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Purpose: The objective of the study is to develop deep learningmodels using synthetic
fundus images to assess the direction (intorsion versus extorsion) and amount (physi-
ologic versus pathologic) of static ocular torsion. Static ocular torsion assessment is
an important clinical tool for classifying vertical ocular misalignment; however, current
methods are time-intensive with steep learning curves for frontline providers.

Methods:Weused a dataset (n= 276) of right eye fundus images. The disc-foveal angle
was calculated using ImageJ to generate synthetic images via image rotation. Using
synthetic datasets (n = 12,740 images per model) and transfer learning (the reuse of a
pretrained deep learning model on a new task), we developed a binary classifier (intor-
sion versus extorsion) and amulticlass classifier (physiologic versus pathologic intorsion
and extorsion). Model performance was evaluated on unseen synthetic and nonsyn-
thetic data.

Results: On the synthetic dataset, the binary classifier had an accuracy and area under
the receiver operating characteristic curve (AUROC) of 0.92 and 0.98, respectively,
whereas the multiclass classifier had an accuracy and AUROC of 0.77 and 0.94, respec-
tively. The binary classifier generalized well on the nonsynthetic data (accuracy = 0.94;
AUROC = 1.00).

Conclusions: The direction of static ocular torsion can be detected from synthetic
fundus images using deep learning methods, which is key to differentiate between
vestibular misalignment (skew deviation) and ocular muscle misalignment (superior
oblique palsies).

Translational Relevance: Given the robust performance of our models on real fundus
images, similar strategies can be adopted for deep learning research in rare neuro-
ophthalmologic diseases with limited datasets.

Introduction

Ocular torsion consists of a static and dynamic
component and is defined as a rotation of the eye
around the line of sight in response to head tilt in
the roll (ear to shoulder) plane. This response is called
ocular counter roll (OCR) and occurs under both
physiologic and pathologic conditions. The response

of the vestibular system to both dynamic (during) and
static (after) head tilt must ensure the eyes remain
aligned. The dynamic OCR is mediated by both utric-
ular (linear acceleration receptors) and semicircular
canal (angular acceleration receptors) inputs, whereas
the static component is primarily driven by the utricle.
Themotion and gravity information from the labyrinth
directly affects the tonic level of activity within the
vestibular and ocular motor nuclei. An imbalance
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Figure 1. Examples of DFAmeasurement for right eye showing intorsion and extorsion. A line is drawnmanually by the examiner from the
center of the optic disc (large yellow circle) to the center of the fovea (small yellow circle). Another horizontal line is drawn through the center
of the optic disc. The angle between the two lines is the DFA.

between these nuclei can lead to (1) torsional nystag-
mus beating toward the side of the head tilt (dynamic
OCR), and (2) a torsional position offset opposite the
direction of the head tilt (static OCR).1–10

Pathologic static torsion results from central and
peripheral utriculo-ocular pathway lesions. The pattern
of pathologic static torsion distinguishes the two main
causes of vertical misalignment of the eyes: “skew
deviation,” caused by an imbalance in the vestibulo-
ocular motor pathways, and vertical strabismus from
either a fourth cranial nerve (trochlear)/superior
oblique palsy (SOP) or a partial third cranial nerve
palsy. A skew deviation can identify vertiginous
patients at risk for having a stroke.11–18 A skew devia-
tion of the eyes is often accompanied by a patho-
logic head tilt and change in torsion (OCR)11,13,14;
the triad (i.e. skew deviation, head tilt, and patho-
logic OCR) comprises the ocular tilt reaction (OTR).
A compensatory head tilt away from the higher (hyper-
tropic) eye occurs with an SOP. With a skew devia-
tion, the hypertrophic eye intorts, whereas the lower
(hypotropic) eye extorts.Whereas in an SOP, the hyper-
tropic eye extorts, whereas the hypotropic eye exhibits
no pathologic torsion.16

Currently, there are no simple reliable bedside
methods of differentiating SOP from skews in patients
with an acute onset of vertigo or double vision. The
Parks-Bielschowsky three-step test identifies paretic
muscles (e.g. superior oblique) in vertical diplopia19,20;
however, no torsional information is available to help
distinguish between skews and SOPs. Even though
subjective torsion is often assessed, there are pitfalls.21
The supine-upright test distinguishes skews from SOP

without assessing torsion,16 but lacks sensitivity in
patients who are acutely ill.22

There are several methods of assessing objec-
tive static torsion.23–25 Fundus photography is most
commonly used and can distinguish skews fromSOPs26
by measuring the disc-fovea angle (DFA).24 The DFA
is an inclination of the line connecting the optic nerve
and foveal centers (Fig. 1).27–30 Digital fundus photog-
raphy is well suited for objective torsional assessment
given its easy to use and accessible24,26,30; however,
processing of images manually is labor-intensive, time-
consuming, and prone to error.31

Deep learning methods may be useful in rapid
and automated screening for static ocular torsion.
In neuro-ophthalmology, deep learning models have
been used to detect papilledema32–34 and other optic
neuropathies.35 Successfully trained models require
large datasets to avoid overfitting.36 Access to fundus
images for research has become difficult, both because
pathologic fundus torsion datasets are sparse and
heightened concern for patient privacy, as fundus
photographs can be used for biometric identification.37
Three possible solutions to address model training
when data are scarce include (1) data augmentation
(introduce more variations),36 (2) transfer learning
(enhance training by using previously learned features
for a new task),38,39 and (3) synthetic image genera-
tion (increase dataset size).40–42 Using these strategies,
two deep learning-based static torsional classifiers to
differentiate the direction (intorsion versus extorsion)
and amount (physiologic versus pathologic) of static
ocular torsion from a small digital fundus image
dataset were developed.
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Methods

Data Source

Digital color fundus photographs of the right eye
(n = 276) from the Johns Hopkins Hospital (JHH)
collected between June 2020 and March 2022 were
used for training and evaluating 2 image classifiers.
All photographs were collected from routine clinic
patients presenting with vestibular and ocular motor
symptoms, and they were taken by the same techni-
cian using the same non-mydriatic fundus camera
(Zeiss Visucam 224) with a 45 degrees field-of-view.
We selected images based on the following criteria: (1)
fundus photograph of the right eye; (2) clear visual-
ization optic disc and fovea; and (3) photographs
showing an intact (uncropped) retina. All images had
a resolution of 1280 × 935 pixels. DFA values were
measured by one author (K.E.G.) using ImageJ.24
The DFA of each image is determined as shown
in Figure 1. The images were divided by a ratio of 8:1
into model development data (n = 245) and holdout
testing data (n = 31). The study was approved by
the Institutional Review Board (IRB). Our IRB was
approved for de-identified fundus images only, there-
fore patient demographics and diagnosis were not
available.

Data Preprocessing

The image acquisition process produces a
protruding notch at the corner of each photograph

(Fig. 2). During generation of synthetic images, the
notch rotates with respect to image rotation. To elimi-
nate potential bias, we developed a novel algorithm
to remove the artifactual notch before rotation. First,
each image was converted to grayscale and represented
as a matrix of different values (0 = black and 255 =
white). A black filter was then applied to detect the
margin of the retina – forming a square. Using the
center and the diagonal line of the square (diameter
of circle), a circular mask was then generated and
overlaid on the image to remove the notch.

Data Synthesis

Static torsional data was artificially synthesized
by first rotating preprocessed images (n = 245) by
its measured DFA – yielding images with DFA =
0 degrees; all rotated images retained their original
resolution We defined DFA >0 degrees as extorsion
and DFA <0 degrees as intorsion. Two torsional
datasets were synthesized: a binary (intorsion [IN] and
extorsion [EX]) and a multiclass (physiologic intor-
sion [PHYSIIN], pathologic intorsion [PATHOIN],
physiologic extorsion [PHYSIEX], and pathologic
extorsion [PATHOEX]).

Previous studies suggest a mean physiologic DFA
for extorsion of 7.76 degrees± 3.63 degrees in adults.43
To generate the 2 EX classes in the multiclass dataset,
we defined physiologic and pathologic DFA ranges as 1
degrees to 7 degrees and 8 degrees to 20 degrees, respec-
tively.24 We assumed similar ranges for IN (i.e. physio-
logic = −7 degrees to −1 degrees; and pathologic =

Figure 2. Overview of novel algorithm for fundus image notch removal.
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Figure 3. Predefined DFA range for each class. DFA, disc-fovea angle; IN, intorsion; EX, extorsion; PATHOEX, pathologic extorsion; PATHOIN,
pathologic intorsion; PHYSIEX, physiologic extorsion; PHYSIIN, physiologic intorsion.

Figure 4. Comparison of real versus synthetic torsional data for
right eye intorsion and extorsion examples.

−20 degrees to −8 degrees) because there are limited
studies reporting DFA ranges for intorsion44 (Fig. 3).
Preprocessed images were rotated by the defined DFAs
for all four classes (Figs. 4, 5). Specifically, physiologic
DFAs were rotated by an increment of 0.5 degrees, and
pathologic DFAs by an increment of 1 degree. This
resulted in 3185 images per class. To compile the binary
dataset, we assigned all images in the multiclass dataset
with DFAs <0 degrees to the IN class (n = 6370), and
those withDFAs>0 degrees to the EX class (n= 6370).
Both datasets were divided into training, validation,
and testing sets by a ratio of 5:1:1.

Model Architecture

ResNet has been reported as a state-of-the-art image
classification model that resolves gradient vanishing
and overfitting problems.45 Two classification models
were developed using the ResNet architecture and
adoption of transfer learning.38,39 We initially devel-

oped a binary classifier (model 1) using the binary
dataset (intorsion versus extorsion). The architec-
ture incorporates the ResNet50 model. This is a 50
layers deep convolutional neural network (CNN) with
ImageNet (a large dataset of 1000 generic object classes
and about 1.2 million color images) pretrained model
weights loaded from the Keras library.45 We removed
the last fully connected layers containing 1000 neurons
(corresponding to ImageNet object classes) from the
original model. Two additional layers with 128 and
2 neurons, respectively, were stacked to the modified
network – each neuron corresponding to the 2 distinct
classes (i.e. IN and EX).

As the model was pretrained using ImageNet,
preceding layers only extract universal features (e.g.
edges and curves). To avoid overfitting and reduce
training time, all but the last two layers were frozen;
model weights at frozen layers were not updated
during the training process. Softmax activation46 was
used in the last layer to normalize the values into a
probability distribution over predicted output classes,
as shown in Equation 1 (where y represents the
input vector from fully connected layer, exp() the
standard exponential function, and n the number of
classes).

sof tmax(y)i = exp (yi)∑n
j exp (yi)

(1)

The multiclass classifier (model 2) used the multi-
class dataset to classify images into physiologic and
pathologic DFA ranges for both intorsion and extor-
tion. The architecture was identical to model 1’s except
for the output layer where the number of neurons was
increased to 4 – corresponding to the 4 output classes
(PATHOIN, PHYSIIN, PHYSIEX, and PATHOEX).

Model Training

Model 1 was trained for 20 epochs (the number
of complete iterations the algorithm makes through
the training dataset) on 9100 images and validated
on 1820 images (see Fig. 5). Model 2 was trained
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Figure 5. Pipeline for data preparation and model development. Preprocessing stage: The JHH dataset was split into a holdout testing
and model development datasets. Each photograph had the notch removed and DFA set at 0 degrees using rotation. Data synthesis stage:
Synthetic torsion photographs were generated using different predefined DFA ranges. Model development stage: The dataset was further
divided for the training, validation, and testing of both binary andmulticlass classifiers. JHH, Johns Hopkins Hospital; DFA, disc-fovea angle;
IN, intorsion; EX, extorsion; PATHOEX, pathologic extorsion; PATHOIN, pathologic intorsion; PHYSIEX, physiologic extorsion; PHYSIIN, physi-
ologic intorsion; model 1, binary classifier; model 2, multiclass classifier.

and validated using 2275 images per class (total =
9100) and 455 images per class (total = 1820), respec-
tively. The categorical cross-entropy loss function (CE
Loss)46 was used for bothmodels to quantify the differ-

ence between probability distributions of predicted
probabilities and ground-truth labels, as explained
in Equation 2 (where n, yi and ŷi represents the number
of classes, corresponding true label [0 or 1 for the
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current class], and probability for the current class from
the model output).

CE Loss = −
n∑

i = 1

yilogŷi (2)

We adopted Adam optimization,37 an extended
version of the stochastic gradient descent algorithm
with better computational efficiency, for model weights
decay with the default learning rate of 0.001.

Model Evaluation

Both models were evaluated on synthetic testing
data (n = 1820) with equal class representations. We
then externally validated the models on the holdout
testing set (n = 31: PATHOEX = 10; PATHOIN = 2;
PHYSIEX = 11; and PHYSIIN = 8). The class associ-
ated with the maximum probability after the softmax
activation layer was defined as the predicted class.
Predicted results were then compared with ground-
truth class labels.We calculated themodel performance
metrics, including the overall classification accuracy,
precision, sensitivity, specificity, and F1 score. All the
overall values except for accuracy were calculated based
on the macro-average metric for each class (i.e. the
sum of class-specific values divided by the number of
classes). The overall accuracy was calculated as the
number of correctly classified images divided by the
total number of images. The receiver operating charac-

teristic curves for each class were plotted along with the
corresponding area under the curve (AUC) values.

Gradient-Weighted Class ActivationMapping

To interpret the deep-learning model and better
understand its predictions, we generated heatmaps
to show important regions at different convolutional
layers for each image according to gradient-weighted
class activation mapping (Grad-CAM).44 Grad-CAM
uses the gradients of a certain target class to gener-
ate heatmaps highlighting important regions for the
predicted class. The heatmaps are then resized and
overlaid on the original image; warmer colors repre-
sent regions with the greatest contribution to a class
prediction.

Results

JHH Dataset

In the JHH dataset, DFAs ranged from −25.2
degrees to 19.8 degrees (Fig. 6A), with a mean and
median of 5.29 degrees and 5.30 degrees, respectively.
Extorsion represented 89.1% (n = 246), whereas only
3.62% (n = 10) of the images were intorsion; the
remaining 7.25% (n = 20) had no measurable torsion
(DFA = 0 degrees). For the holdout testing test (n =
31), the DFA ranged from −11 degrees to 20 degrees

Figure 6. DFA Distribution of (A) JHH Dataset (excluding DFA = −25.3 degrees) and (B) holdout testing set. DFA, disc-fovea angle; JHH,
Johns Hopkins Hospital.



Deep Learning Static Torsion TVST | January 2023 | Vol. 12 | No. 1 | Article 17 | 7

Table. Classification Performance of Both Models on The Different Testing Datasets (Synthetic and Holdout).
AUROC: Area Under the Receiver Operating Characteristic Curve

Model 1 (Binary Classifier): Tested on Synthetic Testing Set

Class Sensitivity Specificity Precision F1 Score AUROC No. of Images

EX 0.92 0.97 0.93 0.92 0.98 910
IN 0.93 0.96 0.92 0.92 0.98 910
Overall 0.93 0.97 0.93 0.92 0.98 1820
Overall accuracy 0.92

Model 1 (Binary Classifier): Tested on Holdout Testing Set

Class Sensitivity Specificity Precision F1 Score AUROC No. of images
EX 0.90 1.00 1.00 0.95 1.00 21
IN 1.00 0.94 0.83 0.91 1.00 10
Overall 0.95 0.97 0.92 0.93 1.00 31
Overall accuracy 0.94

Model 2 (Multiclass Classifier): Tested on Synthetic Testing Set

Class Sensitivity Specificity Precision F1 Score AUROC No. of images
PATHOEX 0.74 0.99 0.94 0.83 0.98 455
PATHOIN 0.79 0.98 0.90 0.84 0.97 455
PHYSIEX 0.73 0.91 0.67 0.70 0.91 455
PHYSIIN 0.82 0.90 0.65 0.72 0.92 455
Overall 0.77 0.95 0.79 0.77 0.94 1820
Overall accuracy 0.77

Model 2 (Multiclass Classifier): Tested on Holdout Testing Set

Class Sensitivity Specificity Precision F1 Score AUROC No. of images
PATHOEX 0.70 0.82 0.54 0.61 0.86 10
PATHOIN 1.00 0.74 0.15 0.27 0.79 2
PHYSIEX 0.09 0.91 0.33 0.14 0.70 11
PHYSIIN 0.00 0.92 0.00 0.00 0.18 8
Overall 0.45 0.85 0.26 0.26 0.65 31
Overall accuracy 0.32

(Fig. 6B). The intorsion class (n = 10) represented
32.2% of the total holdout testing set (PATHOIN =
2 and PHYSIIN = 8), whereas extorsion (n = 21)
accounted for the remaining 78.8% (PATHOEX = 10;
PHYSIEX = 11).

Model Performance

Key performance metrics are summarized in
the Table and Figures 7 and 8. Model 1 achieved
excellent classification performance with balanced
sensitivity and specificity on the synthetic testing set
and comparable performance on holdout testing set,
demonstrating generalizability. Model 2 achieved high
specificities and area under the receiver operating
characteristic curve (AUROC; 0.94) but relatively
lower sensitivities on all classes when tested on the

synthetic dataset. Low sensitivity and precision were
observed when we tested Model 2 on the holdout data,
indicating poor generalizability.

As shown in Figure 9, both models demon-
strated high classification accuracy at large DFAs.
Lower classification accuracies were observed at DFAs
close to its adjacent classes (i.e. DFA between 1
degree and −1 degree for model 1, and between
−8 degrees and 8 degrees for model 2), indicating
relatively weak classification performance at smaller
DFAs.

Class Activation Mapping

Class activation mapping analysis showed a gradual
shift in the activation loci with increased convolu-
tional layer depth (Fig. 10). The first few convolutional
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Figure 7. Receiver operating characteristic (ROC) curves showing the classification performance for (A) model 1, and (B) model 2 on the
synthetic testing set. IN, intorsion; EX, extorsion; PATHOEX, pathologic extorsion; PATHOIN, pathologic intorsion; PHYSIEX, physiologic extor-
sion; PHYSIIN, physiologic intorsion.

Figure 8. Confusion matrices showing the classification results for (A) model 1, and (B) model 2 on synthetic testing sets. IN, intorsion; EX,
extorsion; PATHOEX, pathologic extorsion; PATHOIN, pathologic intorsion; PHYSIEX, physiologic extorsion; PHYSIIN, physiologic intorsion.

Figure 9. Classification accuracy of both models at different DFAs when tested on synthetic data. DFA, disc-fovea angle.
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Figure 10. Original image (top left) and class activation mappings at different convolutional layers (from shallow to deep convolutional
layers) for an example image labeled as physiologic intorsion. Shallow layers showing low-level feature importance such as edges, and
deeper convolutional layers showing high-level feature importance (e.g. fovea and optic nerve).

layers capture local features (e.g. edges and repeti-
tive patterns) followed by large blood vessels in the
next few layers. Ensuing layers showed activation in
the optic disc and the fovea. The final layers had simul-
taneous activation in the optic disc, fovea, and retinal
region in between. This is analogous to the attention
of human experts while assessing DFAs in fundus
photographs.

Analysis Model 2’s Misclassification

Analysis of model 2’s misclassifications (false
positives and negatives), as shown in Figure 11, reveals
that the model failed mostly when images had DFAs
close to the upper and lower limits of the physiologic
and pathologic ranges for all four classes (normal or
pathological, intorsion, or extorsion).

Discussion

Evaluation of torsional eye movements is clini-
cally valuable to differentiate between central and
peripheral pathologies that can affect alignment such
as in patients with skew deviation or SOP. In the
clinical setting, fundus imaging is a reliable method
for objective measurement of ocular torsion using
the macula and optic disk as the major anatomi-
cal landmarks. Currently, such evaluation must be

performed manually on the fundus photograph and
automated methods are not available to improve
screening for pathologies that can affect ocular align-
ment in each eye. Such automated methods can be
clinically valuable to improve diagnosis and aid clini-
cians who are not trained in their specialty to detect
ocular motor abnormalities. Similar approaches with
using machine learning have been shown to be valuable
clinically in the field of neuro-ophthalmology.32–35

Here, we developed a binary classifier (differentiates
intorsion from extorsion), and a multiclass classifier
(characterizes torsion in pathologic and physiologic
DFA ranges) with deep learning using only synthetic
images generated from a small dataset (n= 245). In our
study, model 1 produced robust, reproducible results
(see the Table) that would make it suitable for clini-
cal practice as a screening tool for distinguishing skew
deviations from fourth nerve palsies. It can also help
localize lesions to the vestibulo-ocular pathways in
patients with acute vertigo without clear skew devia-
tion but possessing other features of an OTR (partial
OTR). Our multiclass classifier had a lower sensitivity
and poor generalization compared to the binary classi-
fier. Given the high false positive rate, model 2 might
be less helpful in screening patients with acute vertigo
and vertical diplopia.

Studies quantifying the DFA in vertical strabismus
have mainly involved patients with superior oblique
palsies, and the physiologic and pathologic ranges often
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Figure 11. Model 2’s misclassification DFA distributions for (A) physiologic intorsion, (B) pathologic intorsion, (C) physiologic extorsion,
and (D) pathologic extorsion. DFA, disc-fovea angle; FP, false positive; FN, false negative.

overlapped.24,47,48 Additionally, changes in vergence,
and the position of the eye relative to head, known to
influence the degree of torsion,49 were not accounted
for during fundus photography. Tight control of the
position of the eye in the orbit during fundus photog-
raphy might create a better distinction between physi-
ologic and pathologic ranges of the DFA. Further-
more, data on the ranges of the DFA in patients with
abnormal static torsion have not been correlated with
the degree of vertical misalignments. Therefore, differ-
entiating physiologic from pathologic static torsion
using current ranges of DFA is not useful clinically for
distinguishing skews from SOPs in the setting of acute
vertigo or vertical diplopia. More real-world data are
needed to establish better ranges of what is normal for
machine learning diagnosis.

When training small datasets, artificial data synthe-
sis and transfer learning are necessary. With advances
in generative adversarial network (GAN)-basedmodels
in artificial intelligence (AI) research, synthetic data is
increasingly used to overcome the scarcity of annotated
medical datasets.40–42,50 For the detection of static
ocular torsion from fundus photographs, the use of
synthetic images seems appropriate given the limited
datasets available containing the desired pathologies
(i.e. SOP and skew deviation). Furthermore, there is
evidence that synthetic images augment the perfor-
mance of medical image analysis using machine learn-
ing methods.40

For this study, the models were only required to
detect the position of the optic disc relative to the fovea.
Therefore, only basic image processing techniques
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(image rotation) were used to generate the synthetic
data, and no other fundus heterogeneity was added.
The synthetic data and image processing technique
was reviewed by the authors to accurately mimic
real fundus images and torsion from human subjects.
Therefore, given the robust performance of model 1
(see the Table, Figs. 7, 8) and its generalizability on
nonsynthetic data, we conclude that the generated
photographs were comparable to real fundus torsion
(see Fig. 4). Future synthetic fundus datasets for study-
ing other retinal and optic nerve pathologies will
require more fundus heterogeneity, and thus GAN-
based synthetic images might be a next step to test
models that detect torsion.51,52

The training of CNNs involves parallel computa-
tion and a massive number of floating-point opera-
tions, such as matrix and vector operations.46 Such
computing patterns are suitable for graphics process-
ing units (GPUs). As such, GPUs are more preferred
than central processing units (CPU) for the train-
ing of CNN.53 Because fundus photographs contain
biometric features, we conducted all the experiments
in an internal computing platform which does not
support GPU nodes to maintain data integrity. There-
fore, to accelerate the training process, transfer learn-
ing was used to tune the model weights in the last
two layers. Transfer learning increases the efficiency of
training models by only training network weights in a
few selected layers.38 This technique facilitates model
training within a reasonable timeframe (approximately
400 seconds per training epoch in our case) by using
less computational power – making it an efficient and
effective approach.

The model is considered “robust” if it generalizes
well on external datasets. Generalizability refers to the
model’s capacity at replicating results on unseen data.
In most cases, the training and real-world data are
different, and not identically distributed. This leads to a
distribution shift problem, which often causes the poor
generalizability of machine/deep learning models.54 In
our study, we created a holdout testing set to evaluate
the generalizability of our model (trained on synthetic
data) on real static ocular torsional data. When tested
on the holdout testing sets, model 1 generalized well to
real data, whereas model 2 did not (see the Table).

The multiclass classifier (model 2) did not gener-
alize well, probably for several reasons. First, our
holdout testing set only contained 31 images, with
only 10 images from the intorsion classes (PATHOIN
= 2 and PHYSIIN = 8). A larger and less skewed
holdout testing set with more examples from each
class would be better. Second, we used relatively simple
image processing techniques (image rotation and
notch removal) to generate synthetic images. Unlike

synthetic data generated using generative models, in
which several features of the source images are gener-
ated,41,42,51,52 only artificial ocular torsion was intro-
duced to our dataset. Therefore, there could still be
flaws in the data synthesis pipeline causing small differ-
ences between synthetic and real data, even though the
synthetic and real images seemed identical (see Fig. 4);
making it difficult to accurately explain the predictions
by the model.

Deep learning is a powerful tool for image classifi-
cation, yet knowing “why” it makes its predictions is
often unknown. We applied Grad-CAM to our model
to better understand its predictions with the idea that
deeper convolutional layers carry more deterministic
spatial information for model prediction.44 The Grad-
CAM output from our model (see Fig. 10) demon-
strated that the predictions are based on the spatial
information of the optic disc, the fovea, and the area
in between. This indicates that the model’s spatial focus
aligns with clinical expectations, suggesting its predic-
tions are trustworthy. One caveat, however, is that the
class activation maps were occasionally less reliable.
In addition, our method of generating synthetic
images may have biased the model into detecting only
changes in fundus torsion because most of the other
fundus features were relatively homogenous. As such,
future work should introduce other differences in the
synthetic images (e.g. hemorrhage, disc edema, retinal
ischemia, lens opacities, etc.) to determine whether
other factors influence the ability of themodel to detect
torsion.

Limitations

Since skew deviation and SOP fundus datasets are
rare, we generated synthetic fundus torsional images
to train our models. Although our model performed
well on synthetic datasets, it has some limitations. First,
model 2 does not generalize well on real data; classifi-
cation was less accurate with the holdout testing set.
Second, we did not address torsion for the left eye or
both eyes; however, others have successfully developed
models that distinguished between images from the left
and right eyes.35,39,55 Automated screening for skews
and fourth nerve palsies will be most useful when the
fundi of both eyes are assessed and compared. Third,
our holdout testing set was relatively small and not
balanced for all classes (more extorsions than intor-
sions). Finally, we have not verified the model perfor-
mance using other physiologic and pathologic datasets
from other institutions. Differences among datasets,
such as how images were acquired, the resolution of
images, and the characteristics of patients, might affect
the generalizability of the model.
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Conclusion

With data synthesis and transfer learning, different
types and degrees of ocular torsion can be detected
from fundus photographs using deep learning. Our
model has promising clinical applicability, although
some limitations still exist. In the future, model perfor-
mance can be further improved when greater and
more diverse datasets become available for training and
evaluation. Future models can be adopted to (1) aid
in the automated diagnosis of acute vertigo or vertical
diplopia without many modifications, and (2) monitor
treatment responses in neuro-ophthalmic, strabismic,
and neuro-vestibular diseases.

Acknowledgments

Disclosure:C.Wang, None;Y. Bai, None;A. Tsang,
None; Y. Bian, None; Y. Gou, None; Y.X. Lin, None;
M. Zhao, None; T.Y. Wei, None; J.M. Desman, None;
C.O. Taylor, None; J.L. Greenstein, None; J. Otero-
Millan, None; T.Y.A. Liu, None; A. Kheradmand,
None; D.S. Zee, None; K.E. Green, None

References

1. Brandt Th, DieterichM. Cyclorotation of the Eyes
and Subjective Visual Vertical in Vestibular Brain
Stem Lesions. Ann NY Acad Sci. 1992;656(1 Sens-
ing and C):537–549.

2. Diamond SG, Markham CH. Ocular counter-
rolling as an indicator of vestibular otolith func-
tion. Neurology. 1983;33(11):1460–1460.

3. Kingma H, Stegeman P, Vogels R. Ocular torsion
induced by static and dynamic visual stimulation
and static whole body roll. Europ Archives Oto-
Rhino-Laryngol. 1997;254(S1):S61–S63.

4. Leigh RJ, Zee DS. The Neurology of Eye Move-
ments. 5th edition. Cary, NC: Oxford University
Press; 2015.

5. Raps EC, Solomon D, Galetta SL, Liu GT, Volpe
NJ. Cyclodeviation in Skew Deviation. Am J Oph-
thalmol. 1994;118(4):509–514.

6. Sadeghpour S, Fornasari F, Otero-Millan J, Carey
JP, Zee DS, Kheradmand A. Evaluation of the
Video Ocular Counter-Roll (vOCR) as a New
Clinical Test of Otolith Function in Peripheral
Vestibulopathy. JAMA Otolaryngol Head Neck
Surg. 2021;147(6):518.

7. Schmid-Priscoveanu A, Böhmer DS.A Vestibulo-
Ocular Responses During Static Head Roll and
Three-Dimensional Head Impulses After Vestibu-

lar Neuritis. Acta Oto-Laryngologica. 1999;119(7):
750–757.

8. Schworm HD, Ygge J, Pansell T, Lennerstrand
G. Assessment of Ocular Counterroll during Head
Tilt Using Binocular Video Oculography. Investig
Ophthalmol Visual Sci. 2002;43(3):662–667.

9. Zingler VC, Kryvoshey D, Schneider E, Glasauer
S, Brandt T, Strupp M. A clinical test of otolith
function: static ocular counterroll with passive
head tilt: NeuroReport. 2006;17(6):611–615.

10. Dieterich M, Brandt T. Perception of Verticality
and Vestibular Disorders of Balance and Falls.
Front Neurol. 2019;10:172.

11. Green KE, Gold DR. HINTS Examination in
Acute Vestibular Neuritis: DoNot Look TooHard
for the Skew. J Neuro-Ophthalmol. 2021;41(4):
e672–e678.

12. Brandt T, Dieterich M. Skew deviation with ocu-
lar torsion: A vestibular brainstem sign of topo-
graphic diagnostic value. Ann Neurol. 1993;33(5):
528–534.

13. Brodsky MC, Donahue SP, Vaphiades M, Brandt
T. Skew deviation revisited.SurvOphthalmol. 2006;
51(2):105–128.

14. Halmagyi GM, Gresty MA, Gibson WPR. Ocu-
lar tilt reaction with peripheral vestibular lesion.
Annals Neurol. 1979;6(1):80–83.

15. Hotson JR, Baloh RW. Acute Vestibular Syn-
drome. New England J Med. 1998;339(10):680–
685.

16. Wong AMF. Understanding skew deviation and a
new clinical test to differentiate it from trochlear
nerve palsy. JAmAssoc Pediatric Ophthalmol Stra-
bismus. 2010;14(1):61–67.

17. Gold DR, Shin RK, Galetta S. Pearls and Oys-
ters: Central fourth nerve palsies. Neurology.
2012;79(23):e193–e196.

18. ShahM, Primiani CT, KheradmandA, GreenKE.
Pearls & Oy-sters: Vertical Diplopia and Ocular
Torsion: Peripheral vs Central Localization. Neu-
rology. Published online June 6, 2022, https://doi.
org/10.1212/WNL.0000000000200835.

19. Bielschowsky A. Lectures on motor anomalies of
the eyes: II. Paralysis of individual eye muscles.
Archives Ophthalmol. 1935;13(1):33.

20. Bielschowsky A. Disturbances of the vertical
motor muscles of the eyes. Archives Ophthalmol.
1938;20(2):175–200.

21. Yoo HS, Park E, Rhiu S, et al. A computerized red
glass test for quantifying diplopia. BMC Ophthal-
mol. 2017;17(1):71.

22. Lemos J, Subei A, Sousa M, et al. Differentiat-
ing Acute and Subacute Vertical Strabismus Using
Different Head Positions During the Upright-
Supine Test. JAMA Ophthalmol. 2018;136(4):322.

https://doi.org/10.1212/WNL.0000000000200835


Deep Learning Static Torsion TVST | January 2023 | Vol. 12 | No. 1 | Article 17 | 13

23. VersinoM,Newman-Toker DE. Blind spot hetero-
topia by automated static perimetry to assess static
ocular torsion: centro-cecal axis rotation in nor-
mals. J Neurol. 2010;257(2):291–293.

24. KangH, Lee SJ, ShinHJ, Lee AG.Measuring ocu-
lar torsion and its variations using different non-
mydriatic fundus photographic methods. Madigan
M, ed. PLoS One. 2020;15(12):e0244230.

25. Ehrt O, Boergen KP. Scanning laser ophthalmo-
scope fundus cyclometry in near-natural viewing
conditions. Graefe’s Arch Clin Exp Ophthalmol.
2001;239(9):678–682.

26. Lemos J, Eggenberger E. Clinical utility and
assessment of cyclodeviation. Curr Opinion Oph-
thalmol. 2013;24(6):558–565.

27. Jethani J, Seethapathy G, Purohit J, Shah D. Mea-
suring normal ocular torsion and its variation
by fundus photography in children between 5-15
years of age. Indian J Ophthalmol. 2010;58(5):417–
419.

28. Guyton DL. Ocular torsion: Sensorimotor prin-
ciples. Graefe’s Archive Clin Experim Ophthalmol.
1988;226(3):241–245.

29. Guyton DL. Ocular Torsion Reveals the Mech-
anisms of Cyclovertical Strabismus The Weisen-
feld Lecture. Investig Opthalmol Visual Sci.
2008;49(3):847.

30. Le Jeune C, Chebli F, Leon L, et al. Reliability and
reproducibility of disc-foveal angle measurements
by non-mydriatic fundus photography. Andley UP,
ed. PLoS One. 2018;13(1):e0191007.

31. Fleming C. Screening for Primary Open-Angle
Glaucoma in the Primary Care Setting: AnUpdate
for the US Preventive Services Task Force. Ann
Family Med. 2005;3(2):167–170.

32. Biousse V, Newman NJ, Najjar RP, et al. Optic
Disc Classification by Deep Learning versus
Expert Neuro-Ophthalmologists. Annals Neurol.
2020;88(4):785–795.

33. Vasseneix C, Najjar RP, Xu X, et al. Accuracy
of a Deep Learning System for Classification
of Papilledema Severity on Ocular Fundus Pho-
tographs. Neurology. 2021;97(4):e369–e377.

34. Milea D, Najjar RP, Jiang Z, et al. Artificial
Intelligence to Detect Papilledema from Ocu-
lar Fundus Photographs. New England J Med.
2020;382(18):1687–1695.

35. Liu H, Li L, Wormstone IM, et al. Develop-
ment and Validation of a Deep Learning Sys-
tem to Detect Glaucomatous Optic Neuropathy
Using Fundus Photographs. JAMA Ophthalmol.
2019;137(12):1353.

36. Shorten C, Khoshgoftaar TM. A survey on Image
Data Augmentation for Deep Learning. J Big
Data. 2019;6(1):60.

37. AkramMU, Abdul Salam A, Khawaja SG, Naqvi
SGH, Khan SA. RIDB: A Dataset of fundus
images for retina based person identification.Data
Brief. 2020;33:106433.

38. Weiss K, Khoshgoftaar TM, Wang D. A survey of
transfer learning. J Big Data. 2016;3(1):9.

39. Liu TYA, Ting DSW, Yi PH, et al. Deep Learn-
ing and Transfer Learning for Optic Disc Lateral-
ity Detection: Implications for Machine Learning
in Neuro-Ophthalmology. J Neuro-Ophthalmol.
2020;40(2):178–184.

40. Chen RJ, Lu MY, Chen TY, Williamson DFK,
Mahmood F. Synthetic data in machine learning
for medicine and healthcare. Nat Biomed Engin.
2021;5(6):493–497.

41. Frid-Adar M, Klang E, Amitai M, Goldberger J,
Greenspan H. Synthetic Data Augmentation using
GAN for Improved Liver Lesion Classification.
Published online January 8, 2018, https://doi.org/
10.48550/ARXIV.1801.02385.

42. Torfi A, Fox EA, Reddy CK. Differentially private
synthetic medical data generation using convolu-
tional GANs. Information Sciences. 2022;586:485–
500.

43. Jonas RA, Wang YX, Yang H, et al. Optic Disc -
Fovea Angle: The Beijing Eye Study 2011. Frish-
man L, ed. PLoS One. 2015;10(11):e0141771.

44. Selvaraju RR, Cogswell M, Das A, Vedan-
tam R, Parikh D, Batra D. Grad-CAM: Visual
explanations from deep networks via gradient-
based localization. Int J Comput Vis. 2020;128(2):
336–359.

45. He K, Zhang X, Ren S, Sun J. Deep residual
learning for image recognition. Published online
December 10, 2015. ARXIV preprint, https://doi.
org/10.48550/ARXIV.1512.03385.

46. Goodfellow I, Bengio Y, Courville A.Deep Learn-
ing. Cambridge, MA: MIT Press; 2017.

47. Korda A, Zamaro E, Wagner F, et al. Acute
vestibular syndrome: is skew deviation a central
sign? J Neurol. 2022;269(3):1396–1403.

48. Cherchi M. Utricular function in vestibular neu-
ritis: a pilot study of concordance/discordance
between ocular vestibular evoked myogenic poten-
tials and ocular cycloposition. Exp Brain Res.
2019;237(6):1531–1538.

49. Porrill J, Ivins JP, Frisby JP. The variation of
torsion with vergence and elevation. Vision Res.
1999;39(23):3934–3950.

50. Pakhomov D, Hira S, Wagle N, Green KE, Navab
N. Segmentation in Style: Unsupervised Seman-
tic Image Segmentation with Stylegan and CLIP.
arXiv:210712518 [cs]. Published online July 2021.
Accessed October 20, 2021, http://arxiv.org/abs/
2107.12518.

https://doi.org/10.48550/ARXIV.1801.02385
https://doi.org/10.48550/ARXIV.1512.03385
http://arxiv.org/abs/2107.12518


Deep Learning Static Torsion TVST | January 2023 | Vol. 12 | No. 1 | Article 17 | 14

51. Burlina PM, Joshi N, Pacheco KD, Liu TYA,
Bressler NM. Assessment of Deep Generative
Models for High-Resolution Synthetic Retinal
Image Generation of Age-Related Macular
Degeneration. JAMA Ophthalmol. 2019;137(3):
258–264.

52. Guo J, Pang Z, Yang F, Shen J, Zhang J. Study on
the Method of Fundus Image Generation Based
on Improved GAN. Mathemat Problems Engin.
2020;2020:1–13.

53. Li X, Zhang G, Huang HH, Wang Z, Zheng W.
Performance Analysis of GPU-Based Convolu-
tional Neural Networks. In: 2016 45th Interna-

tional Conference on Parallel Processing (ICPP).
IEEE; 2016:67–76. Available at https://www2.
seas.gwu.edu/∼howie/publications/GPU-CNN-
ICPP16.pdf.

54. ZhouK, Liu Z,QiaoY,Xiang T, LoyCC.Domain
Generalization: A Survey. Published onlineMarch
3, 2021; last revised August 12, 2022, https://doi.
org/10.48550/ARXIV.2103.02503.

55. Liu C, Han X, Li Z, et al. A self-adaptive
deep learning method for automated eye later-
ality detection based on color fundus photog-
raphy. Paranhos A, ed. PLoS One. 2019;14(9):
e0222025.

https://www2.seas.gwu.edu/10howie/publications/GPU-CNN-ICPP16.pdf
https://doi.org/10.48550/ARXIV.2103.02503

