
R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Zhang et al. Journal of Translational Medicine         (2024) 22:1013 
https://doi.org/10.1186/s12967-024-05799-z

Unfortunately, there is currently a lack of disease-modi-
fying therapies for OA, and the main treatment strategies 
still focus on pain relief and improving joint function. 
Consequently, the treatment of OA remains a notewor-
thy, unaddressed medical issue and an active field of 
investigation.

Mitochondria (MT) are cellular organelles responsible 
for the metabolism and generation of energy in eukary-
otic cells. They are essential for maintaining the energy 
balance within cells [4]. MT take up one-fifth of the area 
in a eukaryotic cell [5]. Adenosine triphosphate (ATP) 
generated through the process of oxidative phosphory-
lation (OXPHOS) is essential for cellular maintenance 
and regeneration. In addition, OXPHOS also serves as 
the primary source of reactive oxygen species (ROS) in 
most tissues [6]. Perturbations in mitochondrial function 
and metabolism have been linked to many degenerative 
diseases, including cancer, neurodegenerative disorders, 
and ischaemic cardiomyopathy [7]. Thus, it is crucial to 
fully understand the mechanisms behind mitochondrial 

Introduction
Osteoarthritis (OA), a common long-term joint condi-
tion, is identified by the breakdown of cartilage, changes 
in the bone beneath the cartilage, the development 
of bony outgrowths, joint synovial inflammation, and 
decreased joint mobility. The condition is one of the most 
common causes of pain and disability, especially among 
the elderly [1]. It is estimated that around 10% of males 
and 18% of females aged ≥ 60 years are affected by OA, 
resulting in significant burdens on healthcare systems [3]. 
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Abstract
Osteoarthritis (OA) is a chronic degenerative joint condition characterised by cartilage deterioration and changes 
in bone morphology, resulting in pain and impaired joint mobility. Investigation into the pathophysiological 
mechanisms underlying OA has highlighted the significance of mitochondrial dysfunction in its progression. 
Mitochondria, which are cellular organelles, play a crucial role in regulating energy metabolism, generating reactive 
oxygen species, and facilitating essential biological processes including apoptosis. In recent years, the utilisation 
of exogenous drugs and MT to improve mitochondrial function in chondrocytes has shown great promise 
in OA treatment. Numerous studies have investigated the potential of stem cells and extracellular vesicles in 
mitochondrial transfer. This review aims to explore the underlying mechanisms of mitochondrial dysfunction in OA 
and assess the progress in utilising mitochondrial transfer as a therapeutic approach for this disease.
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dysfunction to develop effective treatments for these dis-
eases [9].

Mitochondrial dysfunction has the potential to influ-
ence multiple pathways implicated in joint degradation, 
encompassing hypoxia-induced signaling mechanisms 
within synovial epithelial cells, impaired biosynthetic 
processes in chondrocytes, and altered growth responses 
[5]. Chondrocytes are essential for maintaining the bal-
ance between the production and breakdown of the 
ECM in articular cartilage. Damage to chondrocytes 
manifests primarily through elevated levels of matrix 
metalloproteinase-3 (MMP-3) and MMP-13, nitric oxide 
(NO), and inflammatory cytokines, resulting in an imbal-
ance between ECM catabolism and anabolism [12]. This 
imbalance leads to reduced levels of aggrecan and col-
lagen II, ultimately culminating in the development of 
OA. Recent studies have elucidated the significant role of 
mitochondrial dysfunction and perturbed energy metab-
olism in the aetiology of OA [14]. Chondrocytes isolated 
from individuals with OA exhibit reduced mitochon-
drial membrane potential, decreased ATP synthesis, and 
increased ROS production, increasing oxidative stress 
and apoptosis, and promoting cartilage degradation [15]. 
More recently, a mitochondrial DNA (mtDNA) variation 
(m.16519 C) has also been suggested to be strongly asso-
ciated with rapid progression of knee OA [18]. As a result 
of these findings, mitochondrial dysregulation is increas-
ingly recognised as one of the major contributing factors 
to OA. Therefore, more effective therapeutic strategies 
targeting mitochondrial metabolism are needed.

With the advancements in stem cell therapy and bio-
materials, optimising mitochondrial function provides a 
new therapeutic approach for treating OA [19]. Addition-
ally, the field of gene therapy is experiencing significant 
growth, suggesting that biological interventions aimed 
at modifying OA will be a major treatment approach in 
the future [21]. Given that chondrocytes are the most 
important cells in articular cartilage, this article provides 
a comprehensive review of the underlying mechanism 
of mitochondrial dysfunction in OA chondrocytes and 
offers a summary of drugs that restore mitochondrial 
function in chondrocytes for the treatment of OA. Fur-
thermore, we have evaluated the advancements made in 
mitochondrial transfer for treating OA, potentially guid-
ing the future of mitochondrial studies aimed at address-
ing this condition.

Mitochondrial Dysfunction in OA
There is evidence that mitochondrial dysfunction pre-
cedes cartilage degradation and contributes to the death 
of chondrocytes [22]. Multiple factors have been identi-
fied as causes of mitochondrial impairment in OA, such 
as inflammation, ageing, infection, lack of nutrients, 
and genetic mutations [5]. Oxidative stress is a critical 

determinant in the induction of mtDNA damage, impair-
ment of mitochondrial respiratory function, and activa-
tion of MT-mediated apoptotic pathways. Inflammatory 
cytokines, such as interleukin-1β (IL-1β)and tumour 
necrosis factor-alpha (TNF-α) have been documented 
to diminish mitochondrial activity and ATP produc-
tion, impair mitochondrial respiration, and contribute 
to mitochondrial dysfunction in chondrocytes. In addi-
tion, gene mutations have also been implicated in mito-
chondrial dysfunction associated with OA. Aberrant 
expression of Parkin and P62, which are key mediators of 
mitophagy, has been observed in OA [25]. Other mecha-
nisms, such as altered mitochondrial biogenesis, have 
been implicated in the pathophysiology of mitochon-
drial dysfunction in OA. Dysregulation of the PGC-1α/
NRF-1 signalling axis, which serves as a critical regulator 
of mitochondrial biogenesis, has been observed in OA 
chondrocytes, resulting in a reduction of mitochondrial 
mass and function [26]. In summary, various factors con-
tribute to mitochondrial dysfunction in OA.

Structural and locational alterations of mitochondrial 
components, induced by various factors, can precipitate 
mitochondrial dysfunction, inflicting significant dam-
age on cells. The resultant mitochondrial dysfunction 
can trigger extensive cell death, propagating damage 
across tissues and organs in a cascading manner, akin 
to a domino effect, and culminating in life-threatening 
disorders. In OA, mitochondrial dysfunction primarily 
manifests through decreased ATP production, increased 
oxidative stress, disrupted mitochondrial dynamics and 
metabolism, alterations in morphology and function, 
and impaired calcium homeostasis. These mitochondrial 
impairments ultimately result in cartilage degeneration 
(Fig. 1) [5].

Decreased ATP Production
Cellular energy primarily comes from two processes: 
OXPHOS when oxygen is available and glycolysis when 
oxygen is not present. Chondrocytes, situated in an envi-
ronment with relatively low oxygen levels, fulfil a sub-
stantial portion of their energy requirements through 
glycolysis, while OXPHOS accounts for only 25% of the 
overall ATP production in chondrocytes [29]. Although 
MT are not the principal energy source for chondrocytes, 
they perform a vital function in supporting and main-
taining chondrocyte glycolysis. In their research, Rajpu-
rohit et al. [30] utilised 2,4-dinitrophenol (2,4-DNP) to 
isolate electron transport from ATP synthesis, leading 
to a decrease in ATP generation in chondrocytes with-
out a rise in lactate levels. In another study, research-
ers reduced ATP production in bovine cartilage after 
administering the mitochondrial oxidative respiratory 
chain inhibitor rotenone or the mitochondrial free radi-
cal scavenger MitoQ [31]. This phenomenon indicates 
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that chondrocytes still rely on mitochondrial OXPHOS 
for energy to some extent. In fact, in a hypoxic environ-
ment, mitochondrial aerobic respiration is weak, but the 
oxidants produced promote anaerobic glycolysis and 
increase ATP production [32]. In OA chondrocytes, the 
mitochondrial membrane potential is lost and the activ-
ity of complexes I, II, and III in the electron transport 
chain is reduced, resulting in abnormal mitochondrial 
OXPHOS, ultimately leading to reduced ATP production 
[33].

Increased Oxidative Stress
A major cause of mtDNA damage, impairment of mito-
chondrial respiratory function, and activation of MT-
mediated cell death pathways is oxidative stress [34]. 
MT are the primary organelles within cells responsible 
for producing ROS [32]. Malfunction of MT can trigger 

the release of mtDNA and mitochondrial ROS (mtROS), 
leading to activation of the inflammasome and promot-
ing the generation of pro-inflammatory cytokines such 
as IL-1β and IL-18 in chondrocytes and synovial cells. 
The buildup of mtROS and mtDNA damage can trigger 
the nuclear factor-κB (NF-κB) pathway, which serves as 
the primary controller of inflammation [35]. Activation 
of NF-κB also enhances the production of MMPs, lead-
ing to degradation of the ECM and damage to cartilage. 
Furthermore, oxidative stress damages protein complexes 
of the chondrocyte mitochondrial respiratory chain [37]. 
Elevated ROS levels lead to mitochondrial membrane 
depolarization, which will further promote the continued 
generation of ROS. Excessive ROS production and ATP 
depletion inhibit cell division and disrupt the redox equi-
librium [37].

Fig. 1 Mechanism of mitochondrial dysfunction in osteoarthritis (OA)
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Mitochondrial Dynamics Imbalance
By continually undergoing fission, fusion, and mitophagy, 
MT maintain a dynamic balance in the mitochondrial 
network [38]. Mitofusin 1 (Mfn1) and Mfn2 are respon-
sible for merging the outer mitochondrial membrane 
(OMM), whereas optic atrophy 1 (OPA1) is responsible 
for merging the inner mitochondrial membrane (IMM). 
Mitochondrial fusion effectively preserves mtDNA levels 
and boosts mitochondrial respiration and ATP synthe-
sis [39]. Dynamin-related protein 1 (Drp1) and dynamin 
2 (Dnm2) are the main players in mitochondrial fission. 
Excessive mitochondrial fission in chondrocytes leads to 
reduced bioenergetic production, impaired calcium regu-
lation, and disruption of redox balance. Mitophagy is a 
special type of autophagy that is regulated by a variety of 
autophagy-related proteins and can selectively degrade 
damaged or redundant MT to maintain mitochondrial 
health [41]. The balance of mitochondrial dynamics 
is controlled by these specific genes and proteins and 
changes according to the needs of the cell or external 
stimulation [42]. There is evidence that mitochondrial 
fission is increased and mitophagy and fusion are attenu-
ated in OA chondrocytes. Restoring this balance helps 
restore cell function [43].

Perturbed Metabolism
Protein complexes in the IMM help move protons 
through the mitochondrial respiratory chain to produce 
ATP. Prominent examples of such complexes are NADH 
dehydrogenase (complex I), succinate dehydrogenase 
(complex II), cytochrome c (Cyt-C) reductase (complex 
III), and Cyt-C oxidase (complex IV) [44]. Perturbations 
in mitochondrial metabolism may lead to disturbances in 
cellular redox equilibrium and the accumulation of ROS 
in oxidative stress-related disorders. Recent research sug-
gests that alterations in mitochondrial metabolism could 
be involved in the development of mild inflammation in 
OA [5]. During the development of OA, chondrocytes 
and synoviocytes tend to change their mitochondrial 
metabolism by switching from OXPHOS to glycolysis, 
which is mainly controlled by the AMP-activated pro-
tein kinase (AMPK) and mechanistic target of rapamy-
cin (mTOR) pathways. At the same time, alterations in 
lipid and amino acid metabolism have been observed in 
these cells [45]. Modulating mitochondrial metabolism 
helps reduce synovial inflammation and slow down the 
progression of early OA [47]. In addition, the imbalance 
of mitochondrial metabolic homeostasis in OA chon-
drocytes is also manifested as abnormal mitochondrial 
biogenesis, a process that is regulated by various trans-
fer factors such as PGC-1a and AMPK [48]. Correcting 
abnormalities in mitochondrial biogenesis is also impor-
tant for the treatment of OA [49].

Aberrant Mitochondrial Morphology and Function
MT are crucial for preserving cellular function. Normal 
MT are oval in shape with evenly distributed intimal 
ridges; however, the MT in OA chondrocytes are swol-
len and spherical in shape, and the intimal ridges are 
irregularly arranged [51]. These morphological changes 
are accompanied by a decrease in mitochondrial mem-
brane potential and reduced ATP production, which is 
an intuitive manifestation of mitochondrial dysfunction 
[29]. Shen et al. [52] proposed that the AMPK–sirtuin 
1(SIRT3) loop has a crucial impact on controlling the 
advancement and growth of OA, in part by adjusting 
the quality of chondrocyte MT. Sun-Li Hu et al. [53] also 
pointed out that preventing mitochondrial fragmentation 
and reshaping mitochondrial morphology can effectively 
reduce chondrocyte apoptosis and improve cartilage deg-
radation. In addition, controlling the creation of new MT 
is essential to preserve their function. Studies indicate a 
decline in mtDNA levels and a loss of important regula-
tors of mitochondrial biogenesis in OA, such as PGC-1α 
and mitochondrial transcriptional factor A (TFAM), and 
reversal of this event can inhibit OA progression [33].

Calcium Dysregulation
Calcium is crucial for cell function and acts as a second 
messenger in various signalling pathways, controlling 
processes such as cell growth, contraction, and gene 
expression. Cells possess the ability to sense alterations 
in intracellular calcium (Ca2+) levels, including ampli-
tude, duration, frequency, and localisation, and respond 
appropriately to uphold calcium homeostasis and to miti-
gate cellular harm [54]. The Ca2 + influx and efflux rates 
between MT must be balanced. An overabundance of 
Ca2 + can lead to the production of ROS, mitochondrial 
depolarisation, impairment of mitochondrial membrane 
potential, and apoptosis [55]. Maintaining intracellu-
lar Ca2 + levels involves the transport of calcium into 
MT using the mitochondrial calcium uniporter (MCU) 
and the release of Ca2 + through different pathways 
such as the inositol-1,4,5-trisphosphate receptor (IP3R), 
the sodium/calcium exchanger, and the mitochondrial 
permeability transition pore (mPTP) [56]. Abnormal 
Ca2 + accumulation within the mitochondrial matrix 
can activate the mPTP, a substantial channel located in 
the IMM that responds to elevated Ca2 + levels and ROS 
[57]. The opening of the mPTP results in the depolari-
sation of the mitochondrial membrane, causing MT to 
swell and release calcium and Cyt-C, thereby initiating 
the apoptotic pathway [57]. Early studies found that cal-
cium balance in OA cartilage tissue is dysregulated [58]. 
Subsequently, Huser et al. [60] directly confirmed that 
Ca2 + signalling is the key to the mechanical impact of 
OA. In addition, Zhai et al. [61] reported that the mito-
chondrial Ca2 + level of bone marrow–derived MSCs 
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(BM-MSCs) derived from the subchondral bone in 
patients with OA was also significantly higher than in the 
normal group. When this Ca2 + overload was corrected, 
OA was improved.

MT-Targeting Drugs for OA Treatment
MT are essential to produce energy and to maintain bal-
ance within cells, and they may also help regulate cell 
death to prevent damage to cartilage in joints. Addressing 
mitochondrial dysfunction represents a hopeful approach 
to managing OA [62]. Consequently, the development of 
novel drugs and methodologies centred on repairing and/
or restoring mitochondrial function is imperative for the 
management of OA. Table  1 lists some drugs that have 
shown promising effects in restoring mitochondrial dys-
function in OA. They include antioxidants, enhancers of 
mitochondrial biogenesis, regulators of mitochondrial 
dynamics, and calcium balance stabilisers.

Antioxidants
Appropriate antioxidant strategies aimed at reducing the 
ROS generated by MT are crucial to protect chondro-
cytes from oxidative stress damage. Research has shown 
that compounds such as melatonin and quercetin exhibit 
efficacy in reducing mtROS accumulation, thereby pre-
venting the deterioration of mitochondrial membrane 
potential and the release of mitochondrial Cyt-C [63]. 
Additionally, nanomaterials specifically targeting mtROS 
have also demonstrated the potential to improve mito-
chondrial dysfunction [72].

Mitochondrial Biogenesis Enhancers
Mitochondrial biogenesis, a process involving the self-
renewal and replication of MT regulated by numerous 
genes, exhibits abnormalities in OA [48]. Activation of 
the AMPK/SIRT1/PGC-1a pathway has been shown 
to boost the generation of MT and to reduce oxidative 
stress, thereby regulating mitochondrial function and 
ameliorating OA [33]. Previous studies have indicated 
that certain compounds, such as puerarin and apple 
procyanidins, can stimulate the production of new MT 
in chondrocytes, leading to enhanced mitochondrial 

functionality, and may serve as promising therapeutic 
agents for the management of OA [65].

Regulators of Mitochondrial Dynamics
The intricate interplay between mitochondrial fission, 
fusion, and mitophagy is essential for the preservation of 
mitochondrial functionality. Perturbation of mitochon-
drial dynamics is observed in chondrocytes during the 
pathogenesis of OA [73]. The administration of the mito-
chondrial inhibitor Mdivi-1 has been demonstrated to 
attenuate mitochondrial fission-induced damage, leading 
to a reduction in chondrocyte apoptosis [67]. However, 
the complexes that promote mitochondrial fusion are 
less studied and deserve further attention [74]. Besides, 
removing damaged MT to maintain mitochondrial health 
has received widespread attention. β-Hydroxybutyrate 
and protocatechuic aldehyde have been shown to 
enhance chondrocyte mitophagy, promote the clearance 
of damaged MT, effectively improve mitochondrial func-
tion, and inhibit cartilage degradation in OA [68].

Calcium Balance Stabilisers
In the physiological state, MT regulate calcium homeo-
stasis to ensure the health of cartilage [75]. An imbal-
ance in calcium homeostasis, leading to mitochondrial 
damage and a series of changes, is considered crucial in 
chondrocyte apoptosis and cartilage degradation [60]. 
Research suggests that cyclosporin A and B-type natri-
uretic peptide can inhibit mPTP opening, protecting 
MT from Ca2 + overload–induced damage [70]. Recently, 
Zhai et al. [61] synthesised TMA-MSN-TPP-EGTA-PEG 
(METP) nanoparticles using a composite shell of silica 
nanoparticles, tetraethylene glycol, and triphenylphos-
phine. It captured the Ca2 + around the MT of mesen-
chymal stem cells (MSCs) and effectively treated OA [61]. 
Similarly, Lin [76] found that regulating calcium homeo-
stasis helps slow down the degeneration of intervertebral 
discs.

Mitochondrial Transfer in OA Treatment
Pharmacological modulation of mitochondrial dysfunc-
tion is pivotal for the treatment of MT-related diseases, 

Table 1 Treatment strategies for mitochondrial dysfunction
Category drugs Mechanism References
Antioxidants Melatonin

Quercetin
Clearing reactive oxygen species, inhibiting the loss of MMPs, 
and restoring mitochondrial function

[63]

Mitochondrial biogenesis 
enhancers

Puerarin
Apple procyanidins

Activating the AMPK/SIRT-1/PGC-1α pathway, enhancing 
mitochondrial biogenesis, and improving mitochondrial 
function.

[65]

Regulators of mitochondrial 
dynamics

Mdivi-1
β-Hydroxybutyrate
Protocatechuic aldehyde e

Regulating mitochondrial fission and autophagy to maintain 
mitochondrial homeostasis

[69]

Calcium balance
stabilizers

Cyclosporin A
B-type natriuretic peptide

Regulating mitochondrial calcium overload and restoring 
mitochondrial function

[70]
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driving significant advancements in mitochondrial 
medicine and providing valuable insights. However, the 
development of mitochondrial-targeted therapies is con-
fronted with substantial challenges due to the subcellular 
localization and complex structure of MT. Therapeu-
tic agents must navigate numerous physiological bar-
riers to reach the target cells and subsequently the MT. 
Nevertheless, even upon approaching the vicinity of the 
mitochondria, the highly folded and compartmentalized 
nature of the inner mitochondrial membrane (IMM) 
presents a significant obstacle for drug molecules seeking 
entry [77]. In addition, these drugs often face challenges 
in achieving effective concentration at lesion sites and 
within MT due to in vivo barriers and poor selectivity. 
In particular, the non-selective biodistribution of drugs 
is a primary factor contributing to suboptimal drug con-
centrations in targeted organs or tissues [78]. Therefore, 
there is an urgent need for research and development of 
novel therapies specifically targeting MT.

Recently, intercellular mitochondrial transfer between 
mammalian cells has been observed in vitro and in vivo, 
offering a potential universal solution for treating mito-
chondrial deficiency of different aetiologies [79]. This 
mitochondrial transfer facilitates the recovery of dam-
aged cells, enhances OXPHOS, elevates ATP synthesis, 
and restores mitochondrial functionality [81]. It works 
in various ways, including reducing oxidative stress [82], 
promoting mitochondrial fusion [83], and regulating 
mitophagy [84], among others. As a result of these find-
ings, researchers have begun to focus on the role that 
mitochondrial transfer plays in disease and explored 
a variety of new methods and technologies for mito-
chondrial transfer. Three different approaches – stem 
cell-based mitochondrial transfer [85], direct transfer 
of isolated MT [87], and transfer of extracellular vesicle 
(EV)-encapsulated MT [88] are discussed here as poten-
tial ways to ameliorate mitochondrial damage for the 
therapeutic management of OA (Fig. 2).

Fig. 2 Mechanism of mitochondrial transfer. (1) Mitochondria (are transferred from mesenchymal stem cells to recipient cells in four ways: (a) extracellular 
vesicles, (b) tunnelling nanotubes, (c) gap junctions, and (d) cell fusion. (2) Transferring isolated mitochondria directly. (3) Transferring EV-encapsulated 
mitochondria directly

 



Page 7 of 15Zhang et al. Journal of Translational Medicine         (2024) 22:1013 

MSC-Mediated Mitochondrial Transfer
Stem cells, as the most undifferentiated cells at the apex 
of the cellular lineage, exhibit a remarkable ability for dif-
ferentiation and self-renewal. Furthermore, they possess 
the capacity to differentiate into a multitude of tissues, 
organs, or specialised cells within the human body, thus 
presenting significant potential for applications in engi-
neering and regenerative medicine. Various sources of 
MSC treatments have demonstrated the ability to inhibit, 
halt, or potentially reverse cartilage degradation in ani-
mal models [89]. In a recent double-blind, randomised 
phase IIb clinical trial, the authors demonstrated that 
patients receiving a single injection of adipose-derived 
MSCs (AD-MSCs) exhibited notable enhancements in 
their Western Ontario and McMaster Universities Osteo-
arthritis Index (WOMAC) scores at the 6-month mark, 
in contrast to the control cohort. Furthermore, there was 
a deceleration in joint wear progression [92]. The con-
clusions reached by Sadri et al. [93] were consistent with 
these results. However, a thorough comprehension of the 
mechanisms governing MSC therapy for OA is lacking.

Recent research has validated the ability of stem cells to 
transfer MT to neighbouring cells, resulting in the resto-
ration of cellular respiration, the initiation of cell repro-
gramming, and ultimately the repair and enhancement 
of cellular function (Table  2). Undifferentiated MSCs 
exhibit decreased energy requirements in the glycolytic 
state, making them promising candidates for mitochon-
drial transfer [94]. In addition, MSCs possess an excep-
tional ability to home to diseased tissues, facilitating 
targeted mitochondrial transfer. These characteristics – 
combined with the immune privilege, low levels of oxida-
tive damage, and tightly regulated redox balance of MSCs 
– position them as optimal donor cells for the selective 
delivery of healthy MT to diseased cells.

Notably, this transfer process is more common in 
harmful environments than in healthy cells. For example, 
when exposed to damaged cartilage tissue, MSCs posi-
tion themselves in the area of matrix injury and extend 
their MT into chondrocytes located deep within micro-
cracks. In contrast, few cells accumulate in uninjured 
cartilage [95]. During this process, cytokines and dys-
functional MT are released from injured cells. During 
this process, cytokines and mtDNA are released from 
injured cells, serving as indicators of potential damage. 
These signals stimulate MSCs to transfer their functional 
MT to aid in the recovery of the impaired cells [96]. On 
the other hand, a damaged environment will promote 
the production of more mitochondrial transfer channels, 
such as tunneling nanotubes (TNTs) [99].

The significance of mitochondrial transfer in the thera-
peutic efficacy of stem cells for injured tissues is increas-
ingly acknowledged. Although MT are not the primary 
energy source for chondrocytes, the phenomenon of 
mitochondrial dysfunction and mitochondrial trans-
fer in OA chondrocytes has attracted research attention 
[95]. In a co-culture system involving BM-MSCs and 
osteoarthritic chondrocytes, Wang et al. [51] observed 
that MSCs promoted the recovery of the chondrocyte 
mitochondrial membrane potential and increased ATP 
by transferring their own healthy MT, ultimately reduc-
ing the apoptotic rate of chondrocytes and enhancing the 
function of OA chondrocytes. This finding highlights the 
role of mitochondrial transfer in OA treatment.

MSCs transfer MT through various mechanisms, such 
as TNTs, gap junction channels (GJCs), and EVs [97], as 
well as cell fusion (Fig.  3) [110]. TNTs are membrane-
bound cellular conduits capable of directly transferring 
various cellular components such as endocytic vesicles, 
lysosomes, MT, and membrane-bound proteins from cell 
to cell [111]. Hsu et al. [112] utilised anti-mitochondrial 

Table 2 Applications of mitochondrial transfer in various systemic diseases
Donor cells Receptor cells Result References
Human bone marrow-derived mesenchy-
mal stem cells

Cells with mtDNA mutations 
that prevent aerobic respira-
tion (A549 ρ° cells)

Mitochondria are transferred to injured cells and their aero-
bic respiration is restored

[102]

Human
adipose-derived mesenchymal stem cells

Cardiomyocytes Reprogramming of dividing cardiomyocytes into a viable 
progenitor-like state via stem cell mitochondrial transfer

[103]

Rat bone marrow-derived mesenchymal 
stem cells

Rat cardiomyocytes (H9c2 
cells) simulating ischemia/
reperfusion injury

Mitochondria are transferred to damaged cells through tun-
nelling nanotubes, enhancing their anti-apoptotic ability

[104]

Human
bone marrow-derived mesenchymal stem 
cells

Injured human umbilical 
cord vein endothelial cells

Mitochondria are transferred to damaged cells through 
tunnelling nanotubes, reducing apoptosis and restoring 
transmembrane migration ability

[105]

Rat
bone marrow-derived mesenchymal stem 
cells

Host cells of cerebral mi-
crovasculature in rat stroke 
model

Significantly improves mitochondrial activity in injured 
microvasculature through mitochondrial transfer, enhances 
angiogenesis, reduces the infarct volume, and improves 
functional recovery

[106]

Mouse bone marrow-derived mesenchy-
mal stem cells

Odontoblast cell line Mitochondrial transfer relieves pulp damage [107]
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antibodies and MitoTracker along with laser scanning 
confocal microscopy to study the transmission of MT 
from human BM-MSCs to mouse liver cells via TNTs. 
GJCs, which are formed by connexins (CXs), serve as a 
significant mode of intercellular communication. These 
pathways enable the transfer of ions and small com-
pounds, such as Ca2+, inositol trisphosphate, cyclic 
nucleotides, and oligonucleotides, which help to syn-
chronise cellular activities throughout various multicel-
lular tissues [113]. The application of the GJC enhancer 
retinoic acid resulted in significant augmentation in the 
quantity of MT transferred from BM-MSCs to neurons. 
Conversely, the GJC inhibitor 18β-glycyrrhizic acid (18β-
GA) reduced mitochondrial transfer. The results indicate 
that GJCs play a vital role in enabling the movement of 
MT from stem cells to neurons [81]. Specifically, con-
nexin43 (CX43) is a critical CX protein involved in the 
establishment of GJCs [97]. Increasing CX43 expression 
with iron oxide nanoparticles has been shown to improve 
GJC function and to boost the mitochondrial transfer 
rate. Conversely, the suppression of CX43 expression 
eliminates this effect [114]. Moreover, recent reports have 
demonstrated that the upregulation of CX43 is associated 
with augmented formation of TNTs, while the employ-
ment of short hairpin RNA (shRNA) to suppress CX43 
yields contrasting outcomes, suggesting that CX43 also 
assumes a crucial function in facilitating TNT formation. 
However, the precise regulatory mechanism remains 

elusive [115]. Additionally, Miro1 and Miro2, which are 
two types of Rho-GTPases, interact with other acces-
sory proteins to move MT along the TNTs that connect 
the two cells [117]. Miro1 upregulation has been shown 
to enhance mitochondrial transfer by MSCs in cases of 
myocardial disease [118]. On the other hand, reducing 
Miro1 expression hinders the development of TNTs, thus 
blocking the transport of MT from MSCs to endothelial 
cells [119]. Miro2s participation in the mitochondrial 
transfer process is also significant [120]. Previous stud-
ies have indicated that mitochondrial migration can also 
occur via EVs, such as exosomes [51]. Phinney et al. [121] 
discovered that MSCs possess the ability to transfer their 
own MT into EVs, thereby facilitating the transportation 
of intact MT or mtDNA to macrophages. This process 
enhances the bioenergy of macrophages and provides 
additional evidence supporting the notion that EVs serve 
as carriers for MT. Additionally, the direct acquisition of 
MT through cell fusion represents the most straightfor-
ward approach [122].

Stem cell injection has been used in the clinical treat-
ment of orthopaedic diseases [124]. However, it is 
imperative to acknowledge the potential risks associ-
ated with stem cell transplantation, including tumouri-
genicity and immunogenicity. Multiple stem cell types 
possess the property of tumour tropism [125]. Further-
more, stem cells exhibit a diverse array of surface anti-
gens, such as HLA class 1 antigens, that are absent on the 

Fig. 3 Laser confocal imaging of mitochondrial transfer. Mesenchymal stems cell transfer mitochondria (red) to chondrocytes (green cytoplasm, blue 
nuclei) using different methods: (i) extracellular vesicles, (ii) gap junctions, (iii) tunnelling nanotubes, and (iv and v) cell fusion. Reproduced from a previ-
ous publication [95], with permission from the authors
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mitochondrial membrane. Consequently, stem cells pos-
sess a higher degree of immunogenicity compared with 
isolated MT [116]. Another issue that needs to be consid-
ered is that the mitochondrial transfer efficiency of stem 
cell therapy is low. Hence, finding a way to improve the 
transfer rate is the key to enhancing its efficacy.

Isolated Exogenous Mitochondrial Transfer
Limitations of cell-to-cell MT transfer encompass vari-
ability in cell phenotypes, low engraftment and reten-
tion rates, and inconsistent clinical outcomes. Therefore, 
non-contact MT transfer methods are currently being 
investigated. The phenomenon of intercellular mito-
chondrial transfer has led researchers to hypothesize that 
MT may possess the capability to invade cells, and vari-
ous methods to transfer MT to the recipient cell artifi-
cially have been developed. In a seminal study, Tachibana 
et al. [127] successfully introduced healthy mitochon-
dria into oocytes containing mutated mtDNA, demon-
strating potential for the treatment of human genetic 
mitochondrial disorders and laying the groundwork for 
further research on mitochondrial transfer. Similarly, Li 
et al. [81] documented the internalisation of isolated MT 
in motor neurons following co-culturing under hypoxic 
conditions for 30  min. This process was concomitant 
with an elevation in ATP levels and the mitochondrial 
membrane potential and enhanced neuronal viability. 
Additionally, the extent of internalisation correlated 
directly with the concentration of co-cultured MT. Masu-
zawa et al. [128] validated this effect in in vivo experi-
ments. They isolated MT from the chest muscles of New 
Zealand white rabbits and immediately injected them 
into ischaemic hearts. The findings indicated that cardiac 
cells internalised these MT within 2–8 h of transplanta-
tion, leading to increased oxygen consumption, synthesis 
of high-energy phosphates, and activation of cytokine 
mediators and protein pathways, ultimately shielding the 
heart from damage caused by ischaemia–reperfusion. 
Recently, direct transplantation of MT has been applied 
to cartilage repair in OA. Kim et al. [129] synthesised 
fusogenic liposomes encapsulating MT, assisting in their 
delivery to chondrocytes. Experiments conducted in a 
lab setting and within living organisms have shown that 
the use of fusogenic liposomes accelerates and improves 
mitochondrial transfer, offering a promising approach for 
enhancing cartilage repair. Inspired by this, researchers 
have designed different methods in the hope of increas-
ing isolated mitochondrial transfer efficiency (Fig. 4).

Although mitochondrial transfer has shown numer-
ous benefits for cells, the technology is still in its early 
stages and encounters various obstacles. It is believed 
that damaged and dysfunctional MT may not provide 
benefits to host cells and could potentially cause harm 
[128]. Therefore, it is necessary to obtain fresh, intact, 

and respiratory-active MT to effectively exert therapeu-
tic effects. Additionally, facilitating the successful entry 
of MT into recipient cells in adequate amounts and 
ensuring their complete utilisation presents a significant 
challenge. In addition to the methods shown in Fig.  4, 
technologies such as MitoCeption [134] and magnetic 
nanoparticles [135] have been designed to increase the 
efficiency of isolated mitochondrial transfer. Neverthe-
less, the application of these technologies in vivo neces-
sitates additional investigation. Lastly, exogenous MT 
may selectively degrade after mitochondrial transfer and 
disappear within a week [136]. Therefore, more com-
plex, minimally invasive methods are needed to isolate 
fully functional MT from cell extracts. Additionally, less 
invasive delivery methods need to be developed to fully 
exploit the beneficial effects of mitochondrial transfer.

EV-Encapsulated Mitochondrial Transfer
Recent research has identified MT-specific cargoes, 
including DNA, RNA, and proteins in EVs derived from 
various cell types, such as fibroblasts, neurons, and MSCs 
[137]. EVs originate from the cell membrane and can be 
classified based on their size as exosomes, microvesicles, 
and apoptotic bodies. These vesicles have the ability to 
transfer their cargo into the cytoplasm of recipient cells, 
thereby facilitating intercellular communication and 
modulating the physiological state of the receiving cells 
[138]. Functioning as pivotal agents in intercellular com-
munication, EVs possess the capacity to selectively bind 
to particular cells or tissues through receptor-mediated 
mechanisms, subsequently releasing their contents into 
the corresponding target structures [139]. This attribute 
enables EVs to potentially serve as rescuers for recipient 
cells, while simultaneously preserving the homeostasis 
of the originating cell. As EV extraction technology has 
matured, the application of EVs has become increasingly 
widespread (Fig. 5).

The efficacy of stem cell–derived EVs in the treatment 
of OA has been proven, and its mode of action is diverse. 
In a study using mice, the communication between 
EVs and methyltransferase-like 3(METTL3) results in 
decreased methylation of Nod-like receptor pyrin domain 
3 (NLRP3) mRNA in macrophages, ultimately easing the 
symptoms of OA in the knee joint [141]. In addition, EVs 
have the ability to transport microRNAs (miRNA), which 
effectively inhibits chondrocyte apoptosis [142]. Further-
more, experiments conducted in living organisms and 
in a controlled environment demonstrate that the use of 
exosomes can effectively reduce the levels of MMP-13 
and a disintegrin and metalloproteinase with thrombos-
pondin motifs 5(ADAMTS-5), thus preventing the deg-
radation of cartilage [143]. However, further investigation 
is required to fully understand the precise mechanisms 
underlying EV therapy. Recently, researchers have found 
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that EVs transfer their own MT and mtDNA to recipient 
cells during the treatment of diseases [144]. In the con-
text of ischaemic stroke, D’Souza et al. [145] revealed 
that microvesicles, which act as carriers of MT, have the 
ability to transmit functional MT to chemically impaired 
brain endothelial cells, thereby enhancing their chances 

of survival. Similarly to TNT-mediated mitochondrial 
transfer, this transfer process is less frequent in endothe-
lial cells that are in a healthy state. The utilisation of exo-
somes derived from AD-MSCs for the treatment of acute 
lung injury has also been shown to effectively transfer 
MT, thereby alleviating airway metabolic disturbances 

Fig. 4 An illustration of methods to increase the transfer rate of isolated mitochondria. (A) Promoting internalisation of isolated mitochondria by centrifu-
gal force [130]. (B) Mitochondria are encapsulated in synthetic liposomes to enhance the delivery efficiency [129]. (C) Dextran was conjugated with TPP 
as carriers to increase mitochondrial delivery efficiency [131]. (D) Pep-1 peptide binds to mitochondria to enhance delivery efficiency [132]. Each panel 
has been reproduced from the respective publication, with permission from the authors
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[146]. This finding aligns with the conclusions drawn by 
Zhang et al. [147] in their study on Alzheimer’s disease. 
Thomas et al. [137] validated that MSCs can package 
functional MT into EVs and deliver them to chondro-
cytes, which holds great promise for the treatment of 
OA.

The utilisation of EVs as vehicles for mitochondrial 
transfer presents a potential solution to address certain 
inherent constraints associated with MSC therapy [148]. 
Moreover, research has indicated that EVs, upon trans-
porting MT, exhibit minimal co-localisation with lyso-
somes and peroxisomes within recipient cells, thereby 
diminishing the degradation of exogenous MT [149]. 
Although this phenomenon has only been illustrated 
preliminarily, it offers valuable insights for future inves-
tigations in the field of mitochondrial therapy. The pres-
ent obstacle pertains to the insufficiency of MT within 
EVs, despite their presence. It is imperative to facilitate 
the incorporation of a greater quantity of MT into EVs by 
stem cells. Preliminary investigations have substantiated 
that pre-treating donor cells can augment their survival 
rate and therapeutic efficacy [150]. In a study focused 

on obesity, Crewe et al. [151] discovered that elevated 
energy stress within adipocytes leads to an increased 
presence of MT enclosed within small EVs (sEVs). These 
sEVs subsequently migrate to the heart, augmenting its 
adaptability to cardiac conditions. Recently, novel meth-
odologies have been established for the subfractionation 
of EV subtypes, allowing for the selective isolation of ves-
icles containing intact mitochondrial components such 
as MT, mitochondrial proteins, and mtDNA. These spe-
cialised vesicles, known as mitovehicles, appear to pro-
vide a more effective means of facilitating mitochondrial 
transfer [152]. Nevertheless, there have been few studies 
in this area, and the technology for extracting MT-rich 
EVs is limited. Hence, there is still a long way to go before 
this technique can be translated to the clinic.

Conclusion and perspectives
In the pathogenesis of OA, chondrocytes frequently 
experience mitochondrial dysfunction, resulting in com-
promised energy metabolism and subsequent cascades of 
oxidative stress and calcium imbalance following mito-
chondrial injury. These events significantly impact cell 

Fig. 5 Isolation methods to obtain extracellular vesicles. Reproduced from a previous publication [140], with permission from the authors
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viability. The advancement of mitochondrial repair ther-
apy has exhibited encouraging outcomes in the reversal 
of mitochondrial dysfunction, offering novel insights for 
OA treatment.

In addition to conventional pharmacological repair, 
mitochondrial transfer has emerged as a promising thera-
peutic strategy, showing significant advantages in restor-
ing mitochondrial function. There are three established 
techniques for mitochondrial transfer: stem cell-medi-
ated transfer, isolated exogenous transfer, and EV-encap-
sulated transfer. Each option has its own advantages and 
disadvantages. Researchers have conducted extensive 
research to better exploit the advantages of these solu-
tions. Several studies have proposed that pre-treating 
stem cells could enhance therapeutic efficacy. For exam-
ple, Guo et al. [20] isolated MTs from donor BM-MSCs 
and then transplanted them into BM-MSCs of the same 
batch and generation. BM-MSCs that underwent autolo-
gous mitochondrial transplantation exhibited enhanced 
bone defect repair capabilities. Specific pharmaceuti-
cal agents, including metformin [154], pioglitazone 
[155], and adiponectin [156], have the ability to activate 
PGC-1α and AMPK, thereby stimulating mitochondrial 
biogenesis and increasing the mitochondrial reserves of 
stem cells. Furthermore, some nanoparticles such as plat-
inum [157], silica [158], and iron oxide [159] have been 
shown to upregulate CX43 expression and to increase 
the release of EVs, thereby promoting more effective 
mitochondrial transfer. On the other hand, strategies to 
develop advanced technologies to extract higher-quality 
isolated MTs or MT-rich EVs and enhance efficient mito-
chondrial delivery are the focus of research. Moreover, 
in future clinical applications, these technologies face 
a common problem. Cartilage ECM is characterised by 
low cellularity and high density, and its small pore size 
and high charge properties have been shown to impede 
the diffusion of large particles, including antibodies and 
other experimental biological factors [161]. This leads to 
the limitation of mitochondrial transfer therapy, that is, 
the therapeutic effect on deep-seated chondrocytes will 
be weaker than that of superficial cells.

Mitochondrial repair technology presents significant 
potential for the management of OA. The conception of 
mitochondrial transfer has garnered significant attention 
in recent years. While the mechanism of mitochondrial 
transfer remains poorly understood, it holds signifi-
cant therapeutic promise. In future research, it is neces-
sary to elucidate the molecular and cellular mechanisms 
involved in mitochondrial transfer and to develop effi-
cient methods for the extraction and delivery of MT, in 
order to advance their clinical utilisation.
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