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A B S T R A C T   

This study investigated the potential of employing plantain leaves as a natural bio-based sorbent 
for crude oil spill polluted seawater remediation. Type L9(34) Taguchi orthogonal array technique 
was used to evaluate the effect of four independent bio-sorption factors at three different levels 
(crude oil initial concentration (X1 7.8, 11.5 and 15.6 g/L), seawater-crude oil temperature (X2 
25, 35 and 45 ◦C), bio-sorbent dosage (X3 1, 2 and 3 g) and bio-sorbent particle size (X4 1.18, 2.36 
and 4.72 mm) on two response indices (bio-sorption efficiency (%) and bio-sorption capacity (g/ 
g)). Taguchi optimization technique, numerical-desirability index function optimization tech-
nique and a proposed optimization method were utilized to determine the optimum bio-sorption 
factors needed for the optimum bio-sorption efficiency and bio-sorption capacity. The results 
demonstrated that the crude oil bio-sorption efficiency of the plantain leaves was significantly 
influenced by X1, X3 and X4 and the bio-sorption capacity was mainly influenced by X1 and X3. 
The optimum bio-sorption efficiency and the optimum bio-sorption capacity were 99.05 % and 
12.82 g/g, respectively, obtained at optimum combination of factors and levels of X11 (7.8 g/L), 
X33 (3 g) and X41 (1.18 mm) for bio-sorption efficiency and X13 (15.6 g/L) X31 (1 g) for bio- 
sorption capacity. The Freundlich and Dubinin-Rudeshkevich isotherm models best explain the 
equilibrium bio-sorption data, while the pseudo-second order kinetic model best describes the 
bio-sorption kinetics. The bio-sorptive remediation mechanism followed dual mechanism of 
physical and chemical bio-sorption and the mass transfer controlled by film diffusion. The 
maximum bio-sorption capacity (Kf ) was 14.0 gg-1.  
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1. Introduction 

Water pollution by crude oil due to spillage during offshore production and transportation has been a major challenge that is been 
faced by oil producing countries like Nigeria, which requires rapid remedial response. This is because crude oil being a mixture of 
several different hydrocarbons including alkanes and polycyclic aromatic hydrocarbons (PAHs), its pollution in surface and subsurface 
sources leads to serious significant long term hazardous and toxicological effect on human life and the ecosystem as well as results in 
economic losses [1]. Therefore, there is the need for its removal and clean-up as quick as possible to prevent the deleterious effect. 

The removal or clean-up can be performed through applying physical/mechanical, chemical and biological methodologies [2]. The 
physical/mechanical methods entails using booms, skimmers and sorbents [3,4] as well as burning [5] and the chemical method 
involves the usage of chemical dispersants [6] while the biological method entails the usage of microorganisms (bioremediation) [7]. 
Nevertheless, the removal or clean-up of crude oil spillage in water employing the usage of sorbents have in recent years received 
increasing attention due to their simple applicability and cost-effectiveness [1,3]. 

Sorbents are materials that are either inorganic (such as glass) [5], organic (e.g. agricultural biomass) or synthetic (like poly-
urethane) [8], which are porous and can bind to varying types of inorganic chemicals (e.g. heavy metals) and organic chemicals by 
surface adsorption and/or absorption as the case may be [1]. The sorbents utilized for oil spillage remediation should be hydrophilic or 
oleophilic (oil-loving) and hydrophobic (water-hating) and should as well possess other characteristics which includes high buoyancy, 
biodegradable, high uptake of oil or sorption capacity, low-cost and reusability [3,9]. Varying synthetic sorbent types such as magnetic 
Fe3O4/polystyrene nanoparticles [10], polyurethane sponge [11] and graphene-wrapped sponge [12] have been examined for their 
potential crude oil removal or clean-up and were detected or observed to have different efficiencies. But due to these synthetic sorbents 
being non-renewable and non-biodegradable, which can easily cause environmental nuisance or pollution, there is an increasing 
interest in developing biodegradable natural materials as bio-based sorbents [2]. Natural bio-based sorbents such as agricultural waste 
materials or biomass have shown good performance in oil removal or clean-up of oil spill [2]. Some of the natural bio-based sorbents 
that have been employed for clean-up of oil includes, rice husk [13], wheat husk [14], date palm fibre [3], avocado peel [15], cocoa 
pod [16], peat-derived biochar [1], corncobs [17], plantain peels [18], coconut husk [19], mango seed shell [20], plantain 
peel-derived activated carbon [21] and empty bunch of oil palm’s fruit [2]. However, the need to still develop other natural 
agricultural-based biomass that are readily and abundantly available as bio-based sorbents for oil spill remediation which are of 
low-cost with high sorption capacity is further required. Although fewew agricultural plant leaves like pineapple leaves [22], Ricinus 
communis leaves [23], Neem leaves [24], Cissus populnea leaves [25], Lawsonia leaves [26], and spent tea leaves [27] have been 
employed for oil-water biosorptive remediation, however, to the best of our knowledge, information on the potential utilization of 
plantain leaves as a bio-based sorbent for oil spill-water remediation is still very scarce or limited. Plantain leaves are readily and 
abundantly available in the South-West and Niger-Delta regions of Nigeria. Thus, concerted attempts have been made by the authors to 
leverage on the plantain leaves’ availability and abundance for usage as natural bio-based sorbent for remediating or cleaning up oil 
spill. 

In addition, conventional experimental optimization method often named as one variable-at-a-time (OVAT) is usually executed by 
varying one variable level at a time over a desired range and monitoring its effect or influence on the experimental response (output) 
while other test variables’ levels are kept constant. This is repeated for every other test variable and thus results to large number of 
experiments which in the overall makes the process to be cumbersome, costly, labour and time consuming [28]. Thus, employing 
multivariate statistical optimization techniques which entails experimental design utilization, helps to a large extent to overcome these 
OVAT challenges or problems [4,28]. Among the most commonly and important multivariate statistical optimization techniques 
utilized is the Taguchi orthogonal array technique (TOAT). The TOAT is a powerful and unique technique of optimization that allows 
optimization with minimal experimental numbers [29]. It employs the usage of orthogonal arrays that distributes the factors or 
variables in a well-balanced manner where the effect of each factor on the response mean and variation can independently be 
investigated and estimated [20,30,31]. The experimental response is converted into a signal-to-noise ratio (S/N) which allows for the 
factors optimum values to be easily determined [31]. TOAT has been applied to optimize pollutant bio-sorption such as inorganic 
chemicals or heavy metals [28,32], organic chemicals [33], dyes [34] and petroleum hydrocarbons’ bioremediation in water [35]. 
However, using TOAT for the optimization study of petroleum hydrocarbons’ polluted water bio-sorptive remediation is still very 
scarce. 

Thus, the major goal of this work was to investigate plantain leaves’ potential or feasibility as natural bio-based sorbents for crude 
oil polluted seawater remediation. The specific objectives were to: (i) investigate the major effects of crude oil initial concentration, 
bio-sorbent particle size, bio-sorbent dosage and crude oil-seawater temperature on the crude oil bio-sorption efficiency and bio- 
sorption capacity of plantain leaves as well as determining the bio-sorption optimum conditions required for maximum bio- 
sorption efficiency and maximum bio-sorption capacity using the TOAT; and (ii) propose an optimization model and to model the 
equilibrium bio-sorption and the crude oil-water pollution bio-sorptive remediation kinetics. Fourier transform infra-red spectroscopy 
(FTIR) and scanning electron microscopy (SEM) was conducted on the plantain leaves to assess their surface characteristics and 
elucidate the bio-sorption mechanism. 

2. Materials and methods 

Nigerian crude oil was employed for the research work. The crude oil properties were as follows: density, 0.78 g/cm3. API, 35.91◦

and viscosity, 4.75 cSt. Utilized for the remediation studies was a simulated seawater. Analytical grade reagents and chemicals (Sigma- 
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Aldrich, Germany) were utilized. Raw plantain leaves’ samples adopted for the bio-sorptive remediation were gotten from a small 
plantain plantation located at Iyede town in Delta State of Nigeria. 

2.1. Simulated seawater preparation 

The seawater that was simulated was made by adding into distilled water (1 L), 20 g of sodium chloride (NaCl) salt [36]. The 
resultant solution was thoroughly agitated with a stirring rod. 

2.2. Preparation and characterization of bio-sorbent 

The plantain leaves were washed, firstly with tap water and later with distilled water, after which they were dried in the sun for 
seven days and thereafter dried in the oven at 105 ◦C for 6 h. The dried leaves were then crushed making use of laboratory mortar and 
pestle and finally grounded into small particles using a grinding machine. The grounded plantain leaves’ particles were sieved to 
obtain different particle sizes of 1.18 mm, 2.36 mm and 4.72 mm, respectively. The grounded plantain leaves of different particles were 
packaged in different plastic bottles prior to utilization. 

The specific surface area and pore size distribution of the plantain leaves’ biosorbent were determined using the Brunauer-Emmett- 
Teller-Nitrogen (BET-N2) surface area analyzer (Micromeritics Tristar II 3000), which consisted of three analysis ports that were 
operated simultaneously. A canister of liquid nitrogen was used for the adsorption and desorption processes. 

The porosity of the plantain leaves’ particles was determined employing the modified liquid saturation method [37]. Using this 
method, the weight of plantain leaves’ particles was taken and recorded (P1). Slightly mineralized water (mineralization of 5 g/L 
sodium chloride in deionized water) and kerosene were utilized as saturation fluids. This saturation fluid was allowed to saturate the 
samples under vacuum pressure for about 10–15 s. The particles were thoroughly mixed in the saturating fluid to remove air from the 
intergranular space. Thereafter, the saturated particles were weighed and recorded (P2). After this, the saturated plantain leaves’ 
particles were further saturated in a high-pressure vessel for 2 days at a pressure of 20 MPa, after which the weight was recorded (P3). 
The porosity (KP) of the plantain leaves’ particles was calculated using Equation 1a - c [37]: 

%KP =
ρparticle − ρbulk

ρparticle
×100 (1a)  

ρbulk =
P1

P1 − P2
ρf (1b)  

ρparticle =
P1

P1 − P3
ρf (1c)  

where KP – open porosity, %; ρbulk – bulk density, g/cm3; ρparticle – particle density, g/cm3; Р1 – mass of dry sample in air, g; Р2 – mass of 
dry sample immersed in saturating fluids, g; Р3 – mass of saturated sample immersed in saturating fluid, g; ρf – density of saturating 
fluid, g/cm3. 

In determining the functional groups that characterize the plantain leaves’ bio-sorbent, Fourier transform-infrared (FT-IR) spec-
trophotometer (Spectrum 65, PerkinElmer model) which involves the usage of potassium bromide as an agent was employed. At a 
frequency range of 400–4000 cm− 11, the FT-IR spectra was recorded. The morphology of the bio-sorbent surface before crude oil bio- 
sorption and after crude oil bio-sorption was determined using the scanning-electron- microscopy (SEM, Joel JSM 6360LA, Japan). In 
using this SEM, the bio-sorbent samples were put on aluminum stubs and then vacuum-coated with gold before they were examined by 
SEM. The water and oil wettability or hydrophilic and hydrophobic nature, of the biosorbent surface was determined by measuring the 
contact angle that exists between the biosorbent and the liquid (water or oil) using a drop shape analyzer device (Krüss Drop Shape 
Analysis System DSA 10 Mk2). 

2.3. Determination of the degree of hydrophobicity (HD) 

In determining the sorbent’s HD, the Agarry et al. [4] procedure was adopted. This procedure involved adding 1 g of the bio-sorbent 
into 20 mL of distilled water contained in a 50 mL beaker and vigorously agitated. Into the bio-sorbent-water mixture was added 20 mL 
of hexane and thoroughly mixed together for 3 min and afterwards left for 5 min to give room for the two immiscible organic and 
aqueous phases to separate. The quantity of bio-sorbent present in the organic phase was attained from the filtration of the organic 
phase. The filtered bio-sorbent was oven-dried and weighed. Using Equation (2), the sorbent’s HD was calculated: 

HD(%)=

[
WH

WO

]

×100 (2)  

Where, WH and WO are the bio-sorbent’s weight in organic phase (g) and original bio-sorbent’s weight (g), respectively. The plantain 
leaves’ HD was obtained as 19.8 %. 
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2.4. TOAT experimental design for polluted seawater remediation 

TOAT experimental design selected factors and levels are presented in Table 1. 
Table 1 shows four factors and three levels utilized in the experiment. On the background of fractional factorial technique of 

Taguchi’s optimization, the number of experimental runs, N can be determined by N = 2 w + 1, where w is total number of factors 
[33]. In this case, for 4 bio-sorption factors, N = 9 thus, L9 orthogonal array for 3 selected level (Table 1) was obtained. The array 
reduces the 34 = 81 number of experimental runs into 9 experimental runs. Therefore, the TOAT of L9 (34) type (i.e., four factors with 
three levels each and 9 experimental runs) was utilized (Table 2). 

The crude oil initial concentration (X1), seawater-crude oil temperature (X2), bio-sorbent dosage (X3) and bio-sorbent particle size 
(X4) were assigned to the 1st, 2nd, 3rd and 4th column of L9 array respectively (Table 2). The experiment was conducted in line with 
Table 2 design. Into a 50 mL beaker was added 30 mL of simulated seawater and 11.7 g of crude oil was weighed (equivalent to 10 mL) 
and introduced into it. A known gram (i.e., 1 g) of the bio-sorbent sample was weighed and spread over the oil-seawater polluted 
system and the system was left at ambient or laboratory temperature (25 ◦C) for 15 min to allow for remediation to take place without 
any form of agitation. The saturated oil-water adsorbed bio-sorbent sample was taken out at the end of 15 min with stainless steel mesh 
screen and then permitted to drain for 8 min. Thereafter, the saturated oil-water adsorbed bio-sorbent was weighed. The n-hexane 
solvent extraction method described in ASTM D1533 and ASTM D4007-81 was utilized to find out the water sorbed by the bio-sorbent 
sample. Batch equilibrium and kinetic studies were performed for different crude oil initial concentrations (3.9, 7.8, 11.7 and 15.6 g/ 
L). However, the oil-water adsorbed bio-sorbent was removed at different time intervals of 3 min up till 15 min of incubation or 
remediation time. Triplicate experiments were performed, and their average values were employed for calculations. The adsorbed oil 
quantity at time, t (qt, g/g) (i.e. bio-sorption capacity) was calculated based on Equation (3) [3]: 

Biosorption⥄⥄⥄Capacity⥄(qt)=
Mass⥄⥄of ⥄⥄Oil⥄⥄Removed⥄⥄(g)

Mass⥄of ⥄Biosorbent⥄⥄(g)
(3) 

The bio-sorption efficiency (i.e., oil-removal efficiency) was computed utilizing Equation (4) [3]: 

Biosorption⥄⥄Efficiency⥄(%)=
Mass⥄of ⥄⥄Oil⥄Removed

Initial⥄Mass⥄of ⥄⥄Oil
×100 (4)  

2.5. Modelling of the optimization process by Taguchi method 

In L9(34) type of TOAT, there are no factors’ interaction. Thus, the obtained bio-sorption efficiency and bio-sorption capacity 
results’ data were fitted to a factorial linear regression model (Equation (5)) [38] employing the Design-Expert software (version 13) to 
derive the statistical model equation for the prediction of the optimum output response during the crude oil polluted seawater 
bio-sorptive remediation. 

Y = βo +
∑n

j=1

∑m

i=1
Xijfx(β) (5)  

where Y = output response; ßo = an intercept; Xij = ith factor with jth level; fx (ß) = ßij which denotes the linear regression coefficients. 
F-test and P-values were chosen to determine each coefficient in the equation’s significance. An optimization model proposed by 
Serencam et al. [38] based on Equation (5) was applied and the optimization model is provided in Equation (6): 

Maximize⥄⥄Y : Subject to the constraints:(1)
∑m

i=1
Xij= 1⥄⥄⥄(j = 1,⥄2, .⥄⥄..,⥄⥄n) (6)  

(2) Xij ∈ {0,⥄⥄1}

The proposed model objective is to maximize the regression function (i.e. the output response) in Equation (6)) ascribed to the 
“Highest is best or Larger is better” (HB or LB-type) quality characteristics. 

Table 1 
Process selected factors and their levels.  

Symbol Factors Levels 

1 2 3 

X1 Crude Oil Initial Concentration (g/L) 7.8 11.7 15.6 
X2 Seawater-Crude Oil Temperature (◦C) 25 35 45 
X3 Bio-Sorbent Dosage (g) 1 2 3 
X4 Bio-Sorbent Particle Size (mm) 1.18 2.36 4.72  
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Table 2 
Experimental layout using an L9 (34) orthogonal array.  

Experimental Run Main factors 

X1 

Coded Actual 
X2 

Coded Actual 
X3 

Coded Actual 
X4 

Coded Actual 

L1 1 7.8 1 25 1 1 1 1.18 
L2 1 7.8 2 35 2 2 2 2.36 
L3 1 7.8 3 45 3 3 3 4.72 
L4 2 11.7 1 25 2 2 3 4.72 
L5 2 11.7 2 25 3 3 1 1.18 
L6 2 11.7 3 45 1 1 2 2.36 
L7 3 15.6 1 25 3 3 2 2.36 
L8 3 15.6 2 35 1 1 3 4.72 
L9 3 15.6 3 45 2 2 1 1.18  

Fig. 1. Plantain leaves-bio-sorbent FTIR spectra. (a) Before bio-sorption (b) After bio-sorption at crude oil initial concentration of 7.8 g/L, seawater- 
crude oil temperature of 30 ◦C, bio-sorbent dosage of 3 g and bio-sorbent particle size of 1.18 mm. 
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(caption on next page) 
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2.6. Experimental bio-sorptive remediation data analysis 

Experimental remediation result data garnered from utilizing L9(34) TOAT were analyzed using the variance analysis (ANOVA) and 
the signal-to-noise ratio (S:NR). The signal term stands for the mean (desirable value) and the noise term represents the standard 
deviation (undesirable value) for the output response characteristics [31] or good:error ratio [33]. That is, S: NR represents output 
quality or characteristics. The S: NR ratio was employed to select the optimum level of the significant factors that maximizes this ratio. 
The S: NRs were computed for the bio-sorption efficiency and bio-sorption capacity, respectively. The S: NR equation presented in 
Equation (7) [31,33] for the criterion “HB or LB-type” quality characteristics was applied. 

S
N
= − log 10

[
1
n
∑n

i=1

(
1
y

)2
]

(7)  

where y is the output response and n is the number of tests’ trial for a particular experimental run. 

3. Results and discussion 

3.1. Characterization of plantain leaves-bio-sorbent using FTIR 

The FTIR carried out on the plantain leaves as bio-sorbent before crude oil bio-sorption and after crude oil bio-sorption resulted in 
the illustrated FTIR spectra in Fig. 1. 

The plantain leaves’ FTIR spectra before crude oil bio-sorption (Fig. 1(a)) revealed several absorption wavelength peaks which 
indicates different functional groups. Fig. 1(a) shows the occurrence of a strong broad band peak at 3287.5 cm− 1, which was assigned 
to the hydroxyl group (OH) stretching vibrations that exist in cellulose, hemicellulose and lignin of plantain leaves [2,23] and to N–H 
stretching vibrations [9]. The absorption band peaks that appeared in the region of 2851.4 and 2922.2 cm− 1 were attributed to C–H 
asymmetric and symmetric stretching of alkane CH2 and CH3 [23,39–41]. Absorption band peak at 1738.9 cm− 1 was ascribed to the 
carbonyl (C––O) functional group stretching of ester or amide that occurs in hemicellulose [4,16,39]. The two absorption band peaks 
observed at 1461.1 and 1640.0 cm− 1 corresponded to the presence of C––C- stretching vibrations of aromatic ring [23,41,42]. The two 
absorption band peaks that occurred at 1319.5 and 1375.9 cm− 1 were ascribed to C–O skeletal vibrations and OH bending [43]. The 
observed peaks at 1162.9 and 1241.2 cm− 1 were assigned to C–OH bending and -C-O-C stretching in hemicellulose [44,45]. Also, the 
peak found at 1032.5 cm− 1 was considered to be attributable to C–O, C–O–H and C–O–C stretching vibrations in cellulose and 
hemicellulose [9,23,29,31,46] while the two absorption bands observed at 719.4 and 808.8 cm-1 were assigned to C–Cl stretch and 

Fig. 2. (a) SEM of plantain leaves before bio-sorption (@ 200 μm magnification). (b) SEM of plantain leaves after crude oil bio-sorption at crude oil 
initial concentration of 7.8 g/L, seawater-crude oil temperature of 30 ◦C, biosorbent dosage of 3 g and biosorbent particle size of 1.18 mm (@ 200 
μm magnification). (c) EDX of plantain leaves before bio-sorption. (d) EDX of plantain leaves after crude oil bio-sorption at crude oil initial con-
centration of 7.8 g/L, seawater-crude oil temperature of 30 ◦C, biosorbent dosage of 3 g and biosorbent particle size of 1.18 mm. 

Table 3 
SEM-EDX results for plantain leaves before and after crude oil bio-sorption at crude oil initial concentration of 7.8 g/L, seawater-crude oil temperature 
of 30 ◦C, bio-sorbent dosage of 3 g and bio-sorbent particle size of 1.18 mm.  

Before crude oil bio-sorption 

Element number Element symbol Element name Atomic concentration Weight concentration 

6 C Carbon 87.17 62.20 
30 Zn Zinc 3.69 14.34 
32 Ge Germanium 2.69 11.60 
26 Fe Iron 0.94 3.13 
14 Si Silicon 1.57 2.62 
20 Ca Calcium 0.90 2.15 
8 O Oxygen 1.87 1.77 
25 Mn Manganese 0.40 1.31 
9 F Fluorine 0.77 0.87 

After crude oil bio-sorption 
Element number Element symbol Element name Atomic concentration Weight concentration 

6 C Carbon 89.28 75.18 
8 O Oxygen 5.52 6.19 
25 Mn Manganese 1.37 5.28 
22 Ti Titanium 1.18 3.96 
28 Ni Nickel 0.84 3.46 
26 Fe Iron 0.54 2.12 
20 Ca Calcium 0.72 2.02 
23 V Vanadium 0.33 1.17 
19 K Potassium 0.22 0.61  
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alkyne C–H bend [42]. In a similar fashion, the same kind of FTIR spectra were obtained for the plantain leaves bio-sorbent after crude 
oil bio-sorption (Fig. 1(b)). However, in this particular case, slightly lower absorption band peaks were observed at 3283.8 cm− 1, 
2847.8 cm− 1, 2914.8 cm− 1, 1733.2 cm− 1, 1636.3 cm− 1, 1420.1 cm− 1, and slightly higher peak at 1038.2 cm− 1 while the peak at 
1241.2 cm− 1 observed in Fig. 1(a) was not seen in Fig. 1(b). The slightly observed lower and higher band peaks along with the observed 
missing peak were peaks that were attributable to hydrophobic or hydrophilic functional groups, thus confirmed that the crude oil 
actual bio-sorption occurred at these plantain leaves’ hydrophobic sites [16]. 

3.2. SEM-EDX characterization of bio-sorbent 

Fig. 2 shows the micrographs of the SEM-EDX carried out on the plantain leaves bio-sorbent before and after crude oil bio-sorption, 
which depicts their surface morphologies. 

It was obviously seen that the plantain leaves bio-sorbent before bio-sorption has a smooth and homogeneous surface with high 
porous texture (Fig. 2(a)) and contained major elements such as carbon, zinc and germanium with weight percentage amount of 62.20, 
14.34 and 11.60, respectively. However, it also contained several other elements like iron, silicon, calcium, oxygen, manganese and 
fluorine in minor quantities (Fig. 2(c) and Table 3). However, after the crude oil bio-sorption, the plantain leaves’ pores were adhered 
and filled with crude oil, thus covering the bio-sorbent surface with non-regular oil dense layers (Fig. 2(b)). The covered bio-sorbent 
surface with non-regular oil dense layers indicated the bio-sorption of crude oil by the plantain leaves. In addition, the plantain leaves 
bio-sorbent after crude oil bio-sorption consisted majorly of carbon (75.18), oxygen (6.19) and manganese (5.28), respectively. Other 
minor amounts of elements present in the plantain leaves after bio-sorption included titanium (3.96), nickel (3.46), iron (2.12), 
calcium (2.02), vanadium (1.17) and potassium (0.61), respectively (Fig. 2(d) and Table 3). 

3.3. Contact angle characterization 

The contact angle between the leaf and the liquid (oil or water) interactions can be employed to draw conclusions about the 
wettability (i.e., hydrophilicity or hydrophobicity) or surface energy of the leaf. According to Jansson et al. [47], a low contact angle 
reveals that there is a good interaction between the liquid and the surface of the solid material, which implies good surface wettability 
and adhesion. It also indicates that the chemical affinity between the leaf and the liquid is high or that the leaf’s surface energy is high. 
On the other hand, if there is a good interaction between the leaf and the liquid, a high contact angle will be obtained, indicating that 
the chemical affinity between the leaf and the liquid is low or that the surface energy of the leaf is low. In this study, the contact angle 
between the plantain leaf surface and the oil-water mixture was obtained to be 83◦ ± 2◦, as presented in Fig. 3. This value indicates that 
the plantain leaf is slightly hydrophilic as well as possessing high oil adhesion. 

3.4. Specific surface area, pore volume and porosity characterization 

The external specific surface area and pore volume of the plantain leaves’ biosorbent were determined using the BET-N2 adsorption 
method. The results were obtained as follows: The specific surface area is 1008.51 m2/g; pore volume is 0.95 cm3/g; and the average 
pore diameter (size) is in the range of 1.6–3 nm. The porosity was found to be 20.7 %, which indicates that the plantain leaf is porous. 
The results revealed that the plantain leaves’ pore diameter occurred between 0 and 50 nm, which belonged to the mesopore and 
micropore ranges [48]. Also, the specific surface area and the pore volume values are comparable to the specific surface area value 

Fig. 3. Contact angle between plantain leaves-biosorbent and oil-water emulsion.  
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range of 798.51–1227.60 m2/g and total pore volume range of 0.83–1.29 cm3/g obtained by Marlín-González et al. [49] for banana 
leaf-derived activated carbons. Considering the fact that the pore size of the porous plantain leaves’ particles falls within the mesopores 
and micropores size region, and with the relatively large specific surface area, the plantain leaves’ biosorbent will reasonably be 
favorable for the biosorption of crude oil [50]. 

3.5. Taguchi’s analysis of bio-sorptive remediation of crude oil polluted seawater 

3.5.1. Effects of bio-sorption factors on bio-sorption efficiency and bio-sorption capacity 
The bio-sorption efficiency and bio-sorption capacity results obtained based on L9 (34) TOAT are herein presented (Table 4). For the 

estimation of the factor X1 (crude oil initial concentration) effect on the output response (bio-sorption efficiency and bio-sorption 
capacity), the total mean of 3 observed output response at level 1 of factor X1 was divided by 3 to get the mean output response at 
level 1 of factor X1. In the same vein, the mean output responses at levels 2 and 3 were gotten. The estimated effects provided in Table 5 
are graphically illustrated in Fig. 3. 

The estimated individual factor’s effect on bio-sorption efficiency and bio-sorption capacity of the bio-sorbent (plantain leaves) can 
be seen in Fig. 4. 

The crude oil initial concentration effect on the oil bio-sorption efficiency and bio-sorption capacity (i.e., crude oil quantity 
removed per unit bio-sorbent mass) of plantain leaves is as shown in Fig. 4(a). Fig. 4(a) revealed that as the crude oil initial con-
centration increases there is general decline in the plantain leaves’ bio-sorption efficiency and the plantain leaves’ bio-sorption ca-
pacity generally increased with increasing initial concentration. This indicated that there is an inverse relationship between bio- 
sorption efficiency and bio-sorption capacity regarding increasing crude oil initial concentration. This observation is similar to the 
observation that was reported for using chemically and thermally modified coconut husk [4], plasma-treated polyethylene powder 
[51], oil palm fruit mesocarp fibre [52], stearic acid grafted coconut husk [19], and Cissus populnea leaves [25] to remove and clean-up 
oil from aquatic habitat. The observed decline in the plantain leaves’ bio-sorption efficiency in respect to increasing crude oil initial 
concentration could be because the initial concentration is low, then small quantity of oil molecules is accessible for bio-sorption and 
since there are finite number of accessible vacant active binding sites, thus, there is rapid bio-sorption that occurs at these bio-sorbent 
surface active sites. As the initial concentration is increasing, then bio-sorption slowly takes place inside the pores (macro- and micro-) 
and the accessible vacant binding sites become filled up [4] which then induce a resistance to the concentration gradient driving force 
and hence results in oil desorption and a decreased oil bio-sorption [8,52,53]. Whereas the increase seen in the plantain leaves’ 
bio-sorption capacity can be adduced to the fact that when initial concentration is low, then the ratio of the quantity of oil molecules to 
accessible bio-sorbent surface area is low and therefore greater quantity of oil molecules are bio-sorbed at the hydrophobic active 
binding sites as well as diffuses into the bio-sorbent pores [16,19,52]. With increasing initial concentration, there is an increasing 
concentration gradient (mass transfer) driving force that subdues the resistance to the mass transfer of oil thereby increasing the oil 
molecules’ rate of bio-sorption and therefore resulted in an increased bio-sorption capacity [4,52]. 

Since there is often a variation in the temperature of water bodies (e.g. sea or ocean) with reference to location or area and change 
in seasons [4], its effect on plantain leaves’ crude oil bio-efficiency and bio-sorption capacity was evaluated as illustrated in Fig. 4(b). It 
could be seen that a rise in the seawater-crude oil temperature induced a marginal increased bio-sorption efficiency and increased 
bio-sorption capacity. Although there was a relative decrease in bio-sorption capacity at 45 ◦C but was still higher than the bio-sorption 
capacity obtained at 25–35 ◦C. The marginal increase in bio-sorption efficiency due to rise in the seawater-crude oil temperature was 
attributed to viscosity and density of oil becoming high when temperature is low, thereby leading to the bio-sorbent pores being 
plugged by oil molecules and subsequently lower bio-sorption efficiency. As the temperature rises, so also the oil viscosity and density 
reduce (i.e., becomes low) thereby leading to an increased kinetic energy and movement of oil, rate of bio-sorption unto the 
bio-sorbent surface and increased diffusion rate of oil molecules into the bio-sorbent internal pores [1,20,52]. The observed decrease in 
bio-sorption capacity at 45 ◦C may be because that when temperature becomes high, the viscosity of the oil becomes low while its’ 
water solubility increases which then makes the oil molecules to be more difficult to adsorb [8,52]. Dagde [5], Puasa et al. [2], and 
Eboibi et al. [52] have for the utilization of groundnut husks/plantain peels, empty bunch of oil-palm fruit, and oil palm fruit mesocarp 
fibre in removing oil from aquatic environment presented a similar observation of an increased oil bio-sorption efficiency and 

Table 4 
L9 (34) TOAT layout and the obtained bio-sorption efficiency, bio-sorption capacity and S/N ratio results.  

Run Main factors Bio-sorption efficiency (%) Bio-sorption capacity (g/g) 

X1 X2 X3 X4 Mean value S/N Ratio (dB) Mean value S/N Ratio (dB) 

L1 1 1 1 1 97.8 ± 0.32 39.81 ± 0.02 7.63 ± 0.15 17.65 ± 0.03 
L2 1 2 2 2 96.3 ± 0.35 39.67 ± 0.02 3.75 ± 0.11 11.48 ± 0.05 
L3 1 3 3 3 95.5 ± 0.25 39.60 ± 0.03 2.48 ± 0.10 7.89 ± 0.04 
L4 2 1 2 3 93.0 ± 0.30 39.37 ± 0.01 5.44 ± 0.12 14.71 ± 0.02 
L5 2 2 3 1 98.8 ± 0.30 39.90 ± 0.03 3.85 ± 0.13 11.71 ± 0.03 
L6 2 3 1 2 95.6 ± 0.25 39.61 ± 0.01 11.18 ± 0.12 20.97 ± 0.04 
L7 3 1 3 2 94.0 ± 0.22 39.46 ± 0.02 4.88 ± 0.10 13.77 ± 0.01 
L8 3 2 1 3 90.0 ± 0.20 39.08 ± 0.04 14.04 ± 0.11 22.95 ± 0.04 
L9 3 3 2 1 94.6 ± 0.35 39.52 ± 0.03 7.38 ± 0.14 17.36 ± 0.05 

The values are means or average of three replicates (n = 3), values are mean ± standard deviation. 
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bio-sorption capacity due to temperature increase. In contrast, Olufemi and Otolorin [32] using a mango shell and an activated carbon 
derived-mango shell for oil bio-sorption from water have reported a decreased removal efficiency of oil due to increasing temperature. 
Also, Dimas and Osemeahon [8] reported a reduced oil-sorption capacity with rising temperature for sorption of oil from water uti-
lizing Annona senegalensis. 

Furthermore, the bio-sorption efficiency increased generally with increasing applied bio-sorbent dosage while the bio-sorbent bio- 
sorption capacity reduced with increment in the bio-sorbent dosage (Figure 4(c)). The observed increment in the bio-sorption effi-
ciency in respect to increment in the bio-sorbent dosage may be that with an increase in bio-sorbent dose, there is an increment in the 
accessible vacant active bio-sorption binding sites together with an increased bio-sorbent contacting surface area thereby making it 

Table 5 
Estimated individual factor effects on bio-sorption efficiency and bio-sorption capacity of plantain leaves.   

Bio-sorption efficiency 

Factors Levels 

1 2 3 

Crude Oil Initial Concentration (X1) 96.53* ± 0.25 95.80 ± 0.30 92.87 ± 0.20 
Seawater-Crude Oil Temperature (X2) 94.93 ± 0.35 95.03 ± 0.35 95.23* ± 0.25 
Bio-Sorbent Dosage (X3) 94.47 ± 0.40 94.63 ± 0.25 96.10* ± 0.40 
Bio-Sorbent Particle Size (X4) 97.07* ± 0.20 95.30 ± 0.30 92.83 ± 0.30 
Bio-sorption capacity 
Crude Oil Initial Concentration (X1) 4.62 ± 0.11 6.82 ± 0.07 8.77* ± 0.12 
Seawater-Crude Oil Temperature (X2) 5.98 ± 0.09 7.21* ± 0.09 7.01 ± 0.10 
Bio-Sorbent Dosage (X3) 10.95* ± 0.11 5.52 ± 0.08 3.74 ± 0.10 
Bio-Sorbent Particle Size (X4) 6.29 ± 0.08 6.60 ± 0.10 7.32* ± 0.08 

The * indicate optimum level. The values are means of three replicates (n = 3), values are mean ± standard deviation. 

Fig. 4. Estimated individual factor effects at different factor level on bio-sorption efficiency and bio-sorption capacity of plantain leaves (a) crude 
oil initial concentration (b) seawater-crude oil temperature (c) bio-sorbent dosage (d) bio-sorbent particle size. 
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easier for the penetration and uptake of oil [4,40]. In contrast, reason for the observed reduction in bio-sorption capacity could be 
adduced to the aggregation of reactive bio-sorption binding sites [54] of which some reactive binding sites might have been left 
unsaturated during the bio-sorption [3,5]. Abdelwahab et al. [3] and Dagde [5] have presented similar results of an increased oil 
bio-sorption efficiency and a reduced bio-sorption capacity due to increased dose of groundnut husk/plantain peels and raw palm 
fibers/modified palm fibers used as bio-sorbents for oil removal from water. 

Fig. 4(d) illustrates the result obtained for the bio-sorbent particle size effect on both the bio-sorption efficiency and the bio- 
sorption capacity of plantain leaves. The result illustrates that, with an increased bio-sorbent particle size, a corresponding 
decreased bio-sorption efficiency and a corresponding increased bio-sorption capacity occurs. This is so, because the smaller the size of 
particle, the greater is the area of specific surface and the micro-pore volume which allows for less resistance to mass transfer and thus 
resulting in greater oil molecules’ bio-sorption [23]. But as the size of particle increases (i.e., becomes large), a reduction in the area of 
specific surface and micro-pore volume occurs, which results in higher resistance to oil molecules mass transfer and diffusion such that 
majority of the particle’s internal surfaces may not be utilized and thus a reduction in the quantity of oil molecules adsorbed [52,55]. A 
similar result using a chemically modified empty bunch of oil palm fruit and cocoa pod [16], Ricinus communis leaves [23], and oil palm 
fruit mesocarp fibre [52] for oil-sorption from aqueous phase has been presented. 

3.5.2. Linear regression model and variance analysis (ANOVA) 
The factorial linear regression model fit results for bio-sorption efficiency and bio-sorption capacity data are presented in Table 6. 
As provided in Table 6, that the F-values of 129.90 and 25.72 gotten for the factorial linear regression model adjusted to the bio- 

sorption efficiency and bio-sorption capacity data are significant. There is only a 0.77 % and 0.41 % chance that “F-value” of a model 
which is, this large could only have occurred due to noise. The low p-value (=0.0077) attained for the linear regression model fit to the 
bio-sorption efficiency data proved the high adequacy and significance of the model since the p-value was less than 0.05. The cor-
relation or determination coefficient (R2) value (=0.9974) achieved for the bio-sorption efficiency indicated that a high correlation 
degree exist between the observed experimental and predicted values. The R (correlation coefficient) value of 0.9987 suggested that 
more than 99.87 % of the factorial linear model variance could be adduced to the factors and hence proved the high significance of the 
factorial linear model. Therefore, the model cannot explain the 0.13 % of the total variance for bio-sorption efficiency. The 0.9482 
predicted R2 value is in reasonable accord with the 0.9898 adjusted R2 value obtained for the bio-sorption efficiency. S: NR is measured 
by ‘adequate precision (AP)’ and a ratio with an AP value that is above 4 is very desirable and adequate. The AP value of 37.714 
attained for the bio-sorption efficiency was above 4 (i.e. AP > 4) which revealed that the S: NR for the factorial linear regression model 
was adequate. Therefore, the variance analysis (ANOVA) as proven by the F-test low p-value (<0.05) implied that the linear model was 
highly significant. Also, model terms with p-values less than 0.05 indicate their significance. For the bio-sorption efficiency, the 
ANOVA (Table 6) presents that the statistically significant model terms at the 95 % confidence level (P < 0.05) were X1 (crude oil 
initial concentration, p-value = 0.0062), X3 (bio-sorbent dosage, p-value = 0.0281) and X4 (bio-sorbent particle size, p-value =
0.0051), respectively. The seawater-crude oil temperature had no significant impact on the bio-sorption efficiency. The final stage in 
the TOAT analysis is to predict the optimal response. After the optimal combination of factors and their levels determination through 
the ANOVA, S: NR and sigma value analyses, the optimal bio-sorption efficiency and the optimum bio-sorption capacity can be 
predicted from the following Equation (8) [38]: 

η= ηM
−

+
∑k

i=1
(ηi − ηM

−
) (8)  

Where ηi is the S: NR mean at the optimum level; η− M is the total S: NR mean; and k is the number of major bio-sorption factors that 
significantly impacted on the response. 

Table 6 
ANOVA for the factorial linear regression model fitting to the bio-sorption efficiency and bio-sorption capacity data of plantain leaves in the 
remediation of crude oil polluted seawater.  

Source Bio-sorption efficiency SS DF MS F-value P-value Percentage Contribution 

Model 54.56 8 9.09 129.90 0.0077* – 
X1 22.59 2 11.29 161.33 0.0062* 41.29 
X3 4.85 2 2.42 34.62 0.0281* 8.86 
X4 27.13 2 13.56 193.76 0.0051* 49.59 
Error 0.14 2 0.070   0.26 
Cor Total 54.70 8    100 
R2 = 0.9974; Adjusted R2 = 0.9898; Predicted R2 = 0.9482; Adequate Precision = 37.714 
Bio-sorption capacity 
Model 110.50 4 27.62 25.72 0.0041  
X1 25.83 2 12.91 12.02 0.0203  
X3 84.67 2 42.34 39.42 0.0023  
Error 4.30 4 1.07    
Cor Total 114.79 8     
R2 = 0.9626; Adjusted R2 = 0.9252; Predicted R2 = 0.8106; Adequate Precision = 14.708 

N.B: SS = Sum of squares; DF = Degree of freedom; MS = Mean Square; Cor = Correlation; The * indicates significant. 
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Also, relying on the significant model terms, the factorial linear regression model equation obtained gives the bio-sorption effi-
ciency (YBE) in respect of the bio-sorption factors at low and high levels: crude oil initial concentration (X11 and X13), bio-sorbent 
dosage (X31 and X33) and bio-sorbent particle size (X41 and X43) as provided in Equation (9). 

YBE= ⥄95.07 + 1.47X11+0.73X13− 0.60X31− 0.43X33+2.00X41+0.23X43 (9) 

Similarly, the factorial linear regression model equation achieved for the bio-sorption capacity (YBC) in respect of crude oil initial 
concentration (X11 and X13) and bio-sorbent dosage (X31 and X33) is given in Equation (10): 

YBC= 6.74 − 2.12X11+0.087X13+4.21X31− 1.21X33 (10) 

Furthermore, based on Equation (9), the proposed optimization model that can be applied for predicting the optimum bio-sorption 
factors and optimum bio-sorption efficiency values is given in Equation (11): 

Maximize⥄⥄95.07 + 1.47X11+0.73X13− 0.60X31− 0.43X33+2.00X41+0.23X43  

Subject⥄⥄to: ⥄⥄X11 + X13= 1
⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄X31 + X33= 1
⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄X41 + X43= 1
⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄X11,X13,X31,X33,X41,X43 ∈ {0,⥂⥂⥄⥄1}

(11) 

Similarly, based on Equation (10), the proposed optimization model that can be utilized for the prediction of optimum bio-sorption 
factors and optimum bio-sorption capacity is given in Equation (12): 

Maximize⥄⥄6.74 − 2.12X11+0.087X13+4.21X31− 1.21X33  

Subject⥄⥄to: ⥄⥄X11 + X13= 1
⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄X31 + X33= 1
⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄⥄X11,X13,X31,X33 ∈ {0,⥂⥂⥄⥄1}

(12)  

In addition, percentage contributions (PC) of the significant factors to the bio-sorption efficiency is also presented in Table 6. Factor PC 
expresses the relative power of a factor to decrease or lower variation [35]. For a factor with high PC, a small perturbation or change 
will greatly influence the performance [56]. From the PC result in Table 6, bio-sorbent particle size (X4) was the factor that majorly 
impacted on the bio-sorption efficiency (49.59 %) and was relatively followed by crude oil initial concentration (X1) as the second 
ranking factor (41.29 %). The PC of bio-sorbent dosage was lower (8.86 %). The PC of the error was found to be 0.26 % which is far less 
than 50 %, which implied that the experiments were done under well controlled bio-sorption conditions [28]. Also, each bio-sorption 
factor’s relative impact on the seawater-crude oil bio-sorptive remediation was further determined utilizing the variation between the 
values of the maximum and minimum i.e., ratios of the factor levels (i.e., sigma (δ) value) as given in Table 7. 

The value of the δ (sigma) is very important for the impact ranking of factors ranging from the strongest to the weakest impact on 
the bio-sorption efficiency. A large δ value depicts that the factor impact or influence on the output response is strong [4,57]. 
Therefore, the δ values in Table 7 revealed that the bio-sorbent particle size (X4) had a stronger influence or impact than the rest 
significant factors with its δ value of 0.39 relatively being the highest. This was relatively followed by crude oil initial concentration 
(X1) with δ = 0.34 and bio-sorbent dosage (X3, δ = 0.15). The seawater-crude oil temperature (X2) impact on the bio-sorption efficiency 
is very weak (δ = 0.03) and thus, not significant. Also, it was seen that the significant bio-sorption factors ranking sequence achieved 
from the PC usage and the δ values was consistent with the factors’ ranking using the p-values in the ANOVA (Table 6). That is, 
bio-sorption efficiency was mostly and positively impacted by bio-sorbent particle size (p = 0.0051) and then followed by initial 
concentration (p = 0.0062) and bio-sorbent dosage (p = 0.0281). 

Table 7 
Mean S: NR response for the crude oil bio-sorption efficiency and bio-sorption capacity of plantain leaves.   

Bio-sorption efficiency 

Factors Levels δ = Maximum – Minimum 

1 2 3  

Crude oil initial concentration (X1) 39.69* ± 0.02 39.63 ± 0.01 39.35 ± 0.02 0.34 
Seawater-crude oil temperature (X2) 39.55 ± 0.03 39.55 ± 0.01 39.58* ± 0.03 0.03 
Bio-sorbent dosage (X3) 39.50 ± 0.02 39.52 ± 0.02 39.65* ± 0.02 0.15 
Bio-Sorbent particle Size(X4) 39.74* ± 0.01 39.58 ± 0.03 39.35 ± 0.01 0.39 
Total mean (S: NR) η− M 39.56 ± 0.02  
Bio-sorption capacity 
Crude oil initial concentration (X1) 12.34 ± 0.02 15.80 ± 0.01 18.03* ± 0.03 5.69 
Seawater-crude oil temperature (X2) 15.38 ± 0.02 15.38 ± 0.03 15.41* ± 0.02 0.03 
Bio-sorbent dosage (X3) 20.52* ± 0.01 14,52 ± 0.02 11.12 ± 0.01 9.40 
Bio-sorbent particle size (X4) 15.57* ± 0.03 15.41 ± 0.01 15.18 ± 0.02 0.39 
Total mean (S:NR) η− M 15.39 ± 0.01  

*Optimum level. The values are means of three replicates (n = 3), values are mean ± standard deviation. 

B.E. Eboibi et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e21413

13

3.5.3. Crude oil polluted seawater bio-sorptive remediation: Parametric optimization 
The experimental bio-sorptive remediation results presented in section 3.1 (Table 4) showed that the maximum bio-sorption ef-

ficiency of 98.8 % was achieved in experimental run L5 where the experimental bio-sorption conditions were combination of the levels 
X12, X22, X33, and X41; that is: initial concentration (11.7 g/L), seawater-crude oil temperature (35 ◦C), bio-sorbent dosage (3 g) and 
bio-sorbent particle size (1.18 mm) than the levels X11, X21, X31 and X41 (Run L1). In contrast, minimum bio-sorption efficiency of 90 % 
was achieved utilizing factors’ levels combination of X13, X22, X31, and X43 (Run L8) which are: crude oil initial concentration (15.6 g/ 
L), seawater-crude oil temperature (35 ◦C), bio-sorbent dosage (1 g) and bio-sorbent particle size (4.72 mm). Nonetheless, using the 
calculated mean S/N ratio for the various significant factors’ levels (Table 7), levels X11, X33, and X41 were selected as the maximum or 
optimum set of levels of the different significant bio-sorption factors to maximize the bio-sorption efficiency (Fig. 5(a)&b). Fig. 5 
illustrates the plot for the S: NR where the S: NR’s total mean value is depicted by the dashed line. Fundamentally, the better is the bio- 
sorption efficiency when the S: NR ratio is large, However, using the TOAT (i.e., the S: NR concept), the optimal combination of factors 
and their levels were obtained to be X11X33X41 for the bio-sorption efficiency and X13X31 for the bio-sorption capacity, while the 
predicted optimum bio-sorption efficiency and the optimum bio-sorption capacity at these different factors’ levels combination was 
99.56 % and 12.98 g/g, respectively. Furthermore, using the model Equation (11) that was proposed, solutions to the equation are: 
X11 = X33 = X41= 1 and X13 = X31 = X43 = 0. 

Therefore, the predicted optimal bio-sorption conditions for optimum or maximum bio-sorption efficiency were obtained to be 
crude oil initial concentration, 7.8 g/L (factor X1 level 1), bio-sorbent dosage, 3 g (factor X3 level 3) and bio-sorbent particle size, 1.18 
mm (factor X4 level 1) while at these optimum conditions, the predicted maximum or optimum bio-sorption efficiency achieved was 
98.11 %. In a similar mode, utilizing the proposed model Equation (12), the equation solutions are: X11 = X33= 0 and X13 = X31 = 1. 
Thus, the predicted optimal bio-sorption conditions for optimum bio-sorption capacity were initial crude oil concentration, 15.6 g/L 
(level 3 of factor X1) and bio-sorbent dosage, 1 g (level 1 of factor X3) and at these optimum conditions, the predicted optimum bio- 
sorption capacity obtained was 11.04 g/g. In addition, numerical-desirability function optimization technique (N-DOT) tool of Design- 
Expert software (version 13) was further conducted to predict the optimum bio-sorption factors required for crude oil-seawater 
remediation. 

Fig. 5. (a) S: NR plot for crude oil bio-sorption efficiency of plantain leaves at different levels of factors. (b) S: NR plot for bio-sorption capacity of 
plantain leaves at different levels of factors. 
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Fig. 6. (a) Ramp desirability plot for crude oil bio-sorption efficiency optimization (b) Ramp desirability plot for the bio-sorption capacity 
optimization. 

Table 8 
Confirmatory/validation experimental results.   

Optimal bio-sorption parameters 

PredictedA PredictedB PredictedC Experimental % Error 

Level X11X33X41 X11X33X41 X11X33X41 X11X33X41  

Bio-sorption efficiency (%) 98.11 99.57 99.57 99.05 ± 0.15 0.95A; − 0.52BC 

S:NR (dB) 39.83 39.96 39.96 39.92 ± 0.05  
Level X13X31 X13X31 X13X31 X13X31  

Bio-sorption capacity (g/g) 11.04 12.98 12.98 12.82 ± 0.08 14A; − 1.25BC 

S:NR (dB) 20.86 22.27 22.27 22.16 ± 0.04  

AProposed optimization model; BTaguchi optimization technique; CN-DOT. 
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The predicted theoretical optimum values for initial crude oil concentration (X1), bio-sorbent dosage (X3) and bio-sorbent particle 
size (X4) were obtained to be: X11 (7.8 g/L), X33 (3 g) and X41 (1.18 mm) which would result in the predicted optimum bio-sorption 
efficiency of 99.57 % having a desirability index of 1.000 (Fig. 6(a)&b). 

These predicted optimum conditions were found to also be in accord with the optimum set of factors’ levels achieved from both the 
proposed optimization model and the Taguchi optimization technique (i.e., Equation (8): mean S: NR analysis). The predicted theo-
retical bio-sorption capacity was validated or confirmed by conducting a confirmatory or validation experiment under the predicted 
optimum levels of the significant bio-sorptive remediation factors. The experiment was repeated 3 times (triplicate). The results are 
shown in Table 8. 

Utilizing Equation (13) [58], the percentage errors (%Error) that exist between the predicted or theoretical bio-sorption capacity, 
bio-sorption efficiency, and their corresponding actual confirmed experimental bio-sorption efficiency and bio-sorption capacity 
values were calculated. 

%Error =
Actual⥄Confirmed⥄Experimental⥂⥄Value − Pr edicted⥄Value

Actual⥂⥄Confirmed⥄Experimental⥄Value
×100 (13)  

As indicated in Table 8, the confirmed bio-sorption efficiency of 99.05 % and bio-sorption capacity of 12.82 were obtained with a mean 
S: NR of 39.92 dB and 22.16 dB, respectively. A value of 0.95 %, − 0.52 % and − 0.52 % was the respective computed %Error between 
the actual confirmed bio-sorption efficiency value and the predicted bio-sorption efficiency values garnered from the applied proposed 
optimization method, the Taguchi optimization technique and the N-DOT, thus showing that there exist no significant difference 
between them. Meanwhile, the %Errors between the actual confirmed bio-sorption capacity and the predicted bio-sorption capacity 
values achieved using the proposed optimization method, Taguchi optimization technique and the N-DOT were, 14 %, − 1.25 % and 
− 1.25 %, respectively. Hence, there exists no significant variation between the predicted values and the actual confirmed value. 

3.6. Regeneration/reusability of plantain leaves biosorbent 

In this study, the used biosorbent loaded with crude oil was regenerated using hot water at 100 ◦C (thermal method) [59]. The spent 
biosorbent was several times rinsed with hot water to desorb crude oil from it. The rinsed biosorbent was then dried and re-used for oil 
biosorption to evaluate its biosorption efficiency and biosorption capacity after regeneration. Five regeneration or reusability cycles 
were conducted, and the results are illustrated in Fig. 7(a)&b. 

The results revealed that the biosorption efficiency decreased from 99.05 % to a level of 49.55 % after the fifth cycle, while the 
biosorption capacity decreased from 12.82 g/g to 6.46 g/g. Thus, the decrease in biosorption efficiency and biosorption capacity did 
not approximately exceed 50 % of the initial value after five biosorption cycles. Based on Table 9, the reusability of plantain leaves’ 
bio-sorbent was similar to bio-sorbents like raw luffa [60], Lawsonia leaves [26], orange peel [61], barley straw [62] and pineapple 
leaves [22]. Nevertheless, the plantain leaves reusability was limited when compared to some bio-sorbents whose reusability cycles 
were up to 8–15 including Annona senegalensis fiber (wild custard apple) [8] and banana peel [63]. 

3.7. Comparison of plantain leaves’ oil biosorption efficiency and biosorption capacity 

Table 9 shows the comparison of the plantain leaves’ crude oil biosorption efficiency and biosorption capacity with the oil removal 
efficiency and biosorption capacity of selected lignocellulosic biosorbents. 

Fig. 7. Reusability of plantain leave as crude oil biosorbent conducted at crude oil initial concentration of 7.8 g/L, seawater-crude oil temperature 
of 30 ◦C, bio-sorbent dosage of 3 g and bio-sorbent particle size of 1.18 mm. (a) biosorption efficiency (b) biosorption capacity. 
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As shown in Table 9, the oil biosorption capacity values for plantain leaves biosorbent (12.82 g/g) reported in this present study are 
relatively comparable to the oil sorption capacity of barely straw (6.5–12 g/g) [62], rice husk (15 g/g) [65], fatty acid-modified 
pomelo peel (11.49 and 14.17 g/g) [68], raw luffa (10 g/g) [60], and oil palm (Elaeis guineensis) fruit mesocarp fibre (12.66 g/g) 
[52], while it is greater than the reported values for modified oil palm leaves (1.176 g/g) [41], corncobs (5–7 g/g) [13], raw pineapple 
leaves (35.59 mg/g) and fatty acid-esterified pineapple leaves (107.67–138.89 mg/g) [22], groundnut husk (0.054 g/g) and plantain 
peels (0.056 g/g) [5] coconut coir (0.360 g/g) [67], raw sugarcane bagasse (6.6 g/g) [64], banana peel powder (5–7 g/g) [63], 
acetylated cocoa pod fibre (8 g/g) and acetylated oil palm empty fruit bunch (7 g/g) [16], orange peel (3–5 g/g) [61], raw coconut 
husk (5 g/g) and acetylated coconut husk (8.42 g/g) [4], raw spent tea leaves (1.8 g/g) and oleic modified spent leaves (2.267 g/g) 
[27], plantain pseudo-stem fibers (54.35 mg/g) [42] and lawsonia leaves (1.60 g/g) [26]. In addition, the biosorption efficiency value 
(99.05 %) reported in this study is comparable with the oil removal efficiency reported for plantain pseudo-stem fibers (98.56 %) [42] 
and oil palm fruit mesocarp fibre (97.25 %) [52], whereas, it is relatively greater than the values reported for groundnut husk (85.81 
%) and plantain peels (89.56 %) [5], neem leaves (70.87–80.5 %) [24], walnut shell (80 %) and date pits (87 %) [66], raw coconut 
husk (50 %) and acetylated coconut husk (84.2 %) [4]. The fact that plantain leaves biosorbent has exhibited good oil biosorption 
efficiency and biosorption capacity compared to other lignocellulosic biosorbents, the biosorption capacity value reported in this study 
are lower to the oil sorption capacity values that have been reported for palm fiber (22.73 g/g) [63], moss (Ceratodon purpureus) (25.5 
g/g) [69], and Cissus Populnea Leaves (20.4 g/g) [25]. 

3.8. Crude oil bio-sorptive remediation isotherms’ modelling 

Different types of isotherm models have been developed to describe equilibrium relationship that exists between the bio-sorbent 
and sorbate [4,28,42,54]. Langmuir, Freundlich, and Temkin, which are two-parameter isotherm models were utilized to succinctly 
describe the equilibrium bio-sorptive remediation data. 

3.8.1. The Langmuir isotherm model 
This model describes the gradual increasing occupation of the limiting number of homogeneously spread identical reactive sites 

present on the entire bio-sorbent surface area with mono or single layer of the sorbate until no further adsorption or sorption can take 
place [42]. The linearized model form is expressed as given in Equation (14) [42]: 

Ce

qe
=

1
qmaxa

+
Ce

qmax
(14)  

Table 9 
Comparison of plantain leaves’ oil bio-sorption efficiency and bio-sorption capacity with selected bio-based (lignocellulose) bio-sorbents.  

Type of Biosorbent Type of oil BE (%) BC (g/g) RC Ref 

Luffa fibre Crude oil 44 10 3 60 
Sugarcane leaves/bagasse Crude oil N/A 5.5 and 6.6 N/A 64 
Banana peel Crude oil N/A 5–7 10–15 63 
Barley straw Crude oil N/A 6.5–12 3 62 
Rice husk Crude oil N/A 15 N/A 65 
Date palm fibers Crude oil  22.73 N/A 3 
Orange peel Crude oil N/A 3–5 5 61 
Acetylated cocoa pod fibre/acetylated oil palm empty fruit 

bunch 
Crude oil N/A 8 and 7 N/A 16 

Groundnut husk/plantain peels Crude oil 85.81/89.6 0.054/0.056 N/A 5 
Plantain pseudo stem fiber Crude oil 94.7/98.56 0.054 N/A 42 
Neem leaves Crude oil 70.87–80.5  N/A 24 
Raw/acetylated coconut husk Crude oil 50/84.2 5 and 8.42 N/A 4 
Annona senegalensis fiber (wild custard apple) Crude oil  5.25–7.12 8 8 
Oil palm fruit mesocarp fibre Crude oil 97.25 12.66 N/A 52 
Walnut shells and Date pits Oil 80 and 87 – N/A 66 
Modified oil palm leaves Oil N/A 1.176 N/A 41 
Coconut coir Oil N/A 0.360 N/A 67 
Corncobs  N/A 5–7 N/A 13 
Fatty acid-modified pomelo peels Diesel oil and Lubricating 

oil 
N/A 5.96–11.49/7.59–14.17 N/A 68 

Moss (Ceratodon purpureus) Engine oil N/A 25.5 N/A 69 
Raw Spent tea leaves and Oleic modified spent leaves  N/A 1.8 and 2.267 N/A 27 
Raw pineapple leaves and Fatty acid-esterified pineapple 

leaves 
Oil N/A 0.0356 and 

0.107–0.1389 
4 22 

Lawsonia leaves  N/A 1.60 4 26 
Cissus Populnea leaves  N/A 20.4 N/A 25 
Plantain leaves Crude oil 99.05 % 12.82 5 Present 

study 

Note: N/A = Not Available; RE = Biosorption Efficiency; BC = Biosorption Capacity; RC = Reusability Cycle and Ref = Reference. 
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where qmax (maximum bio-sorption capacity, g/g) and a (bio-sorption affinity indicator or bio-sorption energy, L/g) are Langmuir 
constants. They were determined from the slope and intercept of the linear regression plot of Ce/qe vs. Ce as shown in Fig. 8(a). The 
estimated or determined values of the constants are provided (Table 10). Fig. 8(a) revealed that the equilibrium bio-sorption data 
adequately adjusted well to the Langmuir isotherm model (with R2 value = 0.9673, Table 10). Table 10 shows the Langmuir constant, 
a to be 2.44 L/g while the qmax to be 19.31 g/g. It was reported that when Langmuir constant a is above zero (i.e., a > 0), then the 
adsorption or sorption system is favorable [54]. Since the constant “a” was seen to be greater than zero (>0), hence, the bio-sorption of 
the crude oil from the seawater was much favorable. The plantain leaves’ qmax value of 19.31 g/g was relatively comparable with the 
qmax values of 15.3 g/g and 15.06–16.84 g/g respectively gotten for oil-sorption from water using esterified coconut coir [70] and 

Fig. 8. Bio-sorption isotherm models fitting to the equilibrium plantain leaves-crude oil bio-sorptive remediation data obtained at conditions of 
different crude oil initial concentration, constant seawater-crude oil temperature (30 ◦C), bio-sorbent dosage (3 g), and bio-sorbent particle size 
(1.18 mm). (a) Langmuir isotherm model linear regression fitting. (b) Freundlich isotherm model linear regression fitting. (c) Temkin isotherm 
model linear regression fitting. 

Table 10 
Estimated values of the bio-sorption isotherm parameters and R2 for the crude oil-seawater system bio-sorptive remediation by plantain leaves 
(value of parameters obtained at conditions of different crude oil initial concentration, constant seawater-crude oil temperature (30 ◦C), biosorbent 
dosage (3 g), and biosorbent particle size (1.18 mm).  

Isotherm models Isotherm constant parameters Correlation coefficient 

Name Value R2 

Langmuir Isotherm qmax(g /g) 19.31 0.9673  
a(L /g) 2.44  

Freundlich Isotherm Kf (g /g)(L /g) 13.99 0.9991  
1/n 0.516  

Temkin Isotherm A(L /g) 28.02 0.9600  
B 3.993   
bT(kJ /mol) 0.622   
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chemically and thermally modified coconut husk [4]. 

3.8.2. The Freundlich isotherm model 
The model is usually employed to describe the occurrence of non-ideal sorption or adsorption in a heterogeneous sorbent/ 

adsorbent surface that has independent and non-equivalent reactive binding sites [4]. The linearized logarithmic model form is as 
provided in Equation (15): 

Ln⥄qe = Ln⥄Kf +

(
1
n

)

Ln⥄Ce (15)  

The Kf and n are Freundlich isotherm constants. The Kf roughly denotes the bio-sorption or adsorption capacity (g/g) and n is an 
empirical constant that denotes the bio-sorption intensity. The two constants (Kf and 1/ n) were derived from the slope and intercept of 
the linearized plot, Ln⥄qe vs. Ln⥄Ce (Fig. 8 (b)). The estimated or determined values of both constants are presented (Table 10). Fig. 8 
(b) illustrated that the equilibrium bio-sorption data adjusted adequately to the Freundlich isotherm model relatively having a high R2 

value of 0.9991. Table 10 reveals that the Freundlich constant Kf was 14.00 g/g while the empirical constant 1/ n constant was 0.516. 
Also, it was reported that, for a favorable adsorption or bio-sorption, the value of 1/ n should be less than one (i.e., 1/ n < 1) or that the 
value of “n” should be above one but less than ten (i.e., 1 < n< 10) [4,9]. The smaller or lower the 1/n value, the greater is the binding 
affinity that will exist between the sorbate and the bio-sorbent or adsorbent [4,71]. Therefore, the 1/n value of 0.516 or the n value of 
1.94 gotten for the utilization of plantain leaves as bio-sorbent denotes a favorable crude oil bio-sorption. The 1/ n value, 0.516 

Fig. 9. (a) Pseudo-first-order kinetics adjusted to the plantain leaves’ crude oil bio-sorptive kinetic data obtained at various crude oil initial 
concentration, constant seawater-crude oil temperature (30 ◦C), biosorbent dosage (3 g), and biosorbent particle size (1.18 mm). (b) Pseudo-second- 
order kinetics adjusted to the plantain leaves’ crude oil bio-sorptive kinetic data obtained at various crude oil initial concentration, constant 
seawater-crude oil temperature (30 ◦C), biosorbent dosage (3 g), and biosorbent particle size (1.18 mm). (c) Weber-Morris intra-particle diffusion 
model adjusted to the plantain leaves’ crude oil bio-sorptive kinetic data obtained at various crude oil initial concentration, constant seawater-crude 
oil temperature (30 ◦C), biosorbent dosage (3 g), and biosorbent particle size (1.18 mm). (d) Boyd et al. model adjusted to the plantain leaves’ crude 
oil bio-sorptive kinetic data obtained at various crude oil initial concentration, constant seawater-crude oil temperature (30 ◦C), biosorbent dosage 
(3 g), and biosorbent particle size (1.18 mm). 
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obtained for plantain leaves as bio-sorbent for crude oil bio-sorption was relatively comparable with the 1/n values, 0.468 and 
0.49–0.575 that were respectively gotten for the usage of raw coconut husk [4] and chitosan-g-octanal schiff base [9] in the 
oil-sorption from water. 

3.8.3. The Temkin isotherm model 
Application of the model assumes that the coverage of the bio-sorbent surface is a function of the bio-sorption free energy [54]. The 

Temkin model, expressed in a linear logarithmic form (Equation (16)): 

qe =B ln A + B ln Ce (16)  

where, B = RT/bT. B is an indicator of the heat of sorption; bT is a constant; T is absolute temperature (K); R is gas constant (8.314 ×
10− 3 kJ mol− 1 K− 1); and A (L/min) is the equilibrium binding constant which connotes the maximum binding energy. From the 
intercept and slope of the linear regression plot of qe vs. ln Ce (Fig. 8(c)), A and B can be computed. The A, B and bT values determined 
from the plot are provided in Table 10. The plot in Fig. 8(c) indicated that the equilibrium crude oil bio-sorption data adjusted 
adequately to the Temkin model having a relatively high R2 value of 0.9600. The Temkin constant, bT was gotten to be 0.622. This 
value was evaluated to be less than 8 kJ/mol suggesting the weak interaction that exists between the molecules of crude oil and the 
plantain leaves bio-sorbent. Hence, with the bT value < 8 kJ/mol, the plantain leaves-crude oil bio-sorption process can be assessed to 
be of physical bio-sorption mechanism [4,54]. 

Thus, the three isotherm models of Langmuir, Freundlich, and Temkin applied to the equilibrium bio-sorptive remediation data 
adjusted adequately with high R2 values greater than 0.90. However, the plantain leaves-crude oil bio-sorptive remediation process 
could best be described by Freundlich isotherm model since it relatively presented a higher R2 value of 0.9991. This then implied that 
the bio-sorption of crude oil by the plantain leaves bio-sorbent took place at the heterogeneous reactive binding sites with non-uniform 
or heterogeneous energy distribution. The result is in accord with the results that have been presented for leaves and roots of Pistia 
stratiotes [72] and chemically/thermally modified coconut husk used in oil-water system clean-up [4]. 

3.9. Kinetic modelling of the bio-sorptive crude oil polluted-seawater remediation 

In ascertaining the crude oil bio-sorption mechanisms, the kinetic data obtained by calculating the bio-sorbent’s oil bio-sorption 
capacity at different remediation time or period were analyzed utilizing the Lagergren pseudo-first order and pseudo-second order. 
In addition, in any bio-sorption processes, it is essential to ascertain the sorbate transfer or transport extent from the whole liquid to the 
bio-sorbent surface or at the bio-sorbent and liquid interface [73,74] and its diffusion into the solid bio-sorbent interior. The slowest 
rate step that occurs during the bio-sorption process determines the process controlling-rate step. Thus, there are different models for 
mass transfer or diffusion that can be utilized to determine this controlling-rate step and some of these models include Weber-Morris 
intra-particle diffusion model and Boyd et al. film and particle diffusion model [74]. These diffusion models were applied to ascertain 
the controlling-rate step of the crude oil bio-sorptive remediation process. 

3.9.1. Lagergren pseudo-first-order kinetic model 
This model assumes that the sorbate uptake rate at the sorption binding sites is directly proportional to the amount or number of 

unoccupied sorption sites [20]. The Lagergren pseudo first-order kinetic model equation (Equation (17)) as provided in the linear form 
[4,28,74]: 

ln(qe − qt)= ln qtheo − k1t (17)  

Where, qe = experimental equilibrium biosorption capacity (g/g); qtheo = theoretical equilibrium biosorption capacity (g/g); and k1 =

bio-sorptive rate constant (min− 1). The values of qtheo and k1 constants were correspondingly gotten from the intercept and slope of 
ln(qe − qt) vs t plot (Fig. 9(a)). The values are provided in Table 11. Fig. 9(a) displayed that the pseudo-first-order kinetic model 
adjusted well to the oil bio-sorptive remediation kinetic data (at various initial crude oil concentrations) with relatively high R2 values 
that ranged from 0.9515 to 0.9935 (Table 11). 

Table 11 indicated that the estimated theoretical qe (qtheo) is not close to the experimentally observed qe and that generally the bio- 
sorptive rate constant (k1) increased as initial concentration of the crude oil increased. The reason for the bio-sorptive rate constant 
(k1) was adduced to the fact that, at lower concentration, the competition for the bio-sorbent surface reactive binding or sorption sites 
is low but at higher crude oil initial concentration, there is higher competition for the bio-sorbent surface reactive sorption sites which 
results in a higher rate of bio-sorption [54]. 

3.9.2. Pseudo-second-order kinetic model 
This model fundamentally assumes that chemical sorption or bio-sorption is the rate-determining step [4] and that the rate of 

bio-sorption onto the sorption binding sites is related to the square of the accessible unoccupied sorption sites [28]. The 
pseudo-second-order kinetic model equation is expressed in the linear form (Equation (18)) [4,28,74]: 

7
t
qt
=

1
k2q2

theo
+

t
qtheo

(18)  
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Where k2 = bio-sorptive rate constant of second order bio-sorption (gg− 1min− 1). The k2 and qtheo parameters were computed from t/ qt 
vs. t linearized plot (Figure 8(b)). Using Equation (19), the initial bio-sorptive rate, h (g g− 1 min− 1) was estimated [54]. 

h= k2q2
theo (19) 

The plot in Fig. 9(b) has shown that the pseudo-second-order kinetic model adequately adjusted to the oil bio-sorptive remediation 
kinetic data having a high R2 values that ranged from 0.9845 to 0.9957. The estimated values of the pseudo-second-order kinetic 
constants are presented in Table 11. It could be seen that, generally the second-order bio-sorptive rate constant (k2) decreased with 
increasing initial concentration of the crude oil, while the initial bio-sorptive rate (h) increased with rising or incremental crude oil 
initial concentration. Eweida et al. [9] reported a similar observation for the utilization of chitosan and chitosan-g-Octanal schiff in the 
removal of oil from water. The decrease in k2 due to incremental crude oil initial concentration seems to suggest that the crude 
oil-seawater bio-sorptive remediation by plantain leaves was more favorable with lower concentration. Nonetheless, the reason for h 
increase due to incremental initial concentration may be attributed to the increased concentration gradient which results in an 
increased or higher driving force responsible for overcoming the crude oil mass transfer opposition between the seawater and the solid 
bio-sorbent [54]. 

3.9.3. Weber-Morris intra-particle and Boyd et al. (film and particle) diffusion models 
The Weber-Morris intra-particle diffusion model equation (Equation (20)) [74,75]: 

qt =Kw− mt1/2 + C (20)  

Where C (g/g) = interfacial film resistance or boundary layer impact and Kw− m = Weber-Morris intra-particle diffusion rate constant (g 
g− 1.min− 1/2). From the intercept and slope of qt vs t1/2 linearized plot, C and Kw− m can correspondingly be estimated. The large value 
of C (intercept) reveals the contribution of surface bio-sorption in the controlling-rate step. If the C or intercept value is large, then the 
surface bio-sorption contribution in the controlling-rate step will also be large. There is a relationship existing between the intra- 
particle diffusion rate constant (Kw− m) and the intra-particle diffusivity (Did, cm2/s) which is depicted by Equation (21) [74]: 

Kw− m =

(
3qe

dp

) ̅̅̅̅̅̅̅
Did

π

√

(21)  

Where dp = bio-sorbent particle diameter (mm) and qe = experimental equilibrium bio-sorption capacity (g/g). If from the qt vs t1/2 

plot, a linearized regression fit through the origin is achieved, then the bio-sorption process is confirmed to be diffusion process control 
[75]. 

Fig. 9(c) which is the plot of qt vs t1/2 shows the linearized regression fit. The plot showed that at each crude oil initial concen-
tration, the line of regression slightly digressed from the origin without passing through it. The digression from the origin could be due 
to difference in the rate of mass transfer between the final and the initial bio-sorption stages. This digression from the origin indicates 
that there is the occurrence of low interfacial resistance (opposition) of the surrounding or encompassing film or some influence of 
boundary layer [54]. The relatively high R2 values that ranged from 0.9000 to 0.9644 obtained for the different initial crude oil 
concentration as demonstrated by the model linear fit justifies why the mass transfer of oil into the plantain leaves bio-sorbent follows 

Table 11 
Pseudo-first-order, pseudo-second-order, Weber-Morris intra-particle diffusion and Boyd et al. diffusion kinetic parameters and coefficients of 
determination obtained for the bio-sorptive remediation of crude oil polluted seawater by plantain leaves (values obtained at conditions of different 
crude oil initial concentration, constant seawater-crude oil temperature (30 ◦C), bio-sorbent dosage (3 g), and bio-sorbent particle size (1.18 mm)).  

Kinetic Model Parameters Crude oil initial concentration (g/L) 

3.9 7.8 11.7 15.6 

Pseudo first-order kinetics k1 (min− 1) 0.297 0.411 0.330 0.307  
qe (theo) (g/g) 3.03 7.16 10.04 14.05  
qe (exp) (g/g) 3.82 7.49 11.08 14.43  
R2 0.9515 0.9855 0.9935 0.9716 

Pseudo second-order kinetics  
k2 (g/g/min) 0.396 0.239 0.116 0.065  
qe (theo) (g/g) 3.93 7.72 11.53 15.20  
qe (exp) (g/g) 3.82 7.49 11.08 14.43  
h 6.12 14.24 15.42 15.02  
R2 0.9937 0.9957 0.9921 0.9845 

Weber-Morris Intraparticle Diffusion  
Kw− m (g/g.min− 1/2) 0.434 0.830 1.549 2.374  
C 2.236 4.550 5.554 5.862  
Did (cm2/s) 1.05 × 10− 6 1.00 × 10− 6 1.58 × 10− 6 2.20 × 10− 6  

R2 0.9644 0.9000 0.9061 0.9393 
Boyd et al. Film Diffusion Model  

DFeff (cm2/s) 1.50 × 10− 6 2.17 × 10− 6 1.67 × 10− 6 1.50 × 10− 6  

R2 0.9811 0.9760 0.9985 0.9480  
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intra-particle diffusion mechanism but being not the sole or the only controlling-rate (determining) step due to boundary layer in-
fluence. The determined values of the intra-particle diffusion rate constant, Kw− m and the intra-particle diffusivity, Did are given in 
Table 11. It is observed that both the Kw− m and the Did increased with rising initial concentration. The Did values, 1.00–2.20 × 10− 6 

cm2/s, which is found within the 10− 6 to 10− 8 cm2/s range, suggest that the intra-partice diffusion is not the rate-determining step [76] 
of the crude oil bio-sorptive remediation by the plantain leaves. However, the values are also within the 10− 5 - 10− 12 cm2/s range, the 
plantain leaves as bio-sorbent can be employed for chemisorption (i.e., chemical sorption) system [73,74]. 

3.9.4. Boyd et al. Particle and film diffusion model 
Film diffusion and particle diffusion processes were the two forms of diffusion processes considered by Boyd et al. (1947) as 

provided in Equation 22a-c [74]: 

F(t)= 1−
6
π2

∑∞

z=1

1
z2exp− z2Bt (22a)  

Bt =
− π2Deff

r2 (22b)  

Where, F(t), the equilibrium fractional attainment at time t; Bt, F(t) mathematical function; Deff , effective diffusion coefficient of 
sorbate (cm2/s); r, radius of the bio-sorbent particle (m), and z is an integer. Values of F(t) are obtained from Equation (22c): 

F(t)=
qt

qe
(22c)  

Where qt and qe are experimental bio-sorption capacity at time t and experimental equilibrium bio-sorption capacity (g/g), respec-
tively. Reichenberg [77], however modified Equation (22a) as given in Equation 23a - b by Yakub et al. [74]: 

F(t)values ranging from 0 to 0.85:Bt= 2π −
π2F

3
− 2π

(

1 −
πF
3

)1/2

(23a)  

F(t)values ranging from 0.86 to 1:Bt= − loge
π2

6
(1 − F) (23b) 

Hence, in ascertaining the actual determining-rate step, linearized plot of Bt against t (time) was done in differentiating between the 
film and particle diffusion-controlled bio-sorption. If the regression line went through the origin, then the rate of bio-sorption is 
particle diffusion governed. However, if the linear regression fit does not pass through the origin, the bio-sorption rate is film diffusion 
controlled or governed [74]. 

Fig. 9(d) depicts the Boyd et al. diffusion model plot of Bt against t at different initial concentration. As seen in Fig. 9(d), the linear 
regression fit line marginally deviated from the origin without passing through it; nevertheless, relatively displayed a high R2 values 
that ranges from 0.9480 to 0.9985 (Table 11). However, these obtained R2 values at the different crude oil initial concentration were 
relatively higher than the R2 values, 0.9000 to 0.9644 obtained using Weber-Morris intra-particle diffusion model and therefore, 
indicates the relevance and dominance of film diffusion as a controlling or determining-rate factor in the plantain leaves-crude oil bio- 
sorption process. The determined or estimated values of the effective diffusion coefficients, Deff are provided in Table 11. Table 11 
shows that the film effective diffusion coefficients, Deff generally increased as the crude oil initial concentration increased up till 7.8 g/ 
L and above this concentration it started to decrease. The obtained Deff values of 10− 6 cm2/s which is found within the 10− 6 to 10− 8 

cm2/s range imply that the rate-determining step of the crude oil bio-sorptive remediation by the plantain leaves is the film diffusion 
[76]. Also, these Deff values of 10− 6 are within the 10− 5 to 10− 12 cm2/s range, which infers that plantain leaves as bio-sorbent can be 
utilized for chemisorption biosystem [73,74]. 

The relatively high R2 values greater than 0.90 obtained for utilizing the bio-sorption and mass transfer models as presented in 
Table 9 indicates that the pseudo-first order and pseudo-second order-kinetic models as well as the Weber-Morris intra-particle 
diffusion and Boyd et al. diffusion models adequately adjusted well to the bio-sorptive remediation kinetics’ data. Nevertheless, the 
crude oil-seawater system bio-sorptive remediation kinetics could suitably best be explained by the pseudo-second-order kinetic model 
as being the model that demonstrated the highest R2 values of 0.9845–0.9957 at the various crude oil initial concentration. This 
implied that oil spill clean-up or removal from seawater utilizing plantain leaves as bio-sorbent agent follows the pseudo-second-order 
kinetics and that its bio-sorption mechanism is chemisorption. These findings and observations are in consonance with the findings and 
observations that were presented for the utilization of esterified coconut coir [70], bulrush [36], thermally and chemically modified 
coconut fibres [4] and Annona senegalensis [8] in oil spill clean-up from water. 

4. Conclusions 

The potential or feasibility of using plantain leaves as possible bio-sorbent for crude oil-seawater bio-sorptive remediation under 
different bio-sorptive remediation conditions or factors which includes, initial crude oil concentration, crude oil-seawater tempera-
ture, bio-sorbent dosage and bio-sorbent particle size was investigated and evaluated utilizing the L934 type of TOAT. The TOAT was 
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also utilized to determine the optimal combination of the factors and their levels. The significant impact of the factors on the crude oil 
bio-sorption was determined using the S/N ratio analysis, ANOVA, and sigma values, respectively. 

From this investigation, it was concluded that the effects of initial crude oil concentration, bio-sorbent dosage, and bio-sorbent on 
the crude oil-seawater bio-sorptive remediation were very significant while crude oil-seawater temperature has no significant influ-
ence on the oil bio-sorptive remediation. The bio-sorbent particle size was the major factor that affected the bio-sorption efficiency 
with its percentage contribution of 49.44 % followed by crude oil initial concentration (41.29 %) and bio-sorbent dosage having the 
least contribution (8.86 %). Predicted optimum factors’ levels combination for achieving maximum or optimum bio-sorption efficiency 
and bio-sorption capacity can be obtained using the Taguchi S: NR analysis, the N-DOT and the proposed optimization method. The 
predicted optimum factors’ levels combination obtained using these three different methods was X11X33X41, at these combinations, the 
predicted optimum or maximum bio-sorption efficiency was 99.56 %, 99.57 % and 98.11 % using the Taguchi optimization technique, 
N-DOT and the proposed optimization method, respectively. At these predicted optimum factors’ levels combination, the predicted 
optimum bio-sorption efficiency was experimentally validated or confirmed and was obtained to be 99.05 %. Similarly, the predicted 
optimum factors’ levels combination obtained for bio-sorption capacity using these three different methods was X13X31, at these 
combinations, the predicted optimum or maximum bio-sorption efficiency was 12.98 g/g, 12.98 g/g and 11.04 g/g using the S:NR 
analysis of TOAT, N-DOT and the proposed optimization method, respectively. At these predicted optimum factors’ levels combina-
tion, the actual experimentally validated optimum bio-sorption capacity was 12.82 g/g. The values of the percentage errors (− 0.52 %, 
− 0.52 % and 0.96 %) showed that there were no significant difference between the experimentally validated bio-sorption efficiency 
and the predicted bio-sorption efficiency using the S:NR analysis of TOAT, the N-DOT and the proposed optimization method. Also, the 
percentage errors between the experimentally validated bio-sorption capacity and the predicted bio-sorption capacity applying the S: 
NR analysis of TOAT, the N-DOT and the proposed optimization method were − 1.25 %, − 1.25 % and 14 %, and hence no significant 
variation between them. The regeneration/reusability study demonstrates that the biosorption efficiency for plantain leaves’ bio-
sorbent decreased from 99.05 % to 49.55 % at the end of five reusability cycles, while the biosorption capacity decreased from 12.82 g/ 
g to 6.46 g/g. 

Equilibrium bio-sorptive remediation data adequately adjusted very well to the Freundlich, Langmuir, and Temkin isotherm model 
equations. However, Freundlich isotherm model equation could best describe oil bio-sorption from seawater by plantain leaves-bio- 
sorbent having demonstrated very high R2 value of 0.9991. That is, crude oil bio-sorption from water by plantain leaves as a bio- 
sorbent is a non-ideal heterogeneous bio-sorption process with the plantain leaves having a maximum bio-sorption capacity (Kf ) of 
14.00 g/g and bio-sorption intensity (1/ n) of 0.516 at 25 ◦C. 

The bio-sorptive remediation kinetics followed a pseudo-second-order kinetics and the plantain leaves-crude oil bio-sorption 
system being film diffusion-controlled while the bio-sorption occurs via dual mechanisms of physical-sorption (physisorption) and 
chemical sorption (chemisorption) with chemisorption showing more dominance. Therefore, plantain leaf has a strong potential for its 
application as a natural, viable, effective, and alternative bio-sorbent for the bio-sorptive remediation of seawater polluted with crude 
oil. 
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[47] I. Jansson, F.J. García-García, B. Sánchez, S. Suárez, Key factors to develop hybrid photoactive materials based on mesoporous carbon/TiO2 for removal of 
volatile organic compounds in air streams, Appl. Catal. Gen. 623 (2021), 118281. 
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