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Abstract

Adolescence is a critical period of structural and functional neural maturation among regions 

serving the cognitive control of emotion. Evidence suggests that this process is guided by 

developmental changes in amygdala and striatum structure and shifts in functional connectivity 

between subcortical (SC) and cognitive control (CC) networks. Herein, we investigate the extent 

to which such developmental shifts in structure and function reciprocally predict one another 

over time. 179 youth (9–15 years-old) completed annual MRI scans for three years. Amygdala 

and striatum volumes and connectivity within and between SC and CC resting state networks 

were measured for each year. We tested for reciprocal predictability of within-person and between-

person changes in structure and function using random-intercept cross-lagged panel models. 

Within-person shifts in amygdala volumes in a given year significantly and specifically predicted 
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deviations in SC-CC connectivity in the following year, such that an increase in volume was 

associated with decreased SC-CC connectivity the following year. Deviations in connectivity did 

not predict changes in amygdala volumes over time. Conversely, broader group-level shifts in 

SC-CC connectivity were predictive of subsequent deviations in striatal volumes. We did not see 

any cross-predictability among amygdala or striatum volumes and within-network connectivity 

measures. Within-person shifts in amygdala structure year-to-year robustly predicted weaker SC-

CC connectivity in subsequent years, whereas broader increases in SC-CC connectivity predicted 

smaller striatal volumes over time. These specific structure function relationships may contribute 

to the development of emotional control across adolescence.
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Striatum; Emotional control; Development; Structure-function relationships; Structural Equation 
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1. Introduction

Many recent studies have focused on understanding functional resting-state brain networks, 

and their patterns of intra- and interconnectivity. Briefly, resting-state networks are groups 

of brain regions whose activity patterns correlate during unstructured time (i.e., rest), 

and are commonly assessed using functional MRI (fMRI; Lv et al., 2018; Shen, 2015). 

Despite being assessed at rest, many of the identified networks are implicated in cognitive, 

emotional, and sensorimotor functioning during tasks (Dwyer et al., 2014; Marek et al., 

2015; Rosazza and Minati, 2011). For example, a commonly identified “cognitive control” 

network is comprised of structures spanning mainly frontal and parietal regions, which 

are commonly active during tasks requiring attentional control, emotional control, and 

high-level reasoning (Agcaoglu et al., 2019; Heller et al., 2016; Jung and Haier, 2007; 

Petersen and Posner, 2012; Spooner et al., 2019; Taylor et al., 2021, 2020). Likewise, 

the “subcortical” network, although somewhat more ambiguously named with respect to 

function, is commonly implicated in a wide array of abilities like emotional control and 

reward processing (Agcaoglu et al., 2019; Cerliani et al., 2015; Gabard-Durnam et al., 2014; 

Heller et al., 2016). Functional connectivity between these two networks is known to be 

associated with cognitive control in the face of emotional cues (Heller et al., 2016), and is 

developmentally sensitive (Casey et al., 2019; van Duijvenvoorde et al., 2016).

Throughout childhood and adolescence, the neural circuitry underlying emotional control 

is continually being refined, with some evidence suggesting a shift from subcortically-

driven (e.g., amygdala, striatum) to more cortically-driven mechanisms (e.g., prefrontal 

cortex) underlying decision-making processes in the face of emotional stimuli (Casey et 

al., 2016; Casey, 2015; Heller et al., 2016; van Duijvenvoorde et al., 2016). The net 

result of this maturation is a modification of behavior away from impulsive reactions 

to more methodical, rational responses to emotional cues. Research suggests that some 

degree of reduction in subcortical-cortical connectivity, with a shift in balance toward 

cortically-guided mechanisms as a function of age could be considered normative, ultimately 

supporting more mature cognitive-emotional functioning in the case of healthy development 
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(i.e., free of psychopathologies; Cerliani et al., 2015; Pfeifer and Allen, 2012; Rubia, 

2013). However, the literature in this area is decidedly mixed (Lucian, 2013). For instance, 

several studies have shown that decreased subcortico-cortical connectivity is associated 

with depression in adolescents and adults (Connolly et al., 2017; Heller et al., 2009). 

Alternatively, others have shown that increases in connectivity are associated with greater 

cognitive control in the face of emotional cues (Heller et al., 2016). Although there is limited 

consensus on the nature of “normative” change in connectivity patterns, there is generalized 

agreement that the nature of connectivity between cortical and subcortical regions of the 

brain is changing over the course of adolescent development; much recent work highlights 

a shift toward cortically-driven mechanisms of cognitive control of emotions (Casey et al., 

2019).

This shift from “bottom-up” to “top-down” connectivity patterns serving emotional control 

across development is believed to result from maturational changes in brain structure, 

though the exact mechanisms are yet unclear (Casey, 2015; van Duijvenvoorde et al., 

2016). One candidate structure that may contribute to changes in emotional control-related 

functional connectivity is the amygdala (Bickart et al., 2014; Giedd et al., 1996; Graham et 

al., 2016; Sato et al., 2020). The amygdala has been repeatedly identified as a key hub in 

emotional reactivity, motivation, and decision-making (Bickart et al., 2014; He et al., 2017; 

Jung et al., 2018; Luciana and Collins, 2012; Ochsner et al., 2012; Ochsner and Gross, 2005; 

Sato et al., 2020; van Duijvenvoorde et al., 2016; Warnell et al., 2018). Research has shown 

only minor deviations in amygdala structure (e.g., volume) across development, though such 

modulations can have systemic, varied impacts on overall cognitive-emotional functioning 

and well-being (Gabard-Durnam et al., 2014; Graham et al., 2016; He et al., 2017; Rogers et 

al., 2017).

Studies reporting associations between amygdala structure and functional outcomes have 

been mixed. For instance, anxiety symptoms and anxious behaviors have been associated 

with both larger and smaller amygdala volumes in youths (Qin et al., 2014; Warnell et 

al., 2018). Volumetric variability has also been differentially associated with risk tolerance 

(Jung et al., 2018) and aberrant threat processing (Saxbe et al., 2018). The disparity in 

associations between amygdala structure and psychological health is in part due to the 

fact that these individual variations are dependent on experiences like exposure to stress 

and trauma at different stages of development, as well as epigenetic factors like familial 

predisposition to psychological disorders (Evans et al., 2016; Merz et al., 2018; Monk, 2008; 

Pechtel et al., 2014). As such, it is notoriously difficult to disentangle the nature of these 

structure-function associations. Still, some research suggests that minute individual-level 

variability in amygdala structure over time may actually be driven by changes in functional 

connectivity within key brain networks across development (Saygin et al., 2015).

Thus, although limited, the available evidence hints at a reciprocal pattern of neural 

development underlying the maturation of cognitive-emotional control. In other words, 

changes in functional connectivity over time may shape individual variability in amygdala 

structure, and such volumetric shifts in the amygdala may impact the refinement of 

functional network connectivity across development (Casey, 2015; Saygin et al., 2015; van 

Duijvenvoorde et al., 2016). However, studies to date have yet to directly test this; any 
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reciprocal relationship between amygdala volume and functional connectivity pertinent to 

the cognitive control of emotion in developing youth remains speculative.

The purpose of the present investigation was to determine whether amygdala volumes 

relate to the strength of intra- and inter-network connectivity (i.e. functional connectivity 

or its network analog functional network connectivity or FNC) within subcortical (SC) and 

cognitive control (CC) networks, both of which are heavily implicated in the cognitive 

control of emotion and have been robustly constructed and vetted in prior work (Agcaoglu et 

al., 2019). We leveraged data from a large multi-site study of typically developing children 

and adolescents who were assessed annually for three years. Based on the extant literature, 

we hypothesized reciprocal predictability of changes in amygdala volumes and longitudinal 

patterns of FNC over time. Given the exploratory nature of this work, we additionally 

assessed relationships between FNC and other relevant neural substrates, including regions 

within the SC and CC functional networks and other critical limbic structures, as well as 

relationships between the amygdala and other FNC measured during resting state. This 

allowed us to assess the specificity of the relationships detected between the targeted SC and 

CC networks and amygdala volumes.

2. Materials and methods

2.1. Participants

In total, 215 typically developing youth between the ages of 9 and 15 years-old (M = 11.72 

years, SD = 1.78; 106 male) were recruited from two data collection sites to participate in 

the Developmental Chronnecto-Genomics Study (Dev-CoG; Stephen et al., 2021). Each 

participant was invited to complete MRI scans annually for three consecutive years. 

Exclusionary criteria for the study, determined through parent report, included diagnosis 

of a neurological, developmental, or substance use disorder, use of pharmaceuticals that 

impact central nervous system functioning, and presence of metal that could not be removed 

from the body, including braces, permanent retainers, and implanted medical devices. Before 

beginning study procedures, all parents of youth participants signed informed consent forms, 

and youth signed assent forms. All study protocols were approved by the appropriate 

institutional review board for each study site.

2.2. Structural MRI acquisition and analysis

Participants underwent a structural T1-weighted MRI scan during each visit. Children 

recruited at one site were scanned using a Siemens 3T Skyra scanner, and those at the 

second site were scanned using a Siemens 3T TIM Trio. Structural T1-weighted MR images 

at both sites were acquired with a 32-channel head coil and a MP-RAGE sequence with the 

following parameters: TR = 2400 ms; TE = 1.94 ms; flip angle = 8°; FOV = 256 mm; slice 

thickness = 1 mm (no gap); base resolution = 256; 192 slices; voxel size = 1 × 1 × 1 mm. 

The T1-weighted structural brain images of all participants were processed using Freesurfer 

software version 5.3 (http://surfer.nmr.mgh.harvard.edu). Gray matter volume estimates were 

computed for the 70 Desikan-Killiany atlas regions (34 regions per hemisphere, plus left 

and right hemisphere). We followed the ENIGMA protocol for quality assurance, including 

performing visual checks on all cortical segmentations (http://enigma.usc.edu/protocols/
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imaging-protocols) and checking for motion among other artifacts. Participants with large 

motion artifacts were excluded. In addition, histograms of all regional values were computed 

for visual inspection; no cortical segmentations were flagged during these quality control 

inspections. For each year of the study, we extracted the left and right amygdala volumes. 

Bilateral volumes were averaged and normalized by dividing by the total brain volume per 

participant to avoid bias due to differences in head size. In follow-up exploratory analyses 

we examined hippocampus, striatum, and medial orbitofrontal cortex volumes, which were 

also averaged across hemispheres and corrected for total brain volume. Regions were 

selected based on their known integration with cognitive-emotional control mechanisms 

(Fox et al., 2015), as well as their direct involvement in the identified SC and CC networks 

(Agcaoglu et al., 2019).

2.3. Functional MRI acquisition and processing

Functional and structural MRI acquisition occurred during the same scan session in each 

year of the study. To assess functional network connectivity, a total of 650 volumes of 

echo planar imaging BOLD data were collected during eyes open rest with the following 

parameters: TR = 0.46 s, TE = 29 ms, FA = 44°, and a slice thickness of 3 mm with no gap. 

Rs-fMRI scans were acquired using a standard gradient-echo echo planar imaging paradigm; 

site 1: FOV of 268 × 268 mm (82 × 82 matrix), 48 sequential axial slices; site 2: FOV of 246 

× 246 mm (82 × 82 matrix), 56 sequential axial slices.

Complete details of the preprocessing and analysis are detailed in Supplementary Materials, 

and in a previous publications (Agcaoglu et al., 2020, 2019). Briefly, scans were 

corrected for head motion and differences in slice timing, followed by despiking to 

reduce outliers. Data were warped into Montreal Neurological Institute (MNI) space (http://

www.mni.mcgill.ca), and subsequently rewarped to a study-specific template due to the age 

range of the participants (Agcaoglu et al., 2020, 2019). Group independent component 

analysis (ICA; Calhoun et al., 2001; Calhoun and Adali, 2012) of the preprocessed 

functional data yielded 150 spatially-independent components, 51 of which were identified 

as components comprising seven different resting state networks. FNC was measured 

as the average Pearson correlation between different resting state network time courses 

(Supplementary Table S7). The present study focused on the connectivity within and 

between the SC and CC networks. The SC network was comprised of connectivity among 

putamen and thalamic areas, and the CC network was comprised of connectivity among 

largely frontal and parietal regions, as well as some key temporal areas (for complete details, 

see Supplementary Table S7). For exploratory analyses, we also examined FNC within the 

visual, auditory, and sensorimotor networks.

2.4. Statistical analysis

The present study aimed to explore the extent to which amygdala volumes and both 

within and between-network FNC among the subcortical and cognitive control networks 

reciprocally impact one another over time in typically developing youth. Thus, we utilized 

a random intercept cross-lagged panel approach (RI-CLPM; Hamaker et al., 2015; Kline, 

2005; Mund and Nestler, 2019) to explore the interrelationships between FNC and amygdala 

volumes both at the stable trait level, and at the within-person state level (see Fig. 1).
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Briefly, the model structure defines a random intercept for each measure of interest, which 

subsumes between-level (trait-based) variance in each measure over time. The remaining 

within-person variance in each measure is state-based and represents minute individual 

differences (i.e., temporary increases or decreases from one’s typical score) that occur 

within each time point. The model structure accounts for stability of within-person variance 

in a given measure over time (autoregressive paths) as well as the dynamic influences of 

measures on each other (cross-lagged paths).

We followed best practices for defining our model in the present study (Dietvorst et al., 

2018; Fetvadjiev and He, 2019; Hamaker et al., 2015; Nelemans et al., 2019). We started 

with a freely estimated model in which all autoregressive paths, cross-lagged paths, and 

within-person correlations were allowed to freely vary. We then constrained the model in 

a stepwise manner to assess the non-stationarity of the underlying within-person processes. 

After each constraint, we assessed change in model fit using a chi-square difference test. 

After determining the most parsimonious model with the best fit, we compared the RI-

CLPM to a standard cross-lagged panel model (i.e., a model without the between-person 

latent variables), and compared model fit to determine whether accounting for trait-level 

effects improved model fit. In other words, the more traditional CLPM does not disentangle 

within- from between-person level variance, and instead operates at the coarser grain of 

“group-level” statistics.

Complete details of model fitting for each of the three models tested (amygdala volume 

related to 1) intrinsic SC, 2) intrinsic CC, and 3) between-network SC-CC connectivity) 

are provided in the Supplementary Materials. Only the results of the best fitting models are 

described further in the main text. Model fit was assessed using common standards (Hu 

and Bentler, 1999), including a non-statistically significant chi-square, root mean square 

error of approximation (RMSEA) < .06, comparative fit index (CFI) > .95, and standardized 

root mean residual (SRMR) < .08. Analyses were completed in Mplus version 8.1 using 

full-information maximum likelihood (FIML) estimation for missing data.

Of note, we incorporated control variables of age at time 1, sex (0 = male, 1 = female), 

and data collection site (0 = site 1, 1 = site 2). We expected study site would be best 

modeled as a control variable on between-level variables (if the best-fitting model was 

a RI-CLPM), and that age and sex would be best modeled as control variables on within-

person variables given the relatively dynamic nature of age- and sex-related neurological 

maturation over time. However, we did test whether control variables were better suited to 

the between-person variables in RI-CLPMs given the exploratory nature of the data. Testing 

of control variables is detailed in Supplementary Materials.

3. Results

3.1. Demographics and descriptive statistics

In total, 36 participants were excluded from final analyses (n = 10 had no data available 

for any MRI scans; n = 26 had either no structural MRI or no resting-state FNC available 

for any year of the study). Thus, the final sample was comprised of 179 youth (M = 11.90 

years, SD = 1.70; 92 male). For a detailed overview of recruitment, scans completed, and 
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retention over years of the study, see Supplemental Figure S1. Of note, youth who had data 

did not differ from those who did not have quality data or who discontinued participation 

across years of the study with respect to sex or study site (χ2 = .006 to 2.09, ps = .15 to .94). 

Youths who continued versus those who discontinued in Year 2 did not differ by age (t = .58, 

p = .56), though youths who continued on to year 3 of the study were slightly younger at the 

time of their first visit (t = 2.27, p = .024; Mcont. = 11.51 years, SD = 1.66; Mdiscont. = 12.11 

years, SD = 1.69). The average time between visit 1 and visit 2 was 1.13 years (SD = .20), 

and between visit 2 and visit 3 was 1.08 years (SD = .21). Descriptive data and correlations 

between amygdala volumes and SC-CC connectivity among the final sample are provided in 

Table 1 and Supplementary Table S1, respectively.

3.2. Intrinsic connectivity models

A fully constrained traditional cross-lagged panel model (CLPM) was the best-fitting 

structure for the models of both SC and CC intrinsic connectivity related to amygdala 

volumes. In other words, neither model incorporated the latent between-person trait effect, 

and the autoregressive paths, cross-lagged predictions, and within-person correlations were 

all constrained over time (see Table 2, Supplementary Table S2 and Fig. S2). Thus, the 

results can be interpreted as “group-level” findings. Of note, the inclusion of age, sex, 

and site as control variables significantly harmed model fit, thus the final model did not 

incorporate these variables.

Results for the SC network connectivity model indicated that amygdala volumes were stable 

over time (αs = .58 and .83, ps < .001), as was SC network connectivity (δs = .43 and 

.41, ps < .001). Cross-lagged predictions revealed no significant reciprocal effects between 

amygdala volumes and connectivity (βs and γs = .004 to .019, ps = .67 to .96). Correlations 

at each time point were small, and none reached statistical significance (rs = −.13 to .10, ps 

= .20 to .52). The findings were similar for the CC network connectivity model. CC network 

connectivity was stable over time (δs = .39 and .48, ps < .001); stability of amygdala 

volumes was the same as in the SC network model (αs = .58 and .83, ps < .001). Again, 

there were no reciprocal influences among amygdala volumes and CC network connectivity 

over time (βs and γs = −.027 to .16, ps = .25 to .64). And again, correlations at each time 

point were small and non-statistically significant (rs = −.089 to .15, ps = .26 to .51).

3.3. SC-CC internetwork connectivity model

The best-fitting model of between-network SC-CC connectivity related to amygdala 

volumes was a full RI-CLPM that included constrained autoregressive and cross-lagged 

predictions and constrained within-person correlations over time. The inclusion of between-

person (trait) effects, which were regressed onto control variables of age at time 1, sex, and 

study site, were key to the model’s excellent overall fit (χ2 (14) = 20.98, p = .10; RMSEA 

= .05, 90% CI [.00, .10]; CFI = .95; SRMR = .09). Results of the final model are detailed in 

Fig. 2 and Table 3.

The between-person effects represent the stable trait-level variance across all three years of 

the study; the correlation between them indicates the degree to which trait-level variance 

in amygdala volumes is related to trait-level variance in SC-CC connectivity. There was a 

Taylor et al. Page 7

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strong positive correlation between the two traits suggesting that youth who generally had 

larger amygdala volumes also tended to have stronger SC-CC connectivity, though the effect 

was not statistically significant (φ = .50, p = .45; Figs. 2 and 3).

Of note, there was a significant effect of age on FNC, such that older youth tended to 

have lower (or more negative) average SC-CC connectivity. Additionally, there was an effect 

of sex on amygdala volumes, which implied that females tended to have larger amygdala 

volumes (corrected for total brain volume) on average relative to males. There were no 

significant effects of data collection site (Table 3).

Examination of within-person stability (i.e., autoregressive paths) indicated that individual-

level deviations in amygdala volumes tracked over time; youth who generally had larger 

amygdala volumes at one point continued to have larger amygdala volumes at subsequent 

time points (see Table 3, Figs. 2 and 3). The same stability was not found for SC-

CC connectivity metrics; individual-level deviations in connectivity over time were not 

significantly predicted by deviations in prior years. Interestingly, cross-lagged predictions 

revealed significant effects of amygdala volumes on SC-CC connectivity. Youth who had 

increases in amygdala volumes in a given year relative to their overall average volumes 

exhibited decreased SC-CC connectivity in the subsequent year (see Table 3 and Fig. 

2). Importantly, within-person deviations in SC-CC connectivity were not significantly 

associated with subsequent individual-level deviations in amygdala volumes. With respect 

to within-person correlations, there was a small-to-moderate negative association between 

individual-level deviations in amygdala volumes and SC-CC connectivity. However, none of 

the correlations were statistically significant (rs = −.55 to −.19, ps = .32 to .49).

3.4. Additional exploratory comparison models

We tested a series of exploratory models to probe the specificity of effects detected in 

our main analyses, which were focused on potential reciprocity in amygdala volumes 

and SC and CC FNC. In one set of models, we examined the associations between 

amygdala volumes and intrinsic FC in three other networks (auditory, sensorimotor, and 

visual networks). Results are reported in Supplementary Table S4. In brief, there were no 

significant cross-predictions between volumes and networks in any of the models.

In a second set of exploratory models, we separately tested associations between 

hippocampal, striatum, and medial orbitofrontal cortex volumes and our three primary 

connectivity metrics of interest (SC, CC, and SC-CC). Full results are reported in Table 

4 and in Supplementary Tables S5–6. There were no significant associations between 

hippocampal volumes or medial orbitofrontal cortex volumes and any FNC measures of 

interest, as indicated by cross-predictive paths in the best-fitting models (Tables S5 and 

S6). Only striatum volumes showed significant associations with between-network SC-CC 

connectivity (Table 4).

The final model, which had good fit, was a traditional CLPM (i.e., group-level) in which 

correlations freely varied across time points, but autoregressive paths and cross-predictive 

paths were constrained to be equal over time. Most interestingly, FNC significantly 

predicted striatal volumes over time, such that greater SC-CC between-network connectivity 
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at one time tended to precede smaller striatal volumes in the subsequent year of the 

study. Additionally, striatum volumes and FC measures were both stable over time. 

Generally, larger striatal volumes at one time point were associated with larger volumes 

at the subsequent point, and stronger SC-CC connectivity at one point was associated 

with stronger connectivity at the following time (Table 4). Correlations between FNC 

and striatum volumes were only significant at time 3 and suggested that greater SC-CC 

connectivity was associated with smaller striatum volumes.

4. Discussion

The present study investigated whether amygdala volumes and patterns of intra- and inter-
network FNC in the SC and CC networks were reciprocally related over time in a large 

cohort of typically developing youth. Our key finding was that individual-level changes in 

amygdala structure predicted shifts in FNC over time, but the opposite relationship (i.e., 

FNC predicting volumetric changes) was virtually non-existent. Specifically, we found that 

within-person increases in amygdala volumes in a given year robustly predicted decreases 
in functional connectivity between the SC and CC networks in subsequent years. However, 

within-person variability in connectivity metrics did not predict subsequent deviations in 

amygdala volumes in kind. Interestingly, our exploratory follow-up analyses linking striatum 

volumes to FNC indicated robust predictive associations whereby group-level increases in 

SC-CC connectivity in one year were associated with significantly smaller striatum volumes 

in subsequent years. We discuss our findings in detail below.

Our data indicated a robust effect wherein individual-level deviations (from average) in 

amygdala volume in one year predicted fluctuations in SC-CC connectivity the following 

year, which largely supported previous literature suggesting that structural morphology 

drives the refinement of network connectivity in the brain (Casey et al., 2016; Casey, 

2015; van Duijvenvoorde et al., 2016). Some prior reports have suggested that connectivity 

between SC and CC networks decreases over time during normative development, signaling 

the shift from “bottom-up” to “top-down” control of emotion (Cerliani et al., 2015; 

Rubia, 2013; van Duijvenvoorde et al., 2019). Thus, our data might suggest that within-

person increases in amygdala volumes support the expected refinement in FNC across 

development. Perhaps a temporary proliferation in gray matter at one point provides a 

foundation for developing and pruning connections throughout the brain, thereby shaping 

the nature of internetwork connectivity (Baker et al., 2015; Huttenlocher and Dabholkar, 

1997; Kharitonova et al., 2013). This process is seen in other areas of neurocognitive 

development and functioning, such as memory formation and recall abilities (Liljenström, 

2010), and the development of reading skills (Linkersdörfer et al., 2014).

On the other hand, there is also the possibility that our data are suggestive of risk for 

future psychopathology, like the onset of mood disorders. Some prior studies have shown 

that decreased subcortico-cortical connectivity is associated with depression in adolescents 

(e.g., Connolly et al., 2017; Heller et al., 2009). In particular, the detected individual-

level variability in SC-CC connectivity in the present study may be capturing nuanced 

with-person deviations indicative of psychopathological risk. Future works could include 

self-reported psychological symptom measurements coincident with neuroimaging to better 
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assess the nature of these neurological shifts. Further work is needed to disentangle the 

functional relevance of these data, but herein we provide a lens with which to understand 

distinct aspects of structure-function relationships in developing youth.

It is critical to keep in mind that these effects were found at the individual-level. That 

is, within-person changes in amygdala volumes were associated with subsequent within-

person shifts n SC-CC connectivity. This effect was best captured at the within-person level 

rather than the group-level, which might suggest more nuanced individual-level drivers of 

the neurological changes. Future works should dive deeper into the mechanisms through 

which individual-level variability arises and manifests in longitudinal changes in FNC. For 

instance, personal environmental factors (White et al., 2019), exposures to major stressors/

events (Blair et al., 2019), and shifts in pubertal status (Fung et al., 2020) are all known to 

influence neural structure and function, and may all play critical roles in the individual-level 

changes detected in the present study. Future investigations detailing these types of personal 

factors will help shed light on the degree to which these neurological shifts are normative, 

protective, or otherwise.

Interestingly, age and sex effects were best modeled as control variables on the group-level 

effects of FNC and amygdala volumes, rather than the individual-level effects as we had 

hypothesized. The data suggest that these factors may be more broadly applicable at the 

group level, and that changes at the individual-level are more specific to personal factors 

that vary from one person to another. Previous work has identified a number of individual 

factors that can impact both neural structure and function, including exposure to stress and 

trauma (Cohodes et al., 2021; McLaughlin et al., 2019), genetics (Berardi et al., 2015), and 

socioeconomic disadvantage (Barch et al., 2016; Rakesh et al., 2021; Whittle et al., 2017). 

Further, other indices of development and maturation might provide more unique insights 

into within-person variability in structure-function relationships. For instance, previous 

studies have shown unique effects of pubertal staging and sex hormones on aspects of brain 

structure and function (Fung et al., 2020; Koolschijn et al., 2014; McHenry et al., 2014; 

Petro et al., 2021; van Duijvenvoorde et al., 2019). Thus, it is reasonable to hypothesize 

that these metrics, which were not fully captured in the present study, may also influence 

the nature of structure-function relationships. Future work should continue to explore how 

such personal factors specifically shape the trajectory of within-person changes in structure-

function relationships.

Contrary to the extant literature (e.g., Saygin et al., 2015), we did not find that FNC was a 

driver of changes in amygdala volumes across development. However, we did note a robust 

group-level cross-predictive association wherein generalized increases in SC-CC FNC were 

associated with subsequent decreases in striatal volumes. Importantly, these findings were 

distinct from the amygdala findings previously described, which were based on individual-

level shifts. The fact that striatum-related findings were best described at the group level 

suggests that these neurological shifts are more consistent across the full study sample, 

and may be described in terms of more “common” or “typical” changes in brain structure 

and function across adolescence. The striatum in a known driver in such processes as 

habit formation and reinforcement learning, with much recent literature focused on reward 

processing (Cardinal et al., 2002; Casey et al., 2019; Costa et al., 2016; Ousdal et al., 2012). 
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Importantly, some research suggests that decreases in striatal volumes during adolescence 

are normative, and that aberrations in this pattern of decreasing volumes with time are 

associated with the onset of depressive disorders (Ostby et al., 2009; Whittle et al., 2014). 

Thus, one might conclude from the present study that broad, group-level increases in SC-CC 

connectivity over time are potentially beneficial to healthy development and refinement 

of neural substrates critical in mental health. Of course, this requires further investigation 

and targeted approaches to assessing neurocognitive and psychological linkages to shifts in 

SC-CC connectivity over time.

Given models of development suggesting that adolescence is characterized by a shift 

from subcortico-subcortical, to subcortico-cortical, and finally to cortico-cortical drivers of 

emotional control (Casey et al., 2019; Rosenberg et al., 2018), is it plausible that broad 

increases in SC-CC connectivity in this period of early adolescence could be integral 

in shaping and refining neural structure within key substrates including the striatum. Of 

note, all of our findings in the present study were specific to SC-CC FNC, with limited 

structure-function associations between any of the explored neural structures and intrinsic 

connectivity in the tested networks. It is possible that different definitions of the functional 

networks, or exploration of different regional volumes may yield more fruitful discussion 

of structure-function relationships with respect to intrinsic network connectivity metrics. 

Additionally, further work should explore how these relationships between connectivity 

and structure shift in later periods of adolescence, when we would expect youth would 

be reaching maturity and shifting to cortico-cortical connectivity as the primary driver of 

emotional processing. It is possible that in later periods of development, we might see a shift 

in which intrinsic connectivity in the CC network becomes a more major player, and more 

consistently associated with shifts in neural structure.

Before closing we must note several limitations of the present investigation. First, we 

utilized resting state rather than task-based FNC metrics, which limits the generalizability 

of our findings to cognitive constructs of interest. Prior studies have shown that resting 

FNC data is well-associated with task-based measures (Dwyer et al., 2014). However, 

future work should consider examining the nature of shifts in FNC elicited during tasks 

targeting specific neurocognitive systems to further decipher the nature of structure-function 

relationships over time. Further, studies should consider employing neuropsychological 

testing or other behavioral measures in this type of work, with interpretability in mind. 

Utilizing robust neuropsychological assessments may enable the identification of the 

cognitive and emotional systems affected by specific trajectories of change in structure-

function maturation. Another potential limitation is the definition of functional networks 

in the current study. We utilized robustly defined networks that were previously identified 

by Agcaoglu et al. (2020, 2019). However, this represents only one possible configuration 

of what are broad networks, which are disparately defined across the literature. Further 

investigation of other network configurations would be fruitful for determining the 

generalizability of these findings. Further, different structural delineations could shed 

additional light on the noted structure-function relationships. For instance, explorations 

of structural connectivity via diffusion tensor imaging would afford a new lens for 

understanding how neural structure and function influence one another over time. Finally, 

additional work is needed to understand what mechanisms may be driving the noted 
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neurodevelopmental shifts over time. For instance, examination of clinical symptom sets 

(e.g., anxiety, depression), environment (e.g., stressors/traumatic experiences, enrichment 

opportunities), and other individual differences (e.g., genetics, hormonal fluctuations and 

pubertal staging) may drive changes at the within-person level. It would also be interesting 

to determine whether such associations between structural morphology and FNC over time 

exist in both younger and older age groups.

In sum, the present study sought to determine whether aspects of structural and functional 

neural maturation reciprocally influenced one another over time in a large cohort of typically 

developing youth. We found that individual-level changes in amygdala volumes predicted 

fluctuations in SC-CC connectivity in subsequent years, with no evidence for the reciprocal 

relationship. However, group-level variations in SC-CC connectivity were associated with 

subsequent morphological variability in striatal volumes. These findings contribute a 

novel, robust view into longitudinal trajectories of neural maturation in structure-function 

relationships underlying emotional control in youth.
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Fig. 1. 
Conceptual design of the random-intercept cross-lagged panel model (RI-CLPM). Between-

person latent trait variables are defined using data from observed variables across all three 

time points, and essentially represent an individual’s mean over time. Between-person 

latent variables are correlated. Time-specific within-person deviations are modeled at the 

within-person level. Within-person deviations are modeled with autoregressive paths, and 

cross-lagged paths, and within-time correlations. Double-headed arrows show correlations, 

and single-headed arrows show predictive paths. “FC” = functional connectivity; “cFC” = 

centered within-person deviation in functional connectivity; “cVolume” = centered within-

person deviation in brain volume; squares represent manifest (observed) variables; circles 

represent latent variables.
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Fig. 2. 
Results of the random-intercept cross-lagged panel model illustrating associations between 

amygdala volumes and between-network SC-CC connectivity controlling for age, sex (0 = 

“male”, 1 = “female”), and data collection site. All reported parameters are standardized 

coefficients. Solid lines indicate statistically significant relationships at the p < .05 level, 

whereas dashed lines indicate non-statistically significant relationships. Double-headed 

arrows show correlations, and single-headed arrows show predictive paths. “FC” = 

functional connectivity; “cFC” = centered within-person deviation in functional connectivity 

between the SC and CC networks; “cVolume” = centered within-person deviation in 

amygdala volume; squares represent manifest (observed) variables; circles represent latent 

variables.
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Fig. 3. 
Scatterplots demonstrating (a) the between-person association between amygdala volumes 

and SC-CC FNC, as well as (b) the significant cross-predictive paths wherein within-

person variability in amygdala volumes was associated with changes in SC-CC FNC in 

subsequent years. Between-person variables were adjusted for age, sex, and site. Within-

person variables were adjusted for preceding predictive variables (e.g., autoregressive paths) 

as illustrated in model Fig. 2.
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Table 1

Descriptive statistics for the measures input into the random-intercept cross-lagged panel model, including 

amygdala volumes (mm3 × 10−3), and functional connectivity between the subcortical (SC) and cognitive 

control (CC) networks taken from eyes-open resting state fMRI.

Measure N M SD Range

Amygdala volume T1 171 1.05 .13 .11 to 1.40

Amygdala volume T2 119 1.02 .23 .19 to 1.40

Amygdala volume T3 71 .96 .28 .21 to 1.32

SC connectivity T1 172 .51 .16 .15 to .98

SC connectivity T2 118 .53 .16 .15 to .89

SC connectivity T3 64 .48 .17 .12 to .81

CC connectivity T1 172 .095 .076 −.048 to .35

CC connectivity T2 118 .11 .099 −.021 to .43

CC connectivity T3 64 .11 .098 −.026 to .42

SC-CC connectivity T1 172 .094 .086 −.13 to .37

SC-CC connectivity T2 118 .092 .12 −.25 to .42

SC-CC connectivity T3 64 .048 .13 −.43 to .36

“N” = the number of participants who had adequate data for a given variable and a given study time point. “SC” = subcortical network intrinsic 
connectivity; “CC” = cognitive control network intrinsic connectivity; “SC-CC” = subcortical-to-cognitive control between-network connectivity; 
“T1” = time 1; “T2” = time 2; “T3” = time 3

Neuroimage. Author manuscript; available in PMC 2022 February 15.
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