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Abstract

Background: Exposure to particulate air pollution is one of the greatest environmental risk 

factors for adverse human health outcomes. However, the constituents that may be responsible for 

such adverse health effects have not been fully studied.

Methods: Total suspended particulates filters collected every 6 days in 2011 from three South 

Carolina locations were used in this case study. An inductively coupled plasma mass spectrometer 

interfaced with a laser ablation system (LA-ICP-MS) was used to directly analyze 41 inorganic 

elemental species on air pollution filters. Then, machine learning and multivariate statistical 

methods was employed to identify combinatorial patterns in the data and classify sites based on 

their elemental composition.

Results: Forty-one elements were assessed and 33 were used in subsequent analysis. 

Correlations between United States Environmental Protection Agency (US EPA)’s chemical 

analysis dataset and data from the current study revealed significant associations between 7/15 
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elements with enough variation for comparison (r between 0.28 to 0.66, p<0.05). Subsequent 

multivariate analyses revealed four distinct patterns in the distribution of elements by sample 

location throughout the year.

Conclusion: The different airborne elements may need to be assessed to understand 

combinations of elements which occur together over space and/or time. Such information can 

be helpful in planning effective counter measures and strategies to control particulate air pollution.

Keywords

Air quality; Air filter media; Laser ablation ICP-MS; Total suspended particulates; Spatio-
temporal patterns

Introduction

Evidence for the adverse health impacts of air pollution has been mounting for decades 

[1,2]. Exposure to ambient air pollutants is associated with both acute and chronic health 

effects and the impacts are felt on both global and local scales [3]. A recent review on 

the human health impact of airborne particulate matter highlighted the dramatic growth in 

studies that have shown strong associations between exposure to particulate matter (PM) 

and various health outcomes including premature death, cardiovascular disease, asthma, 

decreased lung function, and increased adverse respiratory symptoms such as breathing 

difficulties [4]. PM is currently regulated on its total mass concentrations in air (μg/m3), 

yet these adverse health effects have been observed even at very low levels of PM [5]. It is 

unclear whether a threshold concentration exists below which little or no effects on health 

are observed [6], and knowledge on the differential toxicities of airborne particulate matter 

(PM) constituents remains a crucial research gap [7].

Regulatory control of PM can be improved with a better understanding of the nature of 

the various constituents of the PM mixture and their sources [8]. Mounting evidence from 

studies throughout the United States shows that there are significant associations between 

exposures to PM constituents and adverse health, both in the short term and, although 

limited, in the long term [7]. However, due to differences in study design, statistical analyses 

and specific PM constituents, further research is needed. Such elemental composition data 

are available through the United States Environmental Protection Agency (US EPA)’s PM2.5 

National Chemical Speciation Network (CSN), as well as the Interagency Monitoring 

of Protected Visual Environments (IMPROVE) Network [9,10]. The choices in existing 

measurement and analytical tools were made based on funding, and available technology 

[11]. A shift towards time- and cost-effective analytical technologies will be necessary 

to rapidly examine a more comprehensive mix of airborne PM to improve its regulatory 

control [12]. In fact, as far back as 1999, Chin et al. [13] demonstrated the feasibility of a 

multi-element analysis of airborne particulate matter collected on PTFE-membrane filters. 

However, the current standard of practice is still in use for obtaining particle constituent or 

chemical composition data.

Historically, accepted filter-based approaches and wet-chemistry methods are used to 

acquire elemental composition data [14]. The US EPA measures over 50 chemical 
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constituents; analyzing all available constituents presents problems with multiple 

comparisons, and most researchers typically select the constituents that are the largest 

contributors to PM total mass [15]. However, different monitors are used to measure PM 

total mass and chemical constituents, and this creates data alignment problems. Furthermore, 

the CSN are more sparsely distributed compared to the mass concentrations monitoring 

network and this introduces measurement and prediction errors in exposure assessment. 

As such, understanding the local air quality at locations with no air monitoring can be 

challenging.

Challenges with filter sample analysis also exist, and include approaches such as thermal 

optical analysis (for carbon), ion chromatography (for nitrates and sulfates) and X-ray 

fluorescence (for metals) [16]. Additionally, three different filter media are required: Teflon, 

nylon, and quartz-fiber filters [14]. While this supports the EPA’s goal in understanding the 

spatial and temporal composition of fine particles in ambient air, several issues remain. First, 

ambient monitors dedicated for PM constituent analysis are sparsely located across the US 

and are not measured on a daily basis. Secondly, for trace elements, the energy-dispersive 

X-ray fluorescence method is not sufficiently sensitive to detect a majority of the elements; 

precision results are usually 20% to 40% for ion/carbon/trace elements, and poorer for 

lighter elements [14]. While several approaches have been taken to compare CSN analytical 

protocols [17,18], we would like to focus on a case study from one state to highlight how 

data can be obtained at locations that may have need of but are currently without elemental 

composition data.

The motivating hypothesis for this work is that the patternicity of elements on the PM 

filters will exhibit variability in terms of location and/or time in South Carolina and that 

one site would not adequately represent all sites. To address this hypothesis, we sought to 

answer the following questions. First what types of different elements occur on the PM filter 
media and what are their mass fractions? Secondly how do these elements compare with 
those measured in the Chemical Speciation Network? Thirdly, are there combinations (or 
mixtures) of elements that occur together over space and/or time? Such information will be 

extremely helpful to plan effective counter measures and strategies to control particulate air 

pollution.

Materials and methods

Sample collection and information

Archived high volume sampler filters collected by the South Carolina Department of Health 

and Environmental Control were available for the research team’s use. We used filters from 

three sites for the initial method development of this constituent analysis. These archived 

filters represent total suspended particulates (TSP) samples collected every 6 days in 2011. 

We used the lab blanks and loaded filters from the same batches, and we do not expect much 

impact on our results after blank subtractions. They were from three locations in the state of 

South Carolina representing the northern (n = 56), middle (n = 56) and southern regions (n = 

53) [Fig. 1].
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Sample preparation

Minimal sample preparation steps included cutting and mounting the TSP filter samples 

and fixing them onto 3 mm thick by 38 mm diameter glass discs with double sided tape. 

The glass substrate supported the thin TSP filter samples and prevented the samples from 

sticking to the laser cell o-ring or falling away during sample interchange. National Institute 

of Standards and Technology (NIST) calibration and control materials were pressed into 

13 mm diameter pellets using a sample press, with application of approximately 36 MN of 

force. The pelletized samples were centered in the carousel sample slots using custom nylon 

mounts that allowed for sealing against the 18 mm laser cell o-ring. A triple quadrupole 

inductively coupled plasma mass spectrometer (Agilent Technologies 8800, Palo Alto, CA) 

interfaced with a laser ablation system (LA-ICP-MS) was used to analyze samples.

Calibration and quality assurance/quality control (QA/QC)

First, storage blank filters were used to establish background levels of elements present 

within the filter substrate – these filters that came from the same or a similar batch as 

the loaded air sample filters used in the study. Second, pressed pellets of NIST SRM 

2584 Trace Elements in Indoor Dust (Nominal Mass Fraction of 1% Lead) served as the 

calibration material (single calibrant). NIST SRM 1649a Urban Dust served as the control 

(Supplementary Fig. 1). Filter blank samples were placed between five loaded air sample 

filters from each site during ablation, with the calibrant run at the beginning of the sequence 

and the control at the end. Signals from the ICP-MS were converted to elemental mass 

fractions using SRM 2584.

LA-ICP-MS procedures

The specifications and operating conditions used for LA-ICP-MS are provided in 

Supplementary Table 1. For each filter, an area representing approximate 0.002% of the 

total filter area was ablated via raster scanning to measure the elements present in the 

filter. Each sample was independently sealed against the laser cell, and the cell was purged 

with helium gas in between each sample analysis. Additionally, a pre-ablation cleaning run 

was performed before the main run was executed. Together, these procedures eliminated 

sample cross contamination. The signals were detected with the triple quadrupole ICP-MS. 

LabVIEW software was used for data reduction and quantification.

This LA-ICP-MS analytical technique was used to assess TSP filter samples from January 

3rd 2011, through December 29th 2011 from three different air monitoring sites in South 

Carolina. Data from January 2011 are omitted from the final data analysis because the He 

gas setting was too low to push the samples to the ICP-MS. As such, data are summarized 

from February 2011 to December 2011. There were 165 TSP filter samples and 33 filter 

blanks. Each analytical batch of 20 samples, (consisting of calibrants, blanks, unknowns and 

controls) was completed in approximately 60 min. This translates to a total filter analysis 

time of approximately three minutes, including sample interchange, laser cell washout, and 

acquisition time. A single laser acquisition is performed in approximately 30 s to complete 

a 900 μm sample transect. The laser system has the flexibility to perform multiple transects 

over a finite area, if desired.
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US EPA chemical speciation network (CSN) data

CSN data for January through December 2011 were measured from a stationary air monitor 

in Columbia, South Carolina, from EPA’s only National Core (NCore) Monitoring Network 

site in the state and operated by the South Carolina Department of Health and Environmental 

Control. The speciation monitor at this NCore site is a SuperSass sampler which uses two 

different filter types (Teflon and Nylon), with each filter analyzed for different PM species 

(organic and elemental carbon, major ions and trace metals). Data were retrieved online 

from the US EPA’s portal for air quality data collected from outdoor monitors across the US 

(https://www.epa.gov/outdoor-air-quality-data). For the purposes of the current study, only 

trace metal data obtained from Teflon filters were used for comparison.

Statistical analyses

Filter data were blank subtracted using the average filter blank in each run before employing 

descriptive statistics. Nonparametric univariate analyses were conducted with the Kruskal 

Wallis test to compare differences for each element between sites, since the raw data did not 

meet the assumptions of normal distribution. Pairwise correlations using Spearman’s rank 

correlation coefficients between elements obtained from this LA-ICP-MS method were also 

examined. Furthermore, Spearman’s rank correlation coefficients were assessed between the 

US EPA CSN data and data from the current study. Correlations between mass fraction 

(mg/kg) and mass concentrations (μg/m3) were conducted. Then, with the assumption there 

was a pressure of 1 atmosphere and a temperature of 25 °Celsius, we converted CSN mass 

concentrations to mass fractions with the following equation:

CNS (mg/kg)
= (24.45 × concentration [μg/m3] ÷ molecular weigℎt) × 1000

After preliminary analysis, all data were centered around the mean and dividing by the 

standard deviation so that their relative magnitudes would be similar. Heat maps were 

used to identify possible patterns by location. Finally, three multivariate approaches were 

employed to identify possible patterns of elemental mass fractions by location and/or time. 

The first approach, hierarchical cluster analysis, was used to assess the similarities and 

differences between elements. The second approach was self-organizing maps (SOMs). 

The SOM algorithm is an efficient means of interpreting and visualizing complex data 

sets; the ‘map’ facilitates understanding of between-class relationships [19]. Thirdly, partial 

least-squares discriminant analysis (PLS-DA) was used to identify potential patterns in 

element composition between the sites. Statistical analyses were conducted with R [20] and 

MetaboAnalyst 4.0 [21].

Results

Proof-of-concept

In answer to the initial question: Which elements are detectable on the PM filter media and 
what are their mass fractions? A total of 44 element isotopes were assessed. These include: 
7Li, 9Be, 11B, 24Mg, 27Al, 29Si, 31P, 34S, 43Ca, 44Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 
60Ni, 63Cu, 64Zn, 66Zn, 75As, 78Se, 79Br, 85Rb, 88Sr, 90Zr, 95Mo, 101Ru, 103Rh, 105Pd, 111Cd, 
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118Sn, 121Sb, 127I, 133Cs, 137Ba, 138Ba, 195Pt, 202Hg, 205Tl, 208Pb, 209Bi, 232Th, and 238U. 

However, 11B, 90Zr, 101Ru, 103Rh, 105Pd, 127I, 195Pt, and 205Tl were excluded from the final 

data analyses; those elements were not quantified in the NIST calibrant SRM 2584. Data are 

presented as mass fractions with units in mg/kg (Supplementary Table 2).

Filter homogeneity

One important aspect of this LA-ICP-MS technique is the fact that the laser line 

(sampled from the center of the filter) represents approximately 0.002% of the filter area 

(Supplementary Fig. 2). Hence it is important to assess heterogeneity across the large (2 

cm × 2 cm) filter samples used. Subtle differences in the particle loading across specific 

areas of the filters or hotspots of unique particles might influence sample homogeneity, 

thus eight other locations on loaded and blank filters were assessed (total n = 9 for each 

type of filter sample). We then assessed the signal-to-background (S/B) ratios and mass 

fraction variability (Supplementary Fig. 3). Ideal elements with high S/B and low spatial 

mass fraction variation (under 30% relative at 95% confidence level) were Cu, P, Mo, Th, Ti, 

Sb, Mn, I, Tl, S, Co, Br, Be and Bi. Some elements were more challenging to measure due to 

low S/B and also due to the nature/composition of the blank filters. Such elements included 

Ca, Ba, B, Mg, Se, Si, As, and Zn. Nevertheless, this assessment ensured that the sampling 

area was standardized close to the center of the filters.

Summary statistics

Daily air pollution summaries generated by federal reference method (FRM) air monitoring 

techniques suggest that regional air quality was generally good at the three sites during the 

study year. Over the course of 2011, the average ± standard deviation (sd) reported for PM2.5 

were 11.2 μg/m3 ± 5.7 μg/m3 and 11.7 μg/m3 ± 5.5 μg/m3 for the North and Middle regions, 

respectively. PM2.5 mass concentrations are not measured at the Southern site. PM10 mass 

concentrations were 15.9 μg/m3 ± 6.5 μg/m3, 17.1 μg/m3 ± 7.7 μg/m3, and 18.2 μg/m3 ± 

7.6 μg/m3 for the North, Middle and Southern regions respectively. High levels of calcium 

were consistent across all three sites. Mean ± sd 44Ca mass fractions were 304.7 mg/kg ± 

244.7 mg/kg, 242.2 mg/kg ± 365.7 mg/kg and 251.8 mg/kg ± 244.5 mg/kg at the Northern, 

Middle and Southern sites respectively (Supplementary Table 2). Beryllium had the lowest 

mass fractions at all three sites, and the 99th percentile was 0.01 mg/kg. 202Hg, 232Th and 
121Sb were detected in 100% of all samples.

Comparison with CSN data

The middle site is the only location with CSN data for the whole of South Carolina. As 

such, to answer the second question of interest (how do these elements compare with 
those measured in the Chemical Speciation Network?), data from the middle site only are 

compared with the CSN data for 2011. While there are about 50 inorganic elements assessed 

in the CSN, the current study had 28 elements in common. As this was a case study, 

the elements characterized were selected a priori to show proof of concept in identifying 

inorganic element mixtures on TSP filters (Supplementary Table 3, 5 elements were novel, 

while 21 elements routinely measured for the CSN were not assessed in this study). A total 

of 15 elements had enough variation for subsequent comparisons (Supplementary Table 3) 

and seven correlation analysis were statistically significant (p<0.05, Fig. 2). Silicon was 
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marginally significant (p = 0.24, p = 0.085, Fig. 2G), as were calcium (both isotopes) and 

strontium (p<0.1, data not shown). Additionally, results for Spearman ranked correlation 

coefficients between CSN data (mg/kg) and LA-ICP MS data (mg/kg) and their statistical 

significance remained unchanged.

Preliminary data analysis and correlations

Non-parametric (Kruskal–Wallis) analysis was employed to test for differences in median 

elemental mass fractions at the three sampling sites. Results (chi square statistic and p value) 

reveal that 20/36 elements were significantly different between sites. Specifically, 63Cu (X2 

= 43.8 p < 0.0001), 95Mo (X2 = 16.1 p = 0.0003), 79Br (X2 = 38.2 p < 0.0001), 202Hg (X2 

= 13.3p = 0.001), 47Ti (X2 = 21.3 p < 0.0001), 137Ba (X2 = 20.8 p < 0.0001), 138Ba (X2 = 

19.9 p < 0.0001), 85Rb (X2 = 17.5 p = 0.0002), 121Sb (X2 = 16.3 p = 0.0002), 118Sn (X2 = 

12.6 p = 0.002), 111Cd (X2 = 11.7 p = 0.003), 29Si (X2 = 9.4 p = 0.009), 59Co (X2 = 7.6 p 
= 0.02), 7Li (X2 = 10.9 p = 0.004), 51V(X2 = 24.1 p < 0.0001), 60Ni (X2 = 10.9 p = 0.004) 

did not have identically shaped distributions when the ranked scores were examined per site. 

The median mass fractions of the aforementioned elements differed significantly at the three 

locations.

Correlation analysis revealed strong relationships between some pairs of elements in terms 

of their mass fractions. Strong correlations emerged between Ni–V (r = 0.82), Mn–Fe (r = 

0.80), Fe–V (r = 0.82), Fe–Cr (r = 0.82), V–P (r = 0.92), V–Cr (r = 0.94), P–Cr (0.96), 

Zn–Rb (r = 0.85) and Rb–Sr (r = 0.94). These were all significant at p < 0.0001. Other 

notable correlations occurred between Co–Ti, Cd–Br, Ca–Cs, Zn–Mn, K–Zn, Al–V, Si–Cr, 

Pb–Bi, U–Li, and Bi–Ca. These were also significant at p < 0.05.

Machine learning approaches

To address the third question of interest (Are there combinations (or mixtures) of elements 
that occur together over space and/or time?), three approaches were employed. The first 

was hierarchical clustering, and the result of this approach is seen in Fig. 3. This first 

approach points to four distinct clusters of elements by sample location throughout the year. 

Cluster 1 contains 29Si, 24Mg, 43Ca, 44Ca, 209Bi, 238U, 232Th, 34S, 9Be, and 133Cs which 

are significantly lower at the middle site. Cluster 2 contains 55Mn, 59Co, 75As, 27Al, 85Rb, 
78Se, and 111Cd which had relatively similar mass fractions across all three sites. Cluster 2 

also contains 60Ni which was highest at the Southern site, as well as 52Cr, 208Pb, 31P, 56Fe, 
66Zn, 88Sr, 51V and 64Zn which were lowest at the Northern sites compared to the two other 

sites. Cluster 3 contains 63Cu, 202Hg and 79Br which were highest at the Middle site. Cluster 

4 contains 138Ba, 7Li, 47Ti, 95Mo, 118Sn, 121Sb and 137Ba which were lowest at the Southern 

site and higher at the Northern site. This first approach takes all measured elements into 

consideration.

In the second approach to addressing Q3 (Are there combinations (or mixtures) of isotopes 

that occur together over space and/or time?), a 2 × 2 self-organizing map (SOM) was applied 

to identify categories that capture the primary temporal ‘patterns’ observed in the data (Fig. 

4A). For each SOM category, patterns are presented as profiles depicted with line graphs 
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that reflect the median element mass fraction on a scaled y-axis. The SOM coordinates are 

on the top and right panels, shaded gray [x,y].

Profile [0,0; orange] in the upper left of the map included 27% of observations. This profile 

identifies ambient PM conditions during this study when all element levels were relatively 

low (close to their median mass fractions). This mostly occurred at the Southern site (45% 

of the time, compared to 16% and 21% at the Northern and Middle sites respectively (data 

not shown)). Profile [1,0; blue] in the upper right of the map, with a relatively low frequency 

of occurrence (23% of the time), identifies ambient PM conditions with relatively high 

measurements for most of the elements. Profile [1,0] was more prevalent at the Middle 

site (54%) compared to the Northern (30%) or the Southern (26%) sites. The bottom right 

profile [1,1; purple] occurred about 37% of the time and was the most common profile. It 

represents ambient PM conditions where less than half of the elements had relatively high 

measurements compared to median values. The final profile [0,1; green], in the bottom left 

corner, captures the lowest (12.1%) occurrence of ambient PM conditions where only some 

element levels were slightly higher than their median mass fractions. Both profile [0,1] and 

[1,1] were more common at the Northern site. Collectively, these profiles characterize the 

range of ambient PM element conditions experienced at the three sites within the same state.

To assess how these identified SOM profiles occurred across the year 2011 in the state 

of South Carolina, we examined the frequency of each SOM profile by time (Fig. 4B–D). 

Here we used histograms to illustrate how often a particular profile persisted in time at the 

three locations. All four profile types were seen at each site, however, there was pronounced 

seasonal dependence. During certain months we see greater distinctions among locations. 

For example, we see that profile [0,1] most often occurred at the Middle site throughout the 

year, but this was not the case at the other two sites. Profile [0,0], however, occurred more at 

the Southern site throughout the year. In fact, the Southern site was the only site with profile 

[0,0] between the months of October [10] and December [12], compared to the Northern or 

Middle sites. These findings suggest variability in PM may be more complex than what is 

traditionally presented using measured PM2.5 mass concentrations only.

The final approach uses partial least-squares discriminant analysis (PLS-DA) to create 

‘fingerprints’ for each site. The PLS-DA uses the information from all elements to 

discriminate between the three sites, reducing the high-dimensional data across elements 

into a selection of composite scores to be used as elemental “fingerprints” (Fig. 5). The 

variable importance in projection (VIP) scores generated by PLS-DA provide information 

about which elements contribute most to discriminating between sites as well as site 

differences. This approach identifies elements that are relatively high at one site compared to 

the other two sites for easy pattern recognition.

One potential avenue through which these elemental fingerprint data can inform the public 

is through the US EPA’s Air Quality Index (AQI). In Fig. 6, we compare our LA-ICP-MS 

derived data with the EPA AQI values for year 2011 in South Carolina. Data from this 

study had 3 categories/colors ranging from good (green), moderate (yellow) and unhealthy 

for sensitive groups (orange). A tri-element model, termed LA-ICP-MS AQI (green) with 

strontium (Sr), barium (Ba) and thorium (Th), had a similar trend as the federally reported 
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EPA AQI (purple) for the Northern site in SC. These three elements were used to display 

the potential usability of the LA-ICP-MS technique for understanding local air quality since 

CSN data are available for only one site (middle site) and not for all other air quality 

monitoring sites in South Carolina. The equation at the top of the graph depicts the model 

used to calculate the ‘LA-ICP-MS AQI’. This suggests that local ambient air quality could 

potentially be predicted using element mass fraction data obtained with the LA-ICP-MS 

technique.

Discussion

In this study, we aimed to improve understanding of how an automated LA-ICP-MS 

technique can be used to assess elements on airborne TSP filters from three sites in South 

Carolina. To achieve our objective, we sought to answer three questions: (Q1) What types of 
different elements occur on the PM media and what are their mass fractions? (Q2) how do 
these elements compare with those measured in the Chemical Speciation Network (Q3) Are 
there combinations (or mixtures) of isotopes that occur together over space and/or time?

In answer to Q1, we identified a total of 44 isotopes, and 36 were used in subsequent 

statistical analysis. A few elements, (e.g. Beryllium) had low mass fractions at all three sites, 

while, most had median mass fractions as low as 0.01 mg/kg and as high as 652 mg/kg. 

This suggests the ability to assess multiple elements over a wide range of limits of detection 

(LOD) is a potential capability of this LA-ICP-MS tool that can prove useful when trying 

to identify differences in particle compositions beyond PM mass concentrations. Compared 

to other techniques such as X-Ray Fluorescence (XRF), far lower limits of detection in the 

range of 0.01 μg/g – 1 μg/g can be reached with the LA-ICP-MS, and a broader range of 

elements can be quantified for elemental signature identification purposes [22].

In answer to Q2, seven of the elements assessed with LA-ICP-MS technique correlated with 

CSN data available at one of the sites. Lack of variation in data prevented comparisons 

of other elements and future studies will focus only on elements currently measured in 

the CSN. Nonetheless, these results are consistent with others who have assessed a variety 

of elements on airborne PM filter media [23,24]. Our approach with the automated laser 

ablation ensured that there was minimal sample preparation and simultaneous multi-element 

analyses that was achieved within minutes. As demonstrated in this case study, this strategy 

can significantly enhance researchers’ ability to rapidly quantify elements, particularly 

metals, that may be bound to particulate matter.

To answer Q3, we employed three machine learning approaches – namely hierarchical 

clustering, self-organizing maps (SOMs) and Partial Least-Squares Discriminant Analysis 

(PLS-DA). We found out that these approaches are useful for discovering the types of 

profiles within our data, their frequency of occurrence, and their duration – all of which are 

features of interest when characterizing exposures. Overall, the results are consistent with 

knowledge of particulate matter behavior in urban environments [25–28] and support the 

opportunity to distinguish air quality differences beyond traditional PM mass measurements 

[29,30]. These results may prove useful in future assessments of potential air quality trends 

within the state of South Carolina, as well as at other national and international sites [31].
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The multi-element approach taken in this study has great potential to add to the debate on 

shifting from single source (“stressor”) studies to multiple source identification studies [32]. 

This is because, methodologies that assign specific constituents to sources often face the 

challenge that any individual PM constituent could originate from a variety of sources. A 

look in the scientific literature points to a variety of sources for the elements detected in our 

study. Hierarchical clustering across the sites in our study found that 29Si, 24Mg, 43Ca, 44Ca 

and 209Bi, 238U, 232Th, 34S, 9Be, 133Cs clustered together and these represent sources such 

as the earth’s crust and the industrial processes, such as cement and marble industries [23]. 

For instance Cs has been linked with the erosion and weathering of rocks and minerals and 

as well as the fly ash from waste incinerators and coal burning power plants [33].

Secondly, 55Mn, 59Co, 75As, 27Al, 85Rb, 78Se, 111Cd, 60Ni, 52Cr, 208Pb, 31P, 56Fe, 66Zn, 
88Sr, 51V and 64Zn were clustered together and are mostly attributed to excavation activities, 

biomass burning, re-suspended soil dust, and automobile emissions. Ni and Cr, have also 

been specifically associated with crude oil combustion and metal processing activities [23]. 

Arsenic is associated with fossil fuel combustion (could be from traffic, power stations, 

refineries and chemical industries) [34]. Nickel was highest at the Southern site. Sources of 

nickel include industry, the use of liquid and solid fuels, as well as municipal and industrial 

waste [35].

63Cu, 202Hg and 79Br also clustered together and point to sources such as coal combustion 

and to some extent cement processing. Cu has been reported in emissions from cement 

plants [33]. Hg is associated with coal combustion [36]. Br has been linked to coal burning 

in rural households as well as the photolysis of Br2 and BrCl with ultra-violet light [37]. In 

our study, 63Cu was relatively high in the middle of South Carolina (Middle site; Cluster 3 

on left, white in heatmap, Fig. 3), and this could be mostly due to copper smelting activities 

near the sampling site. However, further studies are needed to assess whether this trend 

holds from year to year and how this may impact health.

Lastly, 138Ba, 7Li, 47Ti, 95Mo, 118Sn, 121Sb and 137Ba, which are mostly from traffic-related 

sources grouped together. Specifically, antimony and barium are considered to be tracer 

elements for traffic emissions sources [38]. Molybdenum is associated with the combustion 

of fossil fuels and the use of Mo compounds as lubricants for vehicle maintenance 

[39]. Titanium originates from a variety of industrial processes, manufacturing and even 

the production and use of titanium nanoparticles [40]. Potential sources of Li include 

automobile emissions and road dust [23].

Qualifying the potential contribution of various sources (among and within the 4 identified 

clusters) adds to the novelty of our work. Multi-elemental air pollution exposures from a 

variety of sources are still poorly understood [41]. Recent evidence shows that associations 

between PM2.5 exposures and respiratory hospitalizations in children can be differentially 

modified by the metal content (along with sulfur content and particle oxidative potential) 

in airborne particulates. Specifically, data from a case-crossover study of 10,500 children 

across Canada reported an odds ratio of 1.084 (95% confidence interval: 1.007–1.167) per 

10 μg/m3 increase in fine PM when copper was above the median mass concentration 

[42]. Rule and Koehler [41] have called for the prioritization and incorporation additional 
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constituents in studies to better understand the health effects of PM given the common 

sources, correlations among the constituents and variations in time and space. Indeed, the 

current study adds to the growing body of evidence that there is a need to shift from 

single-stressor studies to a “real-world” approach of assessing different sources and types of 

particulate air pollution collectively.

Lastly, we used our data to evaluate the EPA’s air quality index and found that the LA-ICP-

MS technique can potentially inform local air quality. Living in “unmonitored” areas, and 

a general quest for improved air quality knowledge are noted as two of the major goals for 

conducting air quality studies in communities [43]. Yet even when such goals are achieved, 

interpreting and communicating the data remain challenging [44]. Presumably, the best 

elements predicting the AQI will be different at each location and/or season and that could 

provide useful information on which elements may be driving air quality in a locale, as 

opposed to the mass of the particulates.

Our study, like all others, is subject to limitations. One limitation is the relatively short 

duration of our filter data (one year [2011] only), as longer periods are suggested to better 

understand differences between monitoring sites. As such, the differences presented here 

cannot be used to infer that longer term differences exist at the monitoring sites studied. 

A common challenge for these types of studies is the validity of the data as our data 

were collected using total suspended particulates rather than PM2.5 or PM10 filters. Our 

reported data are generally consistent with PM2.5 and PM10 mass concentrations reported 

by EPA during this time frame. Another limitation of our study was the lack of calibration 

and reference materials. Certainly, new calibration and reference materials are needed to 

better match the matrix of the filter material. Additionally, there is a need for suitable 

elements that may be useful as internal standards for the filters. For example, an element 

like Ca could be used (e.g. for a bone or tooth sample, where the composition is relatively 

constant, But for the filter types studied here, there seems to be significant variability for 

some of the elements that could potentially be investigated for use as internal standards. 

Finally, the representativeness of the laser micro sampling could be a shortcoming, but the 

analyses are relatively fast and so across filter averaging could be performed. A suitable 

comparison to solution-digested filters using traditional methods needs to be evaluated to 

fully assess the applicability of the technique. Future directions of this work will aim will 

include extended time periods and using enhanced filter samples that include other sites and 

other pollutants; and development of air pollution epidemiologic studies that can be used to 

explore associations between high-resolution air pollution data and health outcomes.

Conclusion

With only one air quality site with elemental composition data in South Carolina, there is 

currently an incomplete picture of ambient PM constituents across both space and time for 

the state. To assist, we sought to acquire PM mixtures data by adopting an automated laser 

ablation technology to analyze total suspended particulate matter filters collected at three 

different sites in South Carolina. The study assessed trace element mass fractions, and trends 

over time and space after adjustments with blank filters and NIST SRMs. We found out that 

assessing different trace elements may provide useful information on which combinations 
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(or mixtures) occur together over space and/or time. Such information can be helpful in 

planning effective counter measures and strategies to control particulate air pollution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Map of the state of South Carolina, USA showing the three air sampling locations, from 

which filter media were used for this case study. The only United States Environmental 

Protection Agency Chemical Speciation Network (CSN) site in the state is also shown with 

the asterisk, and is at the middle site.
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Fig. 2. 
Spearman ranked correlations between Chemical Speciation Network (CSN) elements with 

elements assessed in the current study. LA-ICP-MS data are on the y axis and CSN data are 

on the x axis.
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Fig. 3. 
Heat map with cluster analysis of particulate matter species at three locations in South 

Carolina. Lighter colors in heatmap represents high relative mass fractions while darker 

colors are lower relative mass fractions.
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Fig. 4. 
Panel A is a 2 × 2 self-organizing maps (SOM) depicting element mass fraction profiles 

observed for the state of South Carolina in 2011. For each profile type, the plots reflect 

the standardized elemental mass fraction on a percentage scale with zero reflecting the 

median on the y-axis. Darker lines represent median intensities of each cluster. The SOM 

coordinates are in brackets [x,y]. Panels B, C and D show when the SOM profiles, identified 

in panel A, occur throughout the year and by location. Profile 0,0 for instance occurred more 

at the Southern site throughout the year (particularly between the months of October [10] 

and December [12], compared to the Northern or Middle sites).
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Fig. 5. 
Results of partial least squares discriminate analysis (PLS-DA). PLS-DA uses the mass 

fraction information from all elements to discriminate between the three sites. The variable 

importance in projection (VIP) scores provide information about which elements contribute 

most to discriminating between sites. The figure shows important classifier elements, and 

site differences. The squares denote each of the three sites. The red, yellow and blue colors 

in the boxes denote highest, average and lowest mass fractions respectively at a particular 

site for that element. Cu, Mo, Br, Hg and Se emerge as important classifier elements, and 

point to a unique ‘fingerprint’ for the Middle site due to their relatively high mass fractions 

compared to the Northern or Southern sites. Only the first 10 isotopes from the analysis are 

displayed.
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Fig. 6. 
One potential way to translate these data into publicly understandable measures include 

using LA-ICP-MS data to construct an Air Quality Index (AQI). Green = linear model 

LA-ICP-MS AQI with Sr, Ba and Th and purple = federally reported EPA AQI for the 

Northern part of South Carolina in 2011.
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