosuppression, they were able to show that KIR ligand
mismatch between donor-recipient pairs provided some
protective effect against relapse, especially in patients with
acute myeloid leukemia (AML) (7). Further development of
KIR-typing technology allowed researchers to develop the
receptor-ligand model (also known as the missing ligand
model), which was used to evaluate the compatibilities between
donor iKIRs and recipient HLA ligands. Results using this model
suggested that the receptor-ligand model was a more accurate
predictor for relapse risk than the KIR ligand model in leukemia
patients (8). Additionally, Cooley et al. reported that KIR B/x
donors significantly improved the relapse-free survival (RFS)
rates for recipients with AML when compared to donors with a
KIR AA genotype, suggesting that aKIRs may play a critical role
in reducing relapse (9). Following these observations, numerous
clinical studies have explored the impact of KIR on transplant
outcomes. However, a large variability was found in these results
and several factors may be responsible for these discrepancies,
including disease type, transplant regimen, donor-recipient
relationship, graft source and graft composition, etc (10–12).

In the last few decades, our understanding of NK cell
reconstitution and KIR education has evolved a great deal.
Pioneer studies in this field have found that reconstituted NK
Frontiers in Immunology | www.frontiersin.org 2
cells are highly immature and exhibit compromised cytotoxicity
against leukemia cells in the early phases following
transplantation. Afterward, these NK cells gradually acquire
receptors and KIR reconstitution can take between several
months and even years (13, 14). Importantly, a variety of data
has suggested that NK cells acquire specific functionality only
after engagement between the iKIRs and their cognate ligands.
However, NK cells expressing iKIRs without cognate ligands
(non-self KIR) are hyporesponsive and referred to “uneducated
cells” (15, 16). Further, the education process mediated by
cognate ligands is not restricted to autologous NK cells, but
has also been demonstrated in donor-derived reconstituted NK
cells after HSCT (17–19).

Recently, the Nowak team proposed the iKIR-HLA model to
explore the optimal donor. Since the HLA environment may be
altered after transplantation (from donor to recipient), the
variations in iKIR-HLA pairs could be divided into three
groups (decreased group: cognate iKIR-HLA pairs present in
donor but absent in recipient; unchanged group: cognate iKIR-
HLA pairs present both in donor and recipient; increased group:
cognate iKIR-HLA pairs present in recipient but absent in
donor). Consistent results from their studies showed that
decreased iKIR-HLA pairs post transplantation correlated with
a higher risk of relapse and inferior overall survival (OS),
indicating that poor NK cell education resulted in weaker graft
versus leukemia (GVL) effects (20–22). To further investigate the
effects of these KIR interactions on transplant outcomes, we
designed a retrospective study to evaluate a cohort of 246
patients, and evaluated our clinical outcomes using the iKIR-
HLA model, the receptor-ligand model and KIR gene content.
METHODS

Patients
This retrospective study was comprised of 246 patients with
hematological malignancies. All transplants were performed
between January 2015 and June 2018 and all methodologies
applied during this study were consistent with the Declaration of
Helsinki. The protocol was approved by the Ethics Review
Committee of the First Affiliated Hospital of Zhejiang
University and informed consent was obtained from each
patient before transplantation. The authors had full access to
the data and assume responsibility for its authenticity.

KIR and HLA Typing
Peripheral blood mononuclear cells were collected from
recipients and their donors prior to transplantation and used
for HLA and KIR testing. Alleles in the HLA-A, -B, and -C loci
were determined using high-resolution HLA typing and KIR
gene analysis was performed using the PCR-SSO method (KIR
SSO Genotyping Test; OneLamda, Canoga Park, CA, USA).

Transplant Protocol
Most patients were subjected to a myeloablative conditioning
(MAC) regimen that included administration of cytarabine
February 2021 | Volume 11 | Article 614488

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Decreased-iKIR-HLA-C Confers Worse Transplant Outcomes
(4 g/m2/d IV on days−10 to−9), busulfan (Bu) (3.2mg/kg/d IV on
days −8 to −6), cyclophosphamide (Cy) (1.8 g/m2/d IV on days −5
to −4), methyl-N-(2-chloroethyl)-N-cyclohexyl-N-nitrosourea
(Me-CCNU) (250 mg/m2 orally on day −3), and antithymocyte
globulin Fresenius [ATG-F; 2.5 mg/(kg d) IV on days −5 to −2] or
ATG Genzyme [ATG-G; 1.5 mg/(kg d) IV on days −5 to −2]. The
other patients were subjected to reduced-intensity conditioning
(RIC) that consisted of exposure to fludarabine 30 mg/m2/d IV
between days−10 and−5, Bu 3.2mg/kg/d IV between days−6 and
−5, andATG-F 5mg/(kg d) IV between days−4 and −1 or ATG-G
2.5mg/(kg d) IV between days −4 and −1. All patients received G-
CSF mobilized peripheral blood stem cells and no graft was
subjected to ex vivo T-cell depletion. Graft versus host disease
(GVHD) prophylaxis consisted of cyclosporin A (CsA) or
Tacrolimus (Tac), with methotrexate (MTX) and low-dose
mycophenolate mofetil (MMF) (23, 24).

Definitions
Relapse was defined as disease reoccurrence in bone marrow
and/or extramedullary sites. Non-relapse mortality (NRM) was
defined as death from any cause apart from relapse. Overall
survival (OS) was defined as the time from transplant until death
or last follow up, and disease-free survival (DFS) was defined as
survival without relapse. Patients were classified as low/
intermediate risk or high/very high risk based on the
refinement of the disease risk index (DRI) (25). Diagnosis of
acute and chronic GVHD (aGVHD and cGVHD) was made
using established criteria (26, 27). The viral loads for Epstein-
Barr virus (EBV) and cytomegalovirus (CMV) were monitored
weekly for the first 3 months after transplantation, biweekly from
the fourth to the sixth month post-transplant, and monthly from
the seventh to the twelfth month post-transplant. Viremia was
defined as a viral load in excess of 5 × 102 copies/ml.

Statistical Analysis
All clinical data were analyzed using SPSS 22.0 (IBM, Armonk,
NY, USA) and R project 3.6.1 software (http://www.r-project.
org). The clinical features for the samples were presented as
median or percentage values. OS and DFS were calculated using
the Kaplan–Meier method and compared using the log-rank test.
The cumulative incidences of EBV viremia, CMV viremia,
aGVHD, cGVHD, relapse, and NRM were estimated via the
competing-risks model and compared using the Gray test. All
variables with a p-value of <0.10 in the univariate analysis were
then included in the multivariate analysis. Results were
considered statistically significant when p < 0.05.
RESULTS

Characteristics of Patients and Donors
The clinical features of these 246 donor-patient pairs are
summarized in Table 1. In this retrospective study, 142
(57.7%) patients with myeloid disease and 104 (42.3%) patients
with lymphoid disease received haplo-HSCT at our center.
Disease types included acute myeloid leukemia (AML, n =
Frontiers in Immunology | www.frontiersin.org 3
115) , mye lodysp la s t i c syndrome (MDS, n = 22) ,
myeloprol i ferat ive neoplasm (MPN, n = 5) , acute
lymphoblastic leukemia (ALL, n = 93), and lymphoma (n =
11). The median age of the patients and donors in these groups
were 30 years (range, 9–50 years) and 35 years (range, 11–59
years), respectively. The median mononuclear (MNC) cell and
CD34+ cell counts in the grafts were 15.34 × 108/kg (range, 2.97–
59.80 × 108/kg) and 6.30 × 106/kg (range, 0.27–34.37 × 106/kg),
respectively. A total of 233 (94.7%) patients received the MAC
regimen and 13 (5.3%) received the RIC regimen. ATG-F was
used in 205 (83.3%) patients while the other 41 (16.7%) received
ATG-G as part of their conditioning regimen. One hundred
eighty-one (73.5%) patients received haplo-HSCT during their
first remission (CR1); 73 (29.7%) patients were defined as high or
very high risk based on the refinement of DRI (49 in the myeloid
cohort and 24 in the lymphoid cohort, 34.5 vs 23.1%, p = 0.053).
Most patients expressed HLA C1C1 or HLA C1C2 and only 4.5%
presented with a HLA C2C2 ligand.

Of the 246 donors, 143 (58.1%) were KIR genotype AA, 76
(30.9%) were KIR BA, and 27 (11.0%) were KIR BB. Receptor-
ligand (R-L) mismatches at the HLA-A3/A11 locus, HLA-Bw4
locus, and HLA-C locus were identified in 53.3, 39.0, and 71.5%
of the donor-recipient pairs, respectively. After transplantation,
40 (16.2%) patients experienced a decrease in their iKIR-HLA
A3/A11 pair, 26 (10.6%) exhibited decreased iKIR-HLA Bw4
pair, and 43 (17.5%) had decreased iKIR-HLA C (C1 or C2) pair.

EBV and CMV Viremia
During the first 180 days after HSCT, 90 (36.6%) patients
developed EBV viremia. Disease category (myeloid or
lymphoid) (p = 0.001), ATG source (p = 0.0003), and patient
sex (p = 0.029) were identified as potent factors influencing EBV
viremia (Table 2). Multivariate analysis suggested that myeloid
disease [hazard risk (HR) = 0.48, p = 0.0005] was a protective
factor for EBV viremia, while ATG-G (HR = 2.58, p < 0.0001)
and sex (male patients (HR = 1.57, p = 0.042)) were independent
risk factors for EBV viremia (Table 3). In lymphoid disease,
KIR2DS2+ donors were found to exhibit a higher incidence of
EBV viremia when compared with KIR2DS2− donors (63.2 vs
43.5%, p = 0.078), but this was not identified to be an
independent effect in the multivariate analysis.

The CI for CMV viremia within 180 days of transplant was
65.0% (78.1% in patients treated with ATG-G and 62.4% in
patients treated with ATG-F, p = 0.003). Donor-patient pairs
with R-L mismatch at HLA-C locus tended to experience a lower
CI for CMV viremia than did donor-patient R-L Cmatched pairs
(62.5 vs 71.4, p = 0.079). The multivariate analysis revealed that
only ATG-G was an independent risk factor for CMV viremia
(HR = 1.70, p = 0.008).

aGVHD and cGVHD
Following transplantation, 83 (33.7%) developed grade II–IV
aGVHD (aGVHD2–4). As expected, a significant reduction in
aGVHD2–4 occurrence was found in patients receiving RIC
conditioning compared with patients receiving MAC
conditioning (7.7 vs 35.2%, p = 0.041). Patients with low and
intermediate risk also experienced a lower CI of aGVHD2–4 (30.6
February 2021 | Volume 11 | Article 614488
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vs 41.1%, p = 0.080). However, none of these factors remained
significant in the multivariate analysis. In lymphoid cohort, there
was a trend that donor-patient pairs with R-L mismatch on
HLA-C locus experienced a lower aGVHD2–4 (33.3 vs 53.9%,
P = 0.095).

Among patients who survived more than 100 days after
transplantation, 100 (41.8%) patients developed cGVHD and
42 (17.6%) of them had moderate to severe cGVHD. Univariate
analysis identified KIR2DS2 (p = 0.048) and KIR2DS3 (p =
0.083) as two potent protective factors for moderate to severe
cGVHD. Nevertheless, no such correlations were found in the
multivariate analysis.

Relapse and NRM
After a median follow up time of 3.0 years (yr) (range, 0.1–5.5 yr),
55 (22.4%) patients experienced relapse. Patients with lymphoid
disease experienced a higher 3-yr relapse rate than patients with
myeloid disease (26.2 vs 17.3%, p = 0.087). The CI for 3-yr relapse
was also higher in patients with high/very high-risk disease (32.9
vs 16.1%, p = 0.002). Patients who received HSCT at CR1
experienced a lower 3-yr relapse rate than the other group (16.5
TABLE 1 | Clinical features of patients, donors, and transplants.

Variables All patients
(246)

Myeloid cohort
(142)

Lymphoid cohort
(104)

Median patient age
(years)

30 (9–60) 33 (9–60) 24 (13–56)

Median donor age
(years)

35 (11–59) 32 (11–55) 38 (13–59)

Median MNC cells
(×10 E8/kg)

15.34
(2.97–59.80)

14.36
(2.97–59.80)

15.61
(5.80–46.14)

Median CD34+ cells
(×10 E6/kg)

6.30
(0.27–34.37)

6.06
(0.27–34.37)

7.03
(1.77–22.87)

Median follow up time
(years)

3.0 (0.1–5.5) 3.0 (0.2–5.5) 2.9 (0.1–5.5)

Patient sex
Male
Female

136 (55.3)
110 (44.7)

77 (54.2)
65 (45.8)

59 (56.7)
45 (43.3)

Donor/Patient sex
combination
Female/Male
Other combinations

44 (17.9)
202 (82.1)

27 (19.0)
115 (81.0)

17 (16.3)
87 (83.7)

ABO blood mismatch
Identical
Mismatch

131 (53.3)
115 (46.7)

73 (51.4)
69 (48.6)

58 (55.8)
46 (44.2)

Diagnosis / /
AML
MDS
MPN
ALL
Lymphoma

115 (46.7)
22 (8.9)
5 (2.0)

93 (37.8)
11 (4.5)

Disease status at HSCT
CR1
>CR1

181 (73.5)
65 (26.4)

99 (69.7)
43 (30.3)

82 (78.9)
22 (21.2)

Disease risk index
Low/Int risk
High/Very high risk

173 (70.3)
73 (29.7)

93 (65.5)
49 (34.5)

80 (76.9)
24 (23.1)

Conditioning regimen
MAC
RIC

233 (94.7)
13 (5.3)

133 (93.7)
9 (6.3)

100 (96.2)
4 (3.8)

ATG
ATG-F
ATG-G

205 (83.3)
41 (16.7)

117 (82.4)
25 (17.6)

88 (84.6)
16 (15.4)

HLA ligands of patients
A3/A11+

Bw4+

C1/C1
C1/C2
C2/C2

115 (46.7)
148 (60.2)
167 (67.9)
68 (27.6)
11 (4.5)

66 (46.5)
90 (63.4)
95 (66.9)
42 (29.6)
5 (3.5)

49 (47.1)
58 (55.8)
72 (69.2)
24 (23.1)
6 (5.8)

Receptor-ligand (R-L)
model
R-L A3/A11 mismatch
R-L Bw4 mismatch
R-L C mismatch

131 (53.3)
96 (39.0)
176 (71.5)

76 (53.5)
49 (34.5)
98 (69.0)

55 (52.9)
47 (45.2)
78 (75.0)

Donor KIR genotype
AA
B/x
BA
BB

143 (58.1)
103 (41.9)
76 (30.9)
27 (11.0)

81 (57.0)
61 (43.0)
45 (31.7)
16 (11.3)

62 (59.6)
42 (40.4)
31 (29.8)
11 (10.6)

Donor activating KIR
gene
KIR2DS1+

KIR2DS2+

KIR2DS3+

KIR2DS4+

KIR2DS5+

KIR3DS1+

83 (33.7)
46 (18.7)
41 (16.7)
238 (96.7)
57 (23.2)
85 (34.6)

49 (34.5)
27 (19.0)
24 (16.9)
135 (95.1)
36 (25.4)
51 (35.9)

34 (32.7)
19 (18.3)
17 (16.3)
103 (99.0)
21 (20.2)
34 (32.7)

(Continued)
TABLE 1 | Continued

Variables All patients
(246)

Myeloid cohort
(142)

Lymphoid cohort
(104)

iKIR-HLA pairs variation
A3/A11

Decreased (D)
Unchanged (U)
Increased (I)

40 (16.2)
166 (67.5)
40 (16.2)

22 (15.5)
98 (69.0)
23 (16.2)

18 (17.3)
68 (65.4)
17 (16.3)

Bw4
Decreased (D)
Unchanged (U)
Increased (I)

26 (10.6)
189 (76.8)
31 (12.6)

14 (9.9)
109 (76.8)
19 (13.4)

12 (11.5)
80 (76.9)
12 (11.5)

C
Decreased (D)
Unchanged (U)
Increased (I)

43 (17.5)
163 (66.3)
40 (16.3)

20 (14.1)
98 (69.0)
24 (16.9)

23 (22.1)
65 (58.7)
16 (15.4)

EBV viremia 90 (36.6) 41 (28.9) 49 (47.1)
CMV viremia 160 (65.0) 93 (65.5) 67 (64.4)
aGVHD
Grade 0
Grade I
Grade II
Grade III
Grade IV

92 (37.4)
71 (28.9)
55 (22.4)
12 (4.9)
16 (6.5)

55 (38.7)
44 (31.0)
30 (21.1)
7 (4.9)
6 (4.2)

37 (35.6)
27 (26.0)
25 (24.0)
5 (4.8)
10 (9.6)

cGVHD
Not included
No
Mild
Moderate
Severe

7 (2.8)
139 (56.5)
58 (23.6)
26 (10.6)
16 (6.5)

2 (1.4)
76 (53.5)
39 (27.5)
14 (9.9)
11 (7.7)

5 (4.8)
63 (60.6)
19 (18.3)
12 (11.5)
5 (4.8)

relapse 55 (22.4) 28 (16.9) 27 (26.0)
NRM 14 (5.7) 4 (2.8) 10 (9.6)
OS 185(75.2) 115 (82.4) 70 (67.3)
DFS 177 (72.0) 110 (80.3) 67 (64.4)
Februa
ry 2021 | Volume
AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative
neoplasm; ALL, acute lymphoblastic leukemia; MNC, mononuclear; CR1, first complete
remission; MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; ATG,
Antithymocyte Globulin; EBV, Epstein-Barr virus; CMV, cytomegalovirus; aGVHD, acute
graft versus host disease; cGVHD, chronic graft versus host disease; NRM, non-relapse
mortality; OS, overall survival; DFS, disease-free survival.
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vs 33.9%, p = 0.002). No significant differences in relapse rate were
found using the receptor ligand model and activating KIRs.
However, decreased iKIR-HLA C pair were associated with a
higher risk for 3-yr relapse (38.1 vs 17.5%, p = 0.005). When
analyzed separately, the discrepancy in relapse rates was more
evident in the myeloid cohort (40.0 vs 13.5%, p = 0.004) than in
the lymphoid cohort (35.8 vs 23.5%, p = 0.317) (Figure 1).
Multivariate analysis revealed that CR1 (HR = 0.53, P = 0.029)
and decreased iKIR-HLA C pair (HR = 1.95, P = 0.033) were
independent factors for relapse for the entire cohort, and the
adverse effects of decreased iKIR-HLA C pair on the 3-yr relapse
rate was more evident in myeloid disease (HR = 2.95, p = 0.019).

A total of 14 (5.7%) patients experienced NRM at a median
follow-up time of 0.3 yr (range, 0.1–2.8 yr), 6 (2.4%) patients died
of severe GVHD (5 aGVHD and 1 cGVHD), 7 (2.8%) patients
died from severe infection (6 pulmonary infections and 1 sepsis),
and 1 (0.4%) patient with primary poor graft function (28) died
Frontiers in Immunology | www.frontiersin.org 5
from an intracranial hemorrhage. No variables were found to be
significant predictors of NRM.

OS and DFS
The CI for 3-yr OS was 75.6% for all patients. Disease category
(p = 0.016), disease status (p = 0.010), and disease risk index (p =
0.036) were all found to influence 3-yr OS in the univariate
analysis. In addition, the 3-yr OS rate in transplants with
decreased iKIR-HLA C pair was shown to be 65.1% [95%
confidence interval (CI): 52.3–81.0%], which was lower than
those with unchanged or increased iKIR-HLA C pair (77.9%,
95% CI: 72.3–83.9%, p = 0.093), and the negative impact of
decreased iKIR-HLA C pair was more apparent in the myeloid
cohort [55.0% (95% CI: 37.0–81.8%) vs 86.0 (95% CI: 80.0–
92.4%), p = 0.0006] than in the lymphoid cohort [73.9% (95%
CI: 58.0–94.2%) vs 65.9% (95% CI: 56.1–77.3%), p = 0.418]
(Figures 2A–C). In the lymphoid cohort, patients who received
TABLE 2 | Univariate analysis of factors that influence transplant outcomes.

Outcome and potent factors, % All patients P Myeloid cohort P Lymphoid cohort P

1. EBV viremia*
Myeloid vs Lymphoid 28.9 vs 47.1 0.001
ATG-G vs ATG-F 58.6 vs 32.2 0.0003 48.0 vs 24.8 0.009 75.0 vs 42.1 0.003
Male vs Female 42.7 vs 29.1 0.029 35.1 vs 21.5 0.087 52.5 vs 40.0 0.177
KIR2DS2+ vs KIR2DS2− 43.5 vs 35.0 0.199 25.0 vs 29.7 0.643 63.2 vs 43.5 0.078

2. CMV viremia*
ATG-G vs ATG-F 78.1 vs 62.4 0.003 72.0 vs 64.1 0.199 87.5 vs 60.4 0.001
KIR2DS1+ vs KIR2DS1− 67.5 vs 63.8 0.935 77.6 vs 59.1 0.029 52.9 vs 70.0 0.030
KIR2DS3+ vs KIR2DS3− 63.4 vs 65.4 0.695 79.2 vs 62.7 0.191 41.2 vs 69.0 0.057
KIR3DS1+ vs KIR3DS1− 67.9 vs 63.6 0.997 78.0 vs 58.7 0.041 52.9 vs 70.0 0.030
R-L C (mismatch vs match) 62.5 vs 71.4 0.079 63.3 vs 70.5 0.267 61.5 vs 73.1 0.151

3. Grade II-IV aGVHD*
High/Very high risk vs Low/Int risk 41.1 vs 30.6 0.080 38.8 vs 25.8 0.068 45.8 vs 36.3 0.454
MAC vs RIC 35.2 vs 7.7 0.041 31.6 vs 11.1 0.178 40.0 vs 0.0 0.125
R-L C (mismatch vs match) 31.25 vs 40.0 0.256 29.6 vs 31.8 0.853 33.3 vs 53.9 0.095

4. Moderate to severe cGVHD*
KIR2DS2+ vs KIR2DS2− 6.5 vs 19.2 0.048 7.4 vs 20.3 0.133 5.3 vs 17.7 0.197
KIR2DS3+ vs KIR2DS3− 7.3 vs 18.7 0.083 12.5 vs 19.0 0.487 0.0 vs 18.4 0.057

5. 3-yr CIR
Myeloid vs Lymphoid 17.3 vs 26.2 0.087
High/Very high risk vs Low/Int risk 32.9 vs 16.1 0.002 26.5 vs 12.4 0.031 45.8 vs 20.4 0.009
CR1 vs >CR1 16.5 vs 33.9 0.002 13.6 vs 25.7 0.070 23.5 vs 36.4 0.202
iKIR-HLA C variation (D vs U+I) 38.1 vs 17.5 0.005 40.0 vs 13.5 0.004 35.8 vs 23.5 0.317

6. 3-yr NRM
Myeloid vs Lymphoid 2.8 vs 9.9 0.024
High/Very high risk vs Low/Int risk 1.4 vs 7.7 0.057 2.0 vs 3.2 0.683 0.0 vs 12.8 0.070
iKIR-HLA C variation (D vs U+I) 4.7 vs 6.0 0.745 10.0 vs 1.6 0.037 0.0 vs 12.7 0.078
KIR2DS3+ vs KIR2DS3− 0.0 vs 7.0 0.086 0.0 vs 3.4 0.362 0.0 vs 11.8 0.145
KIR B/x vs KIR AA 2.9 vs 7.9 0.112 0 vs 4.9 0.079 7.1 vs 11.7 0.497

7. 3-yr OS
Myeloid vs Lymphoid 81.6 vs 67.7 0.016
ATG-G vs ATG-F 75.5 vs 75.8 0.861 92.0 vs 79.3 0.147 49.2 vs 71.0 0.041
High/Very high risk vs Low/Int risk 67.0 vs 79.3 0.036 71.4 vs 87.1 0.029 58.3 vs 70.5 0.202
CR1 vs >CR1 79.7 vs 64.5 0.010 85.8 vs 72.0 0.053 72.4 vs 50.0 0.025
iKIR-HLA C variation (D vs U+I) 65.1 vs 77.9 0.093 55.0 vs 86.0 0.0006 73.9 vs 65.9 0.418

8. 3-yr DFS
Myeloid vs Lymphoid 79.9 vs 63.9 0.006
ATG-G vs ATG-F 73.2 vs 73.3 0.835 78.3 vs 88.0 0.293 50.0 vs 66.5 0.085
High/Very high risk vs Low/Int risk 65.7 vs 76.2 0.080 71.4 vs 84.4 0.066 54.2 vs 66.8 0.218
CR1 vs >CR1 76.7 vs 63.0 0.024 83.3 vs 72.0 0.107 67.7 vs 50.0 0.085
iKIR-HLA C variation (D vs U+I) 57.3 vs 76.5 0.016 50.0 vs 84.9 0.0001 64.2 vs 63.9 0.813
February 2
021 | Volume 11 | Article 6
*Estimations of cumulative incidence are given at 100 days post-HSCT for aGVHD; 180 days post-HSCT for EBV and CMV viremia; 3 years post-HSCT for cGVHD.
Potent factors with p < 0.10 were in bold type.
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ATG-G prior to transplantation experienced a lower 3-yr OS (49.2
vs 71.0%, p = 0.041). Multivariate analysis identified myeloid
disease (HR = 0.49, p = 0.006) and CR1 (HR = 0.46, p = 0.004) as
protective factors for 3-yr OS. CR1 in the lymphoid cohort (HR =
0.45, p = 0.029) remained significant in multivariate analysis, and
decreased iKIR-HLA C pair conferred a poorer 3-yr OS in the
myeloid cohort (HR = 3.74, p = 0.001).

In addition, dramatically reduced 3-yr DFS was observed
when iKIR-HLA C pair was decreased both in the entire cohort
[57.3% (95% CI: 44.0–74.6%) vs 76.5% (95% CI: 70.8–82.6%), p =
0.016] and the myeloid cohort [50.0% (95% CI: 32.3–77.5%) vs
84.9% (95% CI: 78.6–91.6%), p = 0.0001]. For patients with
lymphoid disease, variation in iKIR-HLA C pair was not
associated with DFS [64.2% (95% CI: 47.0–87.8%) vs 63.9%
(95% CI: 54.2–75.4%), p = 0.813] (Figures 2D–F). In the
multivariate analysis, myeloid disease (HR = 0.47, p = 0.003)
Frontiers in Immunology | www.frontiersin.org 6
and CR1 (HR = 0.51, p = 0.009) were shown to be independent
factors influencing DFS. A significantly reduced DFS was also
observed in myeloid patients with decreased iKIR-HLA C pair
(HR = 4.05, p = 0.0004).
DISCUSSION

There has been a longstanding debate about the impact of KIR
alloreactivity on clinical outcomes. It was only recently revealed
that reconstituted KIR are educated by HLA ligands and that the
loss of the cognate ligands dampens NK cell functions (17–
19). This means that searching for donors who exhibit the
greatest NK cell function in recipients rather than “match or
mismatch” would be a more reliable measure for predicting
transplant success.
TABLE 3 | Multivariate analysis of factors that influence transplant outcomes.

Outcomes and significant factors All patients Myeloid cohort Lymphoid cohort

P HR (95% CI) P HR (95% CI) P HR (95% CI)

1. EBV viremia*
ATG-G vs ATG-F <0.0001 2.58 (1.61–4.13) 0.007 2.51 (1.28–4.93) 0.004 2.66 (1.37–5.14)
Male vs Female 0.042 1.57 (1.02–2.41)
Myeloid vs Lymphoid 0.0005 0.48 (0.31–0.72)

2. CMV viremia*
ATG-G vs ATG-F 0.008 1.70 (1.15–2.51) 0.005 1.76 (1.19–2.59)

3. 3-yr CIR
CR1 vs >CR1 0.029 0.53 (0.30–0.94)
iKIR-HLA C variation (D vs U+I) 0.033 1.95 (1.06–3.61) 0.019 2.95 (1.19–7.27)

4. 3-yr OS
Myeloid vs Lymphoid 0.006 0.49 (0.29–0.82)
CR1 vs >CR1 0.004 0.46 (0.27–0.78) 0.029 0.45 (0.22–0.92)
iKIR-HLA C variation (D vs U+I) 0.001 3.74 (1.66–8.39)

5. 3-yr DFS
Myeloid vs lymphoid 0.003 0.47 (0.28–0.77)
CR1 vs >CR1 0.009 0.51 (0.31–0.84) 0.034 0.47 (0.24–0.94)
iKIR-HLA C variation (D vs U+I) 0.0004 4.05 (1.87–8.80)
February 202
1 | Volume 11
*Estimations of cumulative incidence are given at 100 days post-HSCT for aGVHD; 180 days post-HSCT for EBV and CMV viremia.
Significant factors with P < 0.05 were in bold type.
A B C

FIGURE 1 | Cumulative incidence of relapse among all patients (A), the myeloid cohort (B), and the lymphoid cohort (C), based on the variation (D, decreased;
U, unchanged; I, increased) in iKIR-HLA C pair post-transplantation.
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Previously, Nowak et al. proposed the iKIR-HLA model that
could be used to predict transplant outcomes (20–22). Among
the multiple interactions between the iKIRs and HLA ligands, we
identified that only decreased iKIR-HLA C pair post
transplantation was a negative indicator for relapse and
survival, especially in patients with myeloid disease.
Nevertheless, variations in iKIR-HLA A3/A11 pair and iKIR-
HLA Bw4 pair did not influence the treatment outcomes.

It is widely accepted that almost all HLA C molecules are
recognized by iKIRs. However, only a minority of HLA B and HLA
A epitopes act as KIR ligands (29–31). Similarly, all patients in our
cohort expressed at least oneHLAC ligand, while the HLABw4 and
A3/A11 ligands were expressed at a frequency of 60.2 and 46.7%,
respectively. This suggests that the HLA C ligands play a dominant
role in KIR education (32). Given this, reconstituted NK cells with
decreased iKIR-HLAC pair may exhibit impaired anti-tumor effects
(18, 19). In addition, the expression levels ofHLAAandB ligands on
normal cells are more than tenfold higher than that of the HLA C
(33), thismeans that when cancerous cells downregulate HLA class I
antigens to escape immune surveillance, the stability of the self-
tolerancemediatedby iKIR-HLACinteractions ismorevulnerable to
be broken. In other words, HLA-Cmay play amajor role inmissing-
self recognition and modulate NK cell activation. Moreover, Pende
et al. found that lymphoblastic leukemias express a higher surface
density of HLA class I molecules than myeloid leukemias (34).
Verheyden et al. went on to test the expression of HLA ligands in
Frontiers in Immunology | www.frontiersin.org 7
normal T cells, AML cells, B-ALL cells, and B-chronic lymphoid
leukemic (B-CLL) cells. Interestingly, onlyHLACwere dramatically
downregulated on all types of leukemic cells as compared with their
healthy control, with this downregulation being themost apparent in
AML cells (35). Makanga et al. demonstrated that CD57+ and KIR+

NK cells from healthy individuals exhibited the highest degree of
cytotoxicity against AML blasts, while ALL targets were less
susceptible to KIR+ NK subsets compared with NKG2A+ NK
subsets (36). On the basis of previous studies, we hypothesize that
KIR may have a minor impact on the elimination of lymphoblastic
leukemias, and patients with myeloid disease are more likely to
benefit from well KIR-educated NK cells.

In many European studies, aKIRs, especially KIR2DS1 (37–39)
and KIR2DS2 (40, 41), have been shown to be associated with
improved survival or reduced relapse. Yet, as reported in several
studies from East Asia (42–45), aKIRs were not found to grant any
survival advantage or relapse protection to the patients in our cohort.
One reason for this may be the genetic differences between these
different ethnic groups. Single et al. revealed that almost 46.7%
Europeans express the KIR2DS2 gene, and 66.5% present the HLA
C2 ligand for KIR2DS1 (46). However, both the KIR2DS2 gene
(18.7%) and the HLA C2 ligand (32.1%) were expressed at much
lower frequencies in this study. The KIR2DS1 gene frequency in our
cohort was also a bit lower than those of the European populations
(33.7vs37.8%).Thus,wespeculate thatKIR2DS1mayhavea reduced
chance of activation resulting from the absence of its cognate ligand,
A B

D E F

C

FIGURE 2 | Overall survival (OS) and disease-free survival (DFS) rates for all patients (A, D), the myeloid cohort (B, E), and the lymphoid cohort (C, F), based on the
variation (D, decreased; U, unchanged; I, increased) in their iKIR-HLA C pair post-transplantation.
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and that the beneficial impact of KIR2DS2 on transplant outcomes
may be more apparent in a larger cohort of Chinese patients.

Additionally, we could not find evidence of any significant
association between receptor ligand mismatch and clinical
outcomes. Since mature donor lymphocytes are mostly
eliminated following ATG treatment, the transient expression
of alloreactive NK cells in the recipients may not be sufficient to
influence GVHD (47–49). After which the reconstituted NK cells
expressing non-self KIRs may not exhibit enough cytotoxicity to
eliminate the remaining leukemic cells (17–19).

In summary, we conclude that when using ATG-based haplo-
HSCT, deceased iKIR-HLA C pair should be avoided during
donor selection, especially for patients with myeloid disease. The
exact role of the aKIRs in the Chinese population still needs to be
explored in future studies.
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