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A body of evidence suggests that food allergy (FA) has increased in prevalence over the

past few decades. Novel findings support the hypothesis that some commensal bacteria

and particularly microbial metabolites might contribute to development of oral tolerance

and prevention from FA. Recently, beneficial effects of short-chain fatty acids (SCFAs),

the main class of gut microbiota-derived metabolites, on FA have been proposed.

The intestinal SCFAs are major end products during bacterial fermentation of complex

and non-digestible carbohydrates such as dietary fiber. The multifaceted mechanisms

underlying beneficial effects of SCFAs on the mucosal immune system comprise the

regulation of diverse cellular pathways in epithelial, dendritic, and T cells, as well as the

impact on the immunometabolism and epigenetic status of regulatory lymphocytes. Of

note, SCFAs are effective inhibitors of histone deacetylases (HDACs). As a consequence,

SCFAs appear to be implicated in attenuation of intestinal inflammation and autoimmune

diseases. In this review, we will discuss the recent development in this research area

by highlighting the role of the individual SCFAs acetate, propionate, butyrate, and

pentanoate in promoting the differentiation of regulatory T and B cells and their potential

beneficial effects on the prevention of FA. In this context, targeted alterations in the gut

microbiota in favor of SCFA producers or supplementation of medicinal food enriched in

SCFAs could be a novel therapeutic concept for FA.
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INTRODUCTION

The human gut harbors one of the densest microbial habitats on the planet Earth containing
thousands of uncharacterized metabolites. Intestinal microbiota synthesize diverse small molecules
that play an important role in the communication between the host immune system and
commensals (1, 2). Such soluble messengers may affect various physiological processes such
as inhibition of colonization of pathogenic bacteria, supporting metabolic and immunological
functions of the host, and even the modulation of host behavioral processes (3, 4). Bacterial
fermentation of dietary fiber results in the generation of the main class of gut-microbiota derived
metabolites, short chain fatty acids (SCFAs). SCFAs, including acetate, propionate, butyrate, and
pentanoate, regulate multiple aspects of human health including beneficial effects on autoimmune
and inflammatory disorders (5, 6). While host digestive enzymes in the oral cavity, stomach,
and upper intestine lack the ability to digest complex carbohydrates such as pectin and inulin,
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those water-soluble dietary fiber are readily fermented in the gut
lumen by various members of the human microbiota. Amounts
of SCFAs vary along the gastrointestinal tract reaching the
highest concentrations within millimolar range in the proximal
colon and cecum (7). Specific bacterial species implicated in
the synthesis of individual SCFAs have been recently identified
(2). The most dominant commensal butyrate producers belong
to the phylum Firmicutes, whereof Clostridia from the human
gut microbiota are the major butyrate-producing class (8).
Particularly, Faecalibacterium prausnitzii, Eubacterium rectale,
and several Roseburia species are able to synthesize high amounts
of this SCFA (9, 10). In contrast to conventionally raised mice
that have high levels of acetate, propionate and butyrate, germ-
free animals are completely devoid of SCFAs. There is substantial
evidence that SCFAs have various effects on host physiology not
only in the gut, but also in the distal organs such as brain and
lung (11–13). This review summarizes recent work carried out
over the past several years illustrating diverse impacts of SCFAs
and dietary fiber on host immune system, microbial, and oral
tolerance, as well as their beneficial effects on food allergy.

MECHANISMS OF SCFA-MEDIATED
REGULATION OF THE HOST IMMUNE
SYSTEM

Proposed mechanisms underlying SCFAs-mediated modulation
of the gut epithelium and mucosal immune system comprise
at least three different modes of action. SCFAs act as diffusible
signaling molecules that have substantial effects on eukaryotic
cells expressing G protein-coupled receptors (GPRs) such as
GPR41, GPR43, and GPR109a (14). Although the preferential
binding of individual SCFAs to various GPRs has not yet been
completely elucidated, diverse signaling cascades can be activated
following ligation of microbial SCFAs to metabolite-sensing
molecules. In colonic epithelial cells, propionate and acetate
have been shown to induce p38 and ERK MAPK activation
through GPR41 and GPR43 (15). These cell surface SCFA-
receptors are expressed not only on the gut epithelium, but
also on intestinal immune cells such as dendritic cells (DCs)
and regulatory T cells (Tregs). The GPR109a expression on
DCs supports the proliferation of Tregs and thus promotes
tolerogenic effects in the gut (16). In addition, colonic Tregs
express high levels of the SCFA-sensing receptor GPR43, which
enables them to protect mice against colitis (17). Moreover,
SCFA-derived atoms serve as carbon source for epithelial cells,
thus directly fueling host metabolism (2). Finally, as strong
histone deacetylase (HDAC) and lysine deacetylase (KDAC)
inhibitors, butyrate and propionate elicit most of their effects by
modulating the expression of various genes involved in several
biological processes such as cell proliferation and differentiation,
antimicrobial immunity, integrity of epithelial barrier, and
intestinal tolerance to bacterial antigens and dietary proteins
(18–20). Although some controversies remain, recent findings
have revealed that SCFAs enhance the glycolytic rate of immune
cells and increase acetyl-CoA concentrations, thus connecting
the cellular metabolism and chromatin modifications (13, 21).

The SCFA-mediated increase in glucose-derived pyruvate and
acetyl-CoA levels in eukaryotic cells leads to the accumulation
of citrate, its transport to the cytosol and subsequent conversion
into cytosolic acetyl-CoA by ATP citrate lyase (ACLY). ACLY
is the key cytosolic enzyme that converts citrate to acetyl-CoA,
which is needed for histone acetyltransferase (HAT)-dependent
histone acetylation (22). There is a substantial body of evidence
that SCFAs are not only HDAC inhibitors, but they are also
able to promote histone modifications in immune cells by acting
as acyl-CoA precursors. Thus, the carbon atoms derived from
SCFAs can directly be transferred to histones via a metabolic-
epigenetic link leading to HAT-mediated histone acetylation and
recently described histone propionylation and butyrylation (23).
Remarkably, SCFAs seem to be unique molecules able to regulate
the gene expression at the epigenetic levels by modulating the
activity of both, HATs and HDACs. Although further studies are
still required to better understand interactions betweenmicrobial
metabolites, HAT activity and histone acylations, current data
suggest that SCFAs provide a pool of acyl groups for generation
of acetyl-CoA and other endogenous metabolites in gut epithelial
and immune cells, which can be used for various cellular
activities (24).

SCFAs ACTIVELY SUPPORT THE
TOLERANCE TO FOOD ANTIGENS AND
COMMENSAL BACTERIA

Metabolomic analysis of the gut microbial community has shown
that SCFAs, a major group of bacterial molecules in the gut
lumen, are potent modulators of the mucosal immune system
(2, 25). Recent studies have demonstrated that SCFAs are not
only locally protective in the intestinal environment, but they
can even act in remote tissues such as pancreas, lung, and brain
(11, 26, 27). Although it is well-appreciated that SCFAs impact on
the colonic epithelial cells, Tregs and DCs, less is known about
the complex mechanisms underlying bidirectional interactions
between intestinal cellular networks and individual members of
SCFA-producing microbiota. Moreover, despite some promising
results obtained in experimental murine models, a possible
protective effect of SCFAs and dietary fiber on the onset of
human gastrointestinal disorders such as inflammatory bowel
disease (IBD), celiac disease, and food allergy is relatively poorly
characterized. Among SCFAs, butyrate has been specifically
associated with the expansion of mucosal Tregs and it also
acts as a preferred carbon source for colonocytes (2). During
gut homeostasis, the metabolism of colonic epithelial cells is
profoundly dependent on oxidative phosphorylation, which
leads to high oxygen consumption. Interestingly, microbiota-
derived butyrate utilized by the gut epithelium affects the
O2 levels in these cells resulting in activation of the oxygen
sensor hypoxia-inducible factor (HIF), a transcription factor
that is crucial for coordinating gut integrity and barrier
protection (28). In addition, butyrate and other SCFAs have
a strong influence on tight junctions (TJ) and production
of mucin (29, 30). Furthermore, SCFAs seem to maintain
intestinal barrier function by stimulating the synthesis of
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antimicrobial peptides and the cytokine IL-18, which strengthens
the tolerance to commensal bacteria and promotes intestinal
homeostasis (31, 32). Butyrate influences intestinal CD103+ DCs
by stimulating the GPR109a cell surface receptor, which enables
this tolerogenic DC subpopulation to trigger proliferation
and expansion of regulatory T cells (Tregs) in mesenteric
lymph nodes (16). DCs treated with butyrate, propionate,
and pentanoate exhibit a lower capacity to stimulate effector
CD4+ T cells (33). Small intestinal DCs display a selective
capability to induce retinoic acid (RA)-dependent increase in
the activity of aldehyde dehydrogenase (ALDH) that strongly
supports the tolerance to food antigens due to concomitant
expansion of food antigen-reactive Tregs (34). Recently, Surh
and colleagues were the first to show that small intestinal Tregs
recognize dietary antigens and limit undesired and adverse
reaction to food by promoting dominant immunosuppressive
response (35). Dietary antigens derived from solid food share
the space inside the small intestinal lumen with various
dietary components and microbial metabolites. Collectively,
diet-derived RA and microbiota-derived SCFAs seem to act
synergistically on intestinal DCs to control immune response
to food antigens by dampening induction of inflammatory
cytokines as well as by inducing Tregs that play a pivotal
role in controlling the tolerance to food and commensal
antigens (36).

Recent findings have revealed a broad heterogeneity of
mucosal Tregs (37, 38), however, there is still no evidence
that SCFAs and SCFA-producing bacteria might preferentially
support the generation of a particular Treg subpopulation under
certain environmental conditions. Butyrate has been suggested
to potentiate the expansion of intestinal Tregs by promoting the
acetylation of histones at the Foxp3 gene, but also by protecting
the Foxp3 protein from degradation through enhancing its
acetylation (39). Thus, by acting within Tregs as a KDAC
inhibitor to enhance acetylation of Foxp3 protein and as a
HDAC inhibitor at the Foxp3 gene locus, butyrate suppresses
inflammation and adverse immune responses in intestinal tissues.
Beyond modulating the epigenetic status of Tregs, butyrate
and other SCFAs have been shown to influence the function
of B cells in Peyer

′

s patches (PPs) and the small intestine.
SCFAs appear to be capable of increasing the number of IgA-
secreting lamina propria plasma cells and B cells in PPs (21, 40).
These effects of SCFAs on B cells seem to be mediated by
enhancing their metabolic activity. It has also been suggested
that particularly pentanoate and butyrate are able to induce IL-
10 production in B cells, which promotes the differentiation
of regulatory B cells (Bregs) (13). These unexpected results
suggest that microbiota-derived SCFAs are not only important
for the maintenance and expansion of mucosal Tregs and their
function, but also for promotion of the Breg cell phenotype.
Gaining a better understanding of the anatomic sites at which
SCFAs-mediated effects on T and B lymphocytes occur under
physiological conditions could be of importance for the future.
There is some evidence that not only surface molecules of
commensal bacteria, but also soluble microbial metabolites
such as SCFAs support the synthesis of protective IgA and
IgG antibodies during the intestinal infection with Citrobacter

rodentium by increasing activity of mTOR and glycolysis in B
cells (21). This suggests that SCFAs do not only promote the
tolerance to food antigens and microbiota by modulating IgA
antibody responses, but they also may help eliminating intestinal
pathogenic infections.

EFFECTS OF SCFAs AND DIETARY FIBER
ON MAST CELLS AND FOOD ALLERGY

A better understanding of the influence of gut-microbiota
derived molecules on the maturation and function of the
immune system in the small intestine may open novel important
therapeutic options in a variety of gastrointestinal disorders
ranging from IBD to food allergy. In the last decades, a significant
increase in the prevalence of food allergies that is characterized
by adverse immune responses to food antigens, which are
mainly derived from peanuts, milk, eggs, tree nuts, strawberries,
or shellfish, has been observed (41). The most characteristic
form of food allergy is mediated by IgE-dependent pathways
(42). Human IgE-triggered peanut allergy is associated with a
high cell number of somatically mutated and clonally expanded
gastrointestinal allergen-specific IgE+ B cells suggesting a local
isotype switching, which likely includes the transition between
IgA and IgE antibody isotypes (43). Recent data suggest that
some dietary components such as RA (an active derivative of
dietary vitamin A) and dietary peptides, as well as microbial
SCFAs may act together to promote intestinal homeostasis and
suppress food allergy. Interestingly, dietary proteins induce the
expansion of food protein-reactive Tregs in the small intestine,
as well as the production of IgA and generation of follicular
helper T (Tfh) cells in the PPs, thus strengthening intestinal
homeostasis (35, 44, 45). In a mouse model of peanut allergy,
SCFAs and RA have been shown to shape local immune responses
and oral tolerance by increasing the function of tolerogenic
CD103+ DCs that are essential for generation of mucosal Tregs.
Moreover, high-fiber diet and SCFA supplementation protected
mice from food allergy by promoting production of IgA in small
intestinal lamina propria and by enhancing the frequency of
follicular T (Tfh) cells in the PPs. Particularly, mice orally treated
with the SCFAs acetate and butyrate displayed a reduction in
anaphylactic clinical scores and diminished serum IgE levels
as compared to control animals following induction of peanut
allergy (34). In human food allergy, individuals exposed to food
allergens have a high amount of intestinal Th2 cells as well
as type 2 innate lymphoid cells (ILC2) that produce cytokines
such as IL-4, IL-5, and IL-13 (46). IL-4 is known to strongly
support the differentiation of B cells into IgE-synthesizing plasma
cells (47). The subsequent exposure of those individuals to
food allergens mediates the cross-linking of allergen-specific
IgE via FcεRI on mast cells. This induces degranulation and
release of histamine and several other effector mediators, which
results in immediate allergic reaction (41). Interestingly, recent
studies suggest that the SCFA butyrate exhibits a direct effect
on mast cells by epigenetically regulating the FcεRI-mediated
signaling molecules (48–50). Thus, by directly inhibiting the
IgE-mediated mast cell degranulation and allergen-induced
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FIGURE 1 | Impact of microbial SCFAs on intestinal homeostasis and food allergy.

histamine release, microbial SCFAs such as butyrate could
have therapeutic benefits in human food allergies (Figure 1).
Of note, high levels of SCFAs butyrate and propionate in
feces in early life of children are associated with protection
against food allergy and asthma (51). Furthermore, children
with cow’s milk allergy were shown to have reduced fecal levels
of butyrate compared to healthy controls (52). Together, novel
results establish an important role for dietary fiber and SCFAs
in promoting the integrity of epithelial barrier, oral tolerance
and protection against food allergies. These observation could,
at least in part, be explained by inhibitory effects of SCFAs
on HDACs in several immune cells such as Tregs, B cells,
and mast cells, as well as via stimulation of SCFA-receptors
such as GPR41, GPR43, and GPR109a on epithelial cells and
CD103+ DCs.

CONCLUSIONS

Although some controversies remain, accumulating evidence
supports the role ofmicrobiota-derivedmetabolites in promoting
tolerogenic immune responses in the healthy intestine. In the last
decade, a better understanding of microbiota-interactions that
influence many aspects of human health including protection
against pathogens, strengthening epithelial barrier function and
promotion of tolerance to food antigens and commensals has
led to the idea that a healthy core microbiome and its main
metabolites SCFAs may be of high therapeutic interest. Such low-
cost and potent small molecules might not only help maintaining
intestinal homeostasis in healthy individuals, but they could be
also applied to a variety of gastrointestinal disorders ranging from
IBD and celiac disease to pathogenic conditions such as food
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allergies and irritable bowel syndrome (IBS), which are often
associated with altered gut microbiota. We suggest that designing
medicinal food enriched in SCFAs may lead to development of
novel therapeutic approaches in food allergy.
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