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Abstract: Soil nutrient detection is important for precise fertilization. A total of 150 soil samples were
picked from Lishui City. In this work, the total nitrogen (TN) content in soil samples was detected
in the spectral range of 900–1700 nm using a hyperspectral imaging (HSI) system. Characteristic
wavelengths were extracted using uninformative variable elimination (UVE) and the successive
projections algorithm (SPA), separately. Partial least squares (PLS) and extreme learning machine
(ELM) were used to establish the calibration models with full spectra and characteristic wavelengths,
respectively. The results indicated that the prediction effect of the nonlinear ELM model was superior
to the linear PLS model. In addition, the models using the characteristic wavelengths could also
achieve good results, and the UVE–ELM model performed better, having a correlation coefficient
of prediction (rp), root-mean-square error of prediction (RMSEP), and residual prediction deviation
(RPD) of 0.9408, 0.0075, and 2.97, respectively. The UVE–ELM model was then used to estimate the
TN content in the soil sample and obtain a distribution map. The research results indicate that HSI
can be used for the detection and visualization of the distribution of TN content in soil, providing a
basis for future large-scale monitoring of soil nutrient distribution and rational fertilization.

Keywords: hyperspectral imaging; soil total nitrogen; partial least squares; extreme learning machine;
uninformative variable elimination; successive projections algorithm

1. Introduction

Soil is an important part of agricultural production. Scientific fertilization according to the richness
or poorness of nutrients in the soil is the basis for high-quality and high-yield crops [1]. However,
fertilization is often done blindly or mechanically in order to obtain a high yield, resulting in the uneven
distribution and low utilization of chemical fertilizers. Excessive nitrogen fertilizer use not only reduces
the rate of fertilizer utilization and causes economic losses but also causes serious environmental
pollution and excessive nutrient content in crops [2].

Traditional methods for detecting soil nutrients are done through laboratory chemical analysis
tests [3]. However, these analyses are time consuming, expensive, and complicated to operate.
In addition, the acid–base waste liquid produced by the laboratory can cause secondary environmental
pollution if improperly handled. Therefore, there is an urgent need for a rapid, on-site, continuous, and
nonpolluting detection method for crop production. A method that can quickly and accurately obtain
the content and distribution of total nitrogen (TN) in soil, so as to rationally and precisely fertilize
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according to the abundance of soil nutrients [4], is of great significance for the sustainable development
of agriculture and the successful implementation of precision agriculture.

Near-infrared (NIR) spectroscopy has been widely used in the detection of soil nutrient information
due to its advantages of fast detection speed, no pollution, low cost, and simple operation [5]. He et al.
used NIR spectroscopy combined with partial least squares (PLS) to analyze the contents of nitrogen
(N), phosphorus (P), potassium (K), organic matter (OM), and pH in the soil, and the results showed
that NIR had the potential to accurately predict N and OM contents as well as pH level in soil [6].
Rossel et al. compared linear regression analysis methods (i.e., multiple linear regression, partial
least squares, etc.) with nonlinear regression analysis methods (i.e., support vector machines (SVMs),
random forests (RFs), artificial neural networks, etc.) and conducted modeling research on the content
of soil organic carbon (OC) and clay [7]. The results of this study indicated that the model established
using a nonlinear data mining algorithm could achieve a better prediction effect. The prediction model
based on the extreme learning machine (ELM) algorithm has strong analytical ability and robustness
for nonlinear problems and has been successfully applied in many fields [8,9]. In soil detection, ELM
has also been widely used to estimate soil moisture, soil temperature, and soil organic matter, for which
it has achieved high prediction accuracy [10–12].

Hyperspectral imaging (HSI) is a widespread, rapid, and nondestructive analytical technology
which organically combines traditional spectral analysis with image processing. HSI can simultaneously
obtain the continuous spectral information of each pixel in a sample image and the continuous image
information of each wavelength in the spectrum [13]. Spectral information can reflect the molecular
structure and composition state of a sample, while the image information can reflect its appearance
characteristics. Therefore, a hyperspectral image can provide the sample’s spectral and spatial
information at the same time. O’Rourke et al. used hyperspectral technology to detect the OM
and OC contents of forest surface soils [14]. Jiang et al. used hyperspectral technology to carry out
quantitative estimation and comparison of the cadmium (Cd) concentration of standard and naturally
Cd-contaminated soil samples [15]. However, these researchers only used the spectral information
in hyperspectral data for modeling and prediction, while image information in HSI technology can
spatially reflect the distribution of the reference values of samples in order to make corresponding
decisions according to the distribution map. This method has been successfully applied in many
fields [16–18]. In this work, the spectral and image information in hyperspectral data was used to
detect soil nutrient content and obtain content distribution maps.

This study explored different methods of using HSI technology to detect and visualize the
distribution map of TN content in soil. The specific objectives were (1) to establish an ELM model
with a good predictive effect for predicting TN content in soil, (2) to compare the prediction effects
of corresponding models under different characteristic wavelength selection methods to determine
the optimal model for predicting TN content in soil, and (3) to detect the TN content and visualize its
distribution map based on the optimal model.

2. Materials and Methods

2.1. Soil Samples

In this work, the research area is located in Lishui City (27◦25′–28◦57′ N, 118◦41′–120◦26′ E),
Zhejiang Province, the People’s Republic of China. The area belongs to the mid-subtropical monsoon
climate zone, and the terrain is dominated by mountains and hills. According to the classification and
codes for Chinese soil (National Standard of China, GB/T 17296–2009), the representative soil type in
this area is paddy soil.

A total of 150 paddy soil samples were taken from different farmlands of eight counties in Lishui
(Figure 1). Since there were many impurities such as weeds and stones in the soil surface layer, soil
samples were taken from the surface layer (5–20 cm) in order to reduce the impact of impurities on
the measurement results. We adopted a five-point sampling method. A square region (1 × 1 m) was
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selected at first. Then, an undisturbed earth drill was used for sampling at the four endpoints and the
center of the region at a total of five positions. Finally, five soil samples of equal volume were mixed
to obtain a soil sample. For the sake of reducing the impact of soil moisture and soil particle size on
the measurement results, the soil was first air-dried in a cool and ventilated place to remove plant
residue and stones from the soil. Then, the soil was milled and sieved, with a sieve aperture of 2 mm.
Finally, the soil samples were divided into two parts. The Institute of Soil Fertilizer (Zhejiang Academy
of Agricultural Sciences) carried out a chemical analysis on a small portion (about 50 g) of each soil
sample to measure the laboratory reference values of TN content in the soils. The remaining samples
were stored in petri dishes for HSI measurement and data analysis. The laboratory reference values of
TN content in soil were determined using the Kjeldahl method [19]. The reference value of TN is the
percentage of the TN’s weight out of the total weight of the dry soil sample.

Figure 1. Geographical map of the research area and locations of sampling points.

From the 150 soil samples, 100 samples were randomly selected as the calibration set, and the
remaining 50 samples were used as the prediction set. The reference values of soil TN content are
shown in Table 1. The range of TN content in the calibration set contained the range of TN content in
the prediction set.

Table 1. Reference values of total nitrogen (TN) content in the 150 soil samples.

Sample Set Number Range (%) Mean (%) SD 1 (%)

Calibration set 100 0.0678–0.1710 0.1216 0.0201
Prediction set 50 0.0760–0.1580 0.1197 0.0223

1 SD = Standard deviation.
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2.2. Hyperspectral Imaging System

A near-infrared HSI system was used for the spectral measurement of soil samples (Figure 2).
From top to bottom, the system was composed of a CCD camera (Xeva 992; Xenics Infrared Solutions,
Leuven, Belgium), a spectrometer (ImSpector N17E, Spectral Imaging Ltd., Oulu, Finland) with a
spectral range of 900–1700 nm (256 wavelengths), an imaging lens (OLES22, Specim, Spectral Imaging
Ltd., Oulu, Finland), a lighting source assembled using two 150 W fiber halogen lamps (Fiber-Lite
DC950 Illuminator, Dolan Jenner Industries Inc., Boxborough, MA, USA) with adjustable intensity
from 0% to 100%, and a single-phase stepper motor (Isuzu Optics Corp., Taiwan) for driving the
displacement platform.

Figure 2. The hyperspectral imaging (HIS) system.

The soil sample was placed in a 60 mm diameter petri dish, then the petri dish was placed on
the platform for image acquisition. To reduce the impact of environmental light on the sample while
measurements were being taken, the entire system (except the computer) was assembled in a darkroom.
In addition, in order to obtain a complete and undistorted hyperspectral image, the translational speed
of the platform was set to 24 mm/s, the camera exposure time was set to 3 ms, and the soil sample was
placed 30.8 cm below the camera lens.

2.3. Image Preprocessing

In order to reduce the impact of changes in camera dark current and light intensity on the image,
the original image (I0) acquired by the HSI system was corrected using dark and white plate reference
images. The white reference image (Iw) was acquired by scanning a white Teflon brick with a reflectance
close to 100%, while the dark reference image (Id) was acquired by shutting down all lamps and
covering the camera lens with its own opaque lens cap to get nearly 0% reflectance.

The corrected image I was obtained using Equation (1):

I =
I0 − Id
Iw − Id

(1)

For the corrected hyperspectral images of the soil samples in each petri dish, an area with a size
of 50 × 50 pixels in the center of each image was selected as the region of interest (ROI) [20]. The
average reflection spectrum of all pixels in the ROI was calculated as the mean spectral data of the
sample. Due to the influence of noise at both ends of the spectrum, only the spectrum of 975–1645 nm
(200 wavelengths) was selected for further analysis and modeling.
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2.4. Multivariate Data Analysis

As the spectral data obtained by the HSI system has complex background noise and severe peak
overlap, direct analysis is very difficult. Therefore, it is necessary to use chemometric methods to
extract effective information from spectral data [21]. Regression analysis was mainly used to study the
functional relationship between variables and establish a regression model for further analysis and
prediction [22]. In spectroscopy and image analysis, the reference values of the object are studied by
using spectral and image information, and the inner relations are studied to establish a calibration
model for predicting unknown samples. In this work, PLS in linear regression analysis and ELM in
nonlinear regression analysis were used to build the calibration model.

2.4.1. Modeling Methods

The PLS algorithm was first proposed by Wold et al. (1985). PLS is a common regression method to
solve the problem of data multicommonness by extracting data characteristic information to realize data
compression [23]. The PLS algorithm considers both spectral information (X) and the corresponding
reference values (Y) of samples during modeling and transforms the original spectral data into mutually
orthogonal and unrelated new variables via linear transformation, thereby eliminating multicollinearity
between datasets. The new variables are a linear combination of the original data, called latent variables
(LVs). In the calculation of LVs, the variance of LVs should not only be as large as possible but the
correlation between LVs and reference values should also be maximized. Based on the calculation, the
first few LVs carry most of the primary information, which are used to replace the original spectral
data and establish the calibration model [24]. In this work, the optimal number of LVs used in the PLS
model was decided by cross validation with Unscrambler 9.7 software (CAMO Inc., Oslo, Norway).

The ELM is a new single-hidden-layer, feedforward neural network algorithm proposed by
Huang et al. It has the characteristics of fast learning, good generalization performance, and a unique
optimal solution compared with the traditional feedforward neural network algorithm [25]. To run
ELM, the number of hidden-layer neurons (HLNs) should be set and the appropriate excitation
function selected, while the bias of the hidden layer and the connection weight between the input and
hidden layers are generated randomly during the operation of the algorithm. Without adjustment, the
connection weight between the hidden and output layers can be obtained, thereby obtaining a unique
global optimal solution.

In practice, there is no fixed theory for determining the number of HLNs. Generally, the stepwise
trial method is adopted, which initially sets the range of the number of HLNs, then calculates the effect
of the ELM model under each HLN within the range to select the optimal number of HLNs.

2.4.2. Characteristic Wavelength Selection

If 200 wavelengths within a spectral range of 975–1645 nm are all adopted for full-spectra data
modeling, the modeling speed will not only be affected by a large amount of data, but the effect of
the calibration model will also be affected by the high correlation and the large amount of redundant
information between different wavelengths, as well as the large amount of noise which will interfere
with the establishment of the calibration model. Therefore, the wavelengths with minimum collinearity,
the least redundancy, and the main effective information were selected from the original spectral
data, and these few wavelengths were used to replace the original full-spectra data to establish the
calibration model [26]. It was expected that the established model would be more robust without
reducing the prediction ability of the model. In this work, uninformative variable elimination (UVE)
and the successive projections algorithm (SPA) were used to select the characteristic wavelengths.

In the full spectra, there are some wavelengths that contain little or no valid information on the
calibration model, and UVE can eliminate these wavelengths from the full spectra to improve model
performance [27]. UVE is a wavelength selection algorithm based on the regression coefficient in the
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PLS model [28]. In the PLS model, the relationship between reference values Y and spectral matrix X
(n × s) is Y = Xk + ε, where k is the regression coefficient and ε is the error.

The UVE algorithm is as follows: (i) A noise matrix N (n × s) with the same size as the spectral
matrix X (n × s) is randomly generated, then N is combined with X to obtain XN (n × 2s). (ii) The PLS
model is established by using the leave-one-out cross validation method based on XN and Y, and the
corresponding regression coefficient matrix k (n × 2s) is obtained. (iii) The mean value M (1 × 2s) and
the standard deviation SD (1 × 2s) of k (n × 2s) is calculated by column, and the E(j) of each column is
calculated using Equation (2):

E( j) =
M( j)
S( j)

, j = 1, 2, . . . , 2s− 1, 2s. (2)

(iv) The maximum absolute value of E(j) in the interval [s + 1, 2s] is denoted as Emax. (v) If E( j) < αEmax

in the interval [1, s], then the jth wavelength in the spectral matrix is considered uninformative and
eliminated from the dataset, and the rest of the wavelengths are chosen as characteristic wavelengths.
In this work, α was set to 0.99.

The SPA is a forward feature variable selection algorithm [29]. The SPA compares the value of the
projection vector by projecting the wavelength onto other wavelengths, and it takes the wavelength
with the maximum projection vector value as the set of wavelengths to be selected. Finally, based on
the calibration model, using root-mean-square error of leave-one-out cross validation (RMSECV) as the
evaluation indicator, the characteristic wavelengths are selected from the set of selected wavelengths
using the multiple linear regression method.

SPA selects the combination of variables with the least redundant information and minimum
collinearity, and the number of characteristic wavelengths selected by SPA cannot be large.

2.4.3. Model Assessment and Software

Model performance was assessed using the correlation coefficient of calibration (rc) and prediction
(rp), the root-mean-square error of calibration (RMSEC) and prediction (RMSEP), and the residual
prediction deviation (RPD) of the calibration and prediction models. Generally speaking, the larger
the rc, rp, and RPD, the smaller the RMSEC and RMSEP, indicating the better performance of the
model [30]. Especially when the RPD value is between 2.0 and 2.5, it indicates that the model works
well and can be used for quantitative analysis. When the RPD value exceeds 2.5, it means that the
model performs excellently [31].

Data processing of the hyperspectral images was performed in ENVI 5.3 (ITT, Visual Information
Solutions, Boulder, CO, USA) and MATLAB R2010b (The MathWorks, Natick, MA, USA). The PLS
model was built in Unscrambler 9.7 (CAMO Inc., Oslo, Norway). The ELM model was built in
MATLAB R2010b. SPA, UVE, and visualization programs were all executed on MATLAB R2010b.

2.5. Image Processing

All pixels in the hyperspectral image data have a spectral reflectance curve with the full spectra [32].
The visualization of TN content distribution in soil by means of HSI technology has two important
points. First, a fast and robust prediction model of TN content was established. Second, the spectral
data of all pixels in the hyperspectral images were successively substituted into the established model
to predict the content and obtain the grayscale image. Through the pseudocolor processing of the
grayscale image, the visualization distribution map of TN content in soil was obtained.
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3. Results and Discussion

3.1. Models with Full Spectra

Firstly, the PLS and the ELM models were established with spectral data in the full spectra of
each sample in the calibration set, then the two models were each used to predict the TN content of all
samples in the prediction set. The performances of the two models are shown in Table 2.

Table 2. The performances of the partial least squares (PLS) model and the extreme learning machine
(ELM) model with full spectra.

Model LVs 1/HLNs 2 Calibration Prediction

rc RMSEC (%) rp RMSEP (%) RPD

PLS 6 0.9276 0.0077 0.9218 0.0086 2.59
ELM 24 0.9383 0.0072 0.9347 0.0079 2.82

1 LVs is the number of latent variables in the PLS model. 2 HLNs is the number of hidden-layer neurons in the
ELM model.

The results indicate that both the PLS and ELM models have strong robustness in predicting TN
content in soil, since their rc and rp were both over 0.9 and the RPD > 2.5. Meanwhile, the performance
of the ELM model was superior to the PLS model, both in the calibration set and the prediction set.
This may be because the ELM model considered the nonlinear information in the spectral data and
used this information to obtain better predictive performance. Other scholars also found similar results.
Shao et al. explored the nonlinear model of least-squares SVM (LS-SVM) for the measurement of soil N,
P, and K on NIR spectroscopy and mid-infrared spectroscopy and found that, compared with the PLS
model, the LS-SVM model provided a slight improvement of the prediction accuracy [33]. Cai et al.
compared the prediction ability of different nonlinear models for measuring soil moisture content on
visible and NIR (vis–NIR) spectroscopy, and the results showed that ELM performed better than the
back-propagation neural network (BPNN), SVM, and RF [34]. This reflected that the ELM model has
strong predictive and analytical capabilities for nonlinear problems.

3.2. Characteristic Wavelength Selection

In order to obtain a simpler and more reliable calibration model via reducing the number of
wavelengths, UVE and SPA were applied to select the characteristic wavelengths with minimum
collinearity and the main effective information from the full spectra. Figure 3 shows the stability values
of soil TN in the wavelength range of 975–1645 nm using the UVE method.

Figure 3. The stability distribution of TN using uninformative variable elimination (UVE).
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The two dotted lines indicate the lower and upper cutoff values. The wavelengths corresponding
to the stability variables outside the dotted line were selected as the characteristic wavelengths to
establish the calibration model [35].

Figure 4 shows the change in RMSECV with different numbers of selected characteristic
wavelengths using the SPA method. RMSECVmin was set as the minimum value in the RMSECV
sequence. The minimum number of characteristic wavelengths whose RMSECV values were not
significantly greater than RMSECVmin was found using the F test at the significance level ofα = 0.1 [36],
thereby determining the number of selected characteristic wavelengths as 10.

Figure 4. Root-mean-square error of leave-one-out cross validation (RMSECV) changes with the different
numbers of selected characteristic wavelengths found using the successive projections algorithm (SPA).

Figure 5 shows the position of the selected characteristic wavelengths in the original spectrum.

Figure 5. The characteristic wavelengths (square markers) selected using SPA.

3.3. Models with Characteristic Wavelengths

Based on the characteristic wavelengths selected by UVE and SPA, the models of UVE–PLS,
SPA–PLS, UVE–ELM, and SPA–ELM were separately established. The performance of each model is
shown in Table 3.



Sensors 2019, 19, 4355 9 of 13

Table 3. The performance of the PLS and ELM models with the characteristic wavelengths selected
using UVE and SPA.

Model
Calibration Prediction

rc RMSEC (%) rp RMSEP (%) RPD

UVE–PLS 0.9293 0.0074 0.9266 0.0083 2.69
SPA–PLS 0.9310 0.0076 0.9150 0.0089 2.51

UVE–ELM 0.9463 0.0068 0.9408 0.0075 2.97
SPA–ELM 0.9346 0.0074 0.9196 0.0087 2.56

Firstly, the results showed that the UVE–PLS, SPA–PLS, UVE–ELM, and SPA–ELM models all had
good prediction performances; the rc and rp values were all larger than 0.9; and the RPD values were
all over 2.5. These results indicate that UVE or SPA can be used to select characteristic wavelengths
instead of the full spectra in establishing the calibration and prediction models. Similar results were
found by other scholars. Shen et al. used the PLS model combined with UVE and SPA to estimate the
soil carbon content on NIR spectroscopy, and the results showed that UVE and SPA were beneficial
and necessary for soil carbon modeling on NIR spectroscopy [37]. Yang et al. used UVE and SPA to
extract characteristic wavelengths from vis–NIR spectral data, and these characteristic wavelengths
were used to model and predict total nitrogen, total carbon, organic carbon, and inorganic carbon in
soil. The prediction results showed that UVE can reduce wavelength variables significantly while
retaining good model prediction accuracy [27].

Secondly, under the same characteristic wavelength selection method, the performances of the
ELM models were better than the PLS models, which was similar to the conclusion obtained in
Section 3.1 “Models with Full Spectra”.

Thirdly, the performances of the models based on full spectra (refer to Table 2) and models based
on the characteristic wavelengths selected by UVE were better than those based on the characteristic
wavelengths selected by SPA. This may be because the characteristic wavelengths selected by the
SPA based on the calibration model were unable to represent the new variables in the prediction
model effectively, as the number of wavelengths was greatly reduced. As mentioned above, Shen et al.
and Yang et al. found similar results when measuring the soil carbon content and the soil TN,
respectively [27,37]. The results showed that the characteristic wavelength selection model based
on UVE was more accurate than the model based on SPA in terms of the higher RPD. This can be
explained by the fact that the SPA method tended to select unstable variables and to remove some
important relevant variables when operating on the full spectra [27,37].

In the end, the performances of models based on the characteristic wavelengths selected using
UVE were more accurate and robust than those based on full spectra, indicating that UVE is an efficient
method for characteristic wavelength selection. The UVE–ELM model performed best out of all
the models, with an rc of 0.9463, rp of 0.9408, RMSEC of 0.0068, RMSEP of 0.0075, and RPD of 2.97
(shown in Figure 6). In comparison, Yang et al. adopted the UVE–SPA–LS-SVM model to estimate the
soil TN on vis–NIR spectroscopy, and the performance of the prediction model was rp = 0.8913 and
RPD = 2.009 [38]. Yuan et al. used the PLS model combined with the spectral pretreatment method
to predict the content of TN in soil on NIR spectroscopy, with an rp of 0.9454 [39]. This showed that
the performances of different prediction models on different spectral ranges were almost similar. In
summary, the characteristic wavelength selection methods were effective when using HSI technology
to detect the TN content in soil, and the UVE method was more suitable for this work.
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Figure 6. The scatter plots of the calibration set (a) and the prediction set (b) in the UVE–ELM model.

3.4. Image Visualization

The realization of hyperspectral image visualization was first based on the calibration model
established according to the average spectrum of the sample pixels and the corresponding reference
values. Then, the model was applied to predict the reference value of each pixel. As mentioned above,
the UVE–ELM model performed best among all the models, so the UVE–ELM model was used to
estimate the TN value at each pixel of the soil hyperspectral image. A soil sample was randomly
selected from the prediction set, and the hyperspectral image of the sample was firstly masked to make
the reflectance of the background and the unwanted part in the image become 0. Then, the spectral
data of each pixel in the hyperspectral image was substituted into the UVE-ELM model to predict the
TN value at each pixel, and the grayscale image was obtained. Finally, the color of all pixels was varied
between red and blue through an image processing program, indicating the different TN contents
from high to low, respectively. The hyperspectral image of the soil sample and the corresponding TN
content distribution map are shown in Figure 7.

Figure 7. (a) The hyperspectral image and (b) the corresponding TN content distribution map visualized
based on the UVE–ELM model.

According to the data analysis in the image processing program, the predicted TN values of most
pixels (>85%) were within the TN reference value of the calibration set (0.0678%–0.1710%), and the
corresponding colors displayed on the distribution map were mostly between cyan and light red. The
average predicted TN value of all pixels was 0.119%, while the reference value of TN content in the soil
sample was 0.108%. Since the reference value of TN content in each pixel was unknown, it was difficult
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to verify the accuracy of the predicted value of each pixel. In practical applications, the reference
value range of the calibration set should be ensured to be as large as possible and the reference value
range of the prediction set should be included, so that the accuracy of prediction can be improved.
Hyperspectral image visualization provided an intuitive representation of the TN content distribution
map in soil, so as to make corresponding decisions.

4. Conclusions

The results indicate that the combination of HSI technology and chemometrics was an effective
method to measure TN content in soil. Compared with the full-spectra model, UVE improved the
performance of PLS and ELM, which indicates that UVE is an efficient method for characteristic
wavelength selection. It also showed that, compared with full-spectra modeling, modeling with a
limited number of characteristic wavelengths can achieve a better prediction effect. This provides a
theoretical and methodological basis for instrument development based on the selection of characteristic
wavelengths, thereby reducing production costs. The visualization distribution map of TN content in
soil, which was obtained based on the UVE–ELM model, provides a foundation for future hyperspectral
remote sensing identification and inversion of TN content in soil. This is helpful for monitoring the
change of TN content in soil in real time. It is of great significance for the future use of an online
monitoring system for soil nutrient content at a field scale.
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