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The relationship between extracellular lactate and
tumour pH in a murine tumour model of
ischaemia-reperfusion
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Summary We have studied the relationship between extracellular lactate (LACTe) and extracellular pH (pHe) in murine tumours after vascular
occlusion (clamping) followed by reperfusion. In tumours occluded at ambient room temperature, LACTe) measured by microdialysis,
increased linearly with time and correlated strongly with the acidification of the extracellular compartment (r=0.97, P<0.03, n=4). Significant
decrease in LACTe was evident following removal of occlusion at room temperature and is consistent with vascular reperfusion. Occlusion at
350C, i.e. to maintain tumour temperature during occlusion, resulted in an initial increase in LACTey which mirrored a rapid reduction in pHe.
However further reductions in PHe occurred without increase in LACTe. During vascular occlusion, tumour adenine nucleotide pool decreased
and AMP accumulated. AMP subsequently decreased in the 350C group and this may contribute to the observed differences in accumulation
of LACTe9 and capacity to recover from vascular occlusion, between the two treatment groups. These data show that extracellular lactate
concentration is a good predictor for tumour pH when adequate energy sources are available within the tumour. However, under conditions of
more severe stress, resulting in abolition of primary energy stores and cell death, the PHe continues to decline in the absence of a
corresponding accumulation of extracellular lactate. This emphasizes the fact that other processes, apart from lactate production, can
contribute to reduction in extracellular pH.
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The rapid growth of some tumours results in areas of tumour cells
distant from the supplying blood vessel in a microenvironment of
reduced oxygenation (hypoxia) and also an accumulation of meta-
bolic products causing extracellular acidosis (Vaupel et al 1989).
These characteristics do not normally occur within normal tissues
and have been identified as potential targets for tumour therapy,
e.g. hypoxia-selective toxins or pH-dependent cytotoxic drugs
(Wike-Hooley et al, 1984; Tannock and Rotin, 1989). Recently,
novel therapies have been identified that mediate their toxicity by
interfering with the tumour vasculature causing vascular stasis,
and potentiation of hypoxia or pH-selective chemotherapeutic
agents can be achieved directly, if they are administered just
before vascular stasis (Brown, 1987; Chaplin and Acker, 1987;
Stratford et al, 1987; Parkins et al, 1994a).

Since acidic tumour pH is clearly a potential selective thera-
peutic target for development of novel therapeutic approaches,
there is a need to understand the mechanisms that induce the acidic
state in tumours. Tumour acidosis has in general been associated
with increased glycolysis, which is caused at least in part by the
hypoxic environment that exists within tumour tissue. The aim of
the present work was to establish whether lactate production is the
sole driving force for increased acidosis within tumours under
ischaemic conditions.
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We have reported previously that complete vascular occlusion
results in tumour cell killing, which is dependent upon both the
duration of the occlusion and the temperature of the tumour
(Parkins et al, 1994b). Blood flow in tumours, unlike that in
normal tissues, is depressed for many hours after relatively short
periods of vascular occlusion and suggests that tumour vasculature
is more susceptible to damage resulting from ischaemia itself or
the subsequent reperfusion. It is well known that reduction in
cellular energy status during occlusion compromises cellular func-
tion and results in intracellular acidification leading ultimately to
cell death (McCoy et al, 1995).

It has been known since the early experiments of Warburg
(1930) that tumour cells produce lactic acid by aerobic glycolysis.
Many tumours use glycolysis to maintain their energy status, and a
specific monocarboxylate carrier, through which lactic acid can be
effluxed from the cell, has been identified in Ehrlich ascites
tumour cells (lactic acid is fully dissociated at physiological pH to
lactate ions)(Spencer and Lehninger, 1976). Homeostasis of
cellular pHi is also maintained by efflux of H+ by the Na+/H+
antiport exchanger, which has been shown to be ubiquitous in
mammalian cells and is necessary for the growth of some tumours
(Grinstein et al, 1989; Rotin et al, 1989). The high rate of lactate
production by tumour cells, combined with the poor vascular
structure in tumours, results in a significantly acidic extracellular
space, which has been investigated using different techniques
(Vaupel et al, 1989; Griffiths, 1991; Gillies et al, 1994). In addi-
tion, because H+ and lactate move together on the monocarboxy-
late carrier, the distribution of H+ and lactate tend to assume a
reciprocal relationship with pH across the plasma membrane
(Spencer and Lehninger, 1976; Veech, 1991; Stubbs et al, 1994).
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Figure 1 Total adenine nucleotide levels (ATP + ADP + AMP per gram) were
measured in freeze-clamped CaNT tumours using HPLC assay. Decreases
of total nucleotide pool were greater in those tumours whose temperature
was maintained during the period of vascular occlusion up to 6 h (P < 0.05 at
all time points). Occlusion at room temperature (U), occlusion at 350C (0)
(4-8"mice contribute to each data point; nmol g-' tumour weight ± s.e.m.)

We have shown previously that extracellular pH (pHe) is acidic
in the CaNT murine tumour (using inserted pH microelectrodes or
non-invasive magnetic resonance spectroscopy) with intracellular
pH (pHi) maintained close to neutrality (Stubbs et al, 1992; McCoy
et al, 1995). In response to complete vascular occlusion, the pH of
both compartments became significantly more acidic and, after
many hours of occlusion, both pHi and PHe tended to equilibrate to
the same value. In the present study, we addressed whether the
decreased PHe observed during ischaemia can be explained
entirely by the expected production of lactate. It has previously
been assumed that lactate is one of the major determinants of
acidity in tumours. In addition, studies in human tumours have
indicated that high lactate levels correlate with a high risk of
metastasis, underlying their possible role in other biological
processes (Schwickert et al, 1995). Thus, if extracellular pH corre-
lates with lactate levels, it might be a useful predictor for such
biological effects. However, the simple assumption that lactate is a
major determinant of extracellular pH has been challenged by the
finding that transfected cells, which cannot produce lactate, still
develop an acidic extracellular milieu (Newell et al, 1993).
We have investigated the relationship between extracellular

lactate (LACTe) and PH. in tumours challenged by vascular occlu-
sion and reperfusion at two different ambient temperatures (room
temperature and 35°C). Since cellular energy metabolism is
required for maintaining ion gradients, we also measured tumour
adenine nucleotide levels by high-performance liquid chromatog-
raphy (HPLC) analysis on freeze-clamped tumours. The recovery
of tumour LACTe levels following removal of the occlusion was
also investigated.

MATERIALS AND METHODS

Experimental tumours

The syngeneic murine tumour CaNT, a moderately differentiated
breast adenocarcinoma, was used in the mouse strain CBA/Gy f
TO aged 12-16 weeks. Cells obtained from a tumour suspension
were implanted subcutaneously (s.c.) on the dorsum. Tumours
were treated when their geometric mean diameter (g.m.d.) was
between 6 and 8 mm (150-300 mg) by application of a metal D-
shaped clamp across the skin at the base of each s.c. tumour
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Figure 2 Accumulation of AMP in CaNT tumours during complete vascular
occlusion appeared to be independent of tumour temperature during the first
hour of vascular occlusion. At longer occlusion times, the breakdown of AMP
was temperature dependent, with significant decreases occurring in the
35°C-maintained tumours beyond 1 h clamping (P < 0.05). (U), Occlusion at
room temperature; occlusion at 350C (0) (4-8 mice contribute to each data
point; nmol g-' tumour weight ± s.e.m)

(Parkins et al, 1994b). At least four tumours were used for each
data point. In some groups, tumour temperature was maintained
by placing the mice in a warm air incubator thermostatically
controlled at 35°C (equivalent to the control temperature of super-
ficial subcutaneous tumours).

Tumour LACT, and adenine nucleotide analysis

The microdialysis and HPLC assays used to measure LACTe from
tumours has been reported previously (Stratford et al, 1995). At
various times up to 6 h after vascular occlusion by clamping,
animals were killed by cervical dislocation, and the microdialysis
probe immediately inserted into the tumour. Briefly, this technique
consisted of insertion of the pH microelectrode probe (CMA/12,
Biotech Instruments, Herts, UK) through a needle-made hole in
the skin into the underlying tumour and dialysing using saline as
the dialysate. Separate groups of tumour-bearing mice were used
for each of the time points. Microdialysis was also performed up to
3 h after clamp removal. Tumour adenine nucleotide levels were
measured by HPLC assay in neutralized extracts of freeze-
clamped samples taken after up to 6 h of complete occlusion (see
Stratford and Dennis, 1994 for details).

Tumour pH measurement

Tumour extracellular pH (pHe) was measured as described previ-
ously (Parkins et al, 1994b), but briefly consisted of insertion of a
needle pH microelectrode (MI-402, Microelectrodes Inc., USA)
into the tumour at the start of the occlusion period. Animals were
anaesthetized (i.p.) with 25 mg kg-' diazepam and 50 mg kg-' keta-
mine before insertion of the electrode. Continuous readings were
recorded for up to 3 h after occlusion had started. No pH data was
obtained at later times after occlusion owing to the limited dura-
tion of the anaesthetic.

RESULTS

Effect of occlusion on adenine nucleotides

Figure 1 shows the adenine nucleotide levels of CaNT tumours
after vascular occlusion by clamping for up to 6 h. The tumours
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Figure 3 (A) After complete vascular occlusion at room temperature,
extracellular lactate (U) significantly accumulated in CaNT tumours (P <0.05
at all times exceeding 1.3 h clamp) with a concomitant fall in extracellular pH
(@). Tumour LACTe levels decreased rapidly after the occlusion was
removed (0), indicating some recovery of tumour perfusion P=0.069 at 1 h
after clamp removal (mean ± s.e.m) (McCoy et al, 1995; Stratford et al,
1995). (B) Extracellular pH (-) fell rapidly after complete vascular occlusion
in CaNT tumours, with temperature maintenance at 350C. LACTe levels (e)
were significantly increased at all occlusion times (P < 0.0005), although they
were poorly correlated to extracellular pH. This may be indicative of inhibition
of metabolic enzymes by low pH in combination with exhaustion of cellular
energy levels. No significant reduction of tumour LACTe levels (El) was
observed after removal of the vascular occlusion and this suggests reduced
recovery of tumour perfusion (mean ± s.e.m)

were either maintained at preocclusive temperature (35°C) or

allowed to cool naturally until equilibrated with room temperature.
In tumours allowed to cool during occlusion, there was signifi-
cantly less (P<0.001 at 1, 2 and 4 h) breakdown of total adenine
nucleotides, with levels being maintained at more than 50% of
the starting value even 4 h after occlusion. These findings
were mirrored by tumour AMP (Figure 2), which showed rapid
increases during the first hour of occlusion followed by no further
increase in the room temperature tumours. However, in the
35°C tumours, the AMP levels, after increasing fourfold at 1 h,
decreased again to preocclusion values over the next 3 h, indicating
further breakdown ofAMP (possibly to inosine and hypoxanthine).

Effect of occlusion on PHe and LACTe
Tumours allowed to cool to room temperature after occlusion
showed a time-dependent decrease in tumour PHe over a 3-h
period (pHe fell from 6.91 ± 0.07 to 6.62 ± 0.09), during which
a corresponding increase in tumour LACTe was observed (Figure
3A). When the occlusion was removed after 6 h, there was a

0 1 2 3 4 5 6 7 8 9 10
Extracellular lactate (mM) (by microdialysis)

Figure 4 Correlation between extracellular pH (measured by pH
microelectrode) and extracellular lactate (LACTe) (measured by
microdialysis) in CaNT tumours after vascular occlusion at either room
temperature (e) or with temperature maintenance at 350C (A). Control
samples, open symbols. (Correlation coefficient at room temperature r=0.97,
P <0.03; at 350C r=0.74, P > 0.09)

rapid fall in LACTe (from 8.62 ± 0.95 to 5.18 ± 0.2), which is
consistent with restoration of the tumour blood supply as
confirmed independently by radiolabel tracer studies (Parkins et
al, 1995; Stratford et al, 1995).
The response to occlusion of the CaNT tumour maintained at

35°C, however, was quite different (Figure 3B). The reduction in
tumour PHe is more rapid in this treatment group, reaching a
significantly lower value [PHe = 6.25 ± 0.09 (P<0.0 1)] at 3 h after
occlusion compared with room temperature (Parkins et al, 1994b).
During the first hour of occlusion at 35°C, LACTe increased
significantly, although extension of the period of vascular occlu-
sion to 6 h did not result in any further time-dependent increase in
LACTe, as was seen in the room temperature-maintained tumours.
Removal of the occlusion after 3 h and assay 6 h later, i.e. allowing
6 h for any reperfusion to occur, did not show any significant
decrease in tumour LACTe and may be evidence of a reduced
degree of reperfusion in these tumours after this treatment.

At room temperature, there was a significant correlation
between the acidification of extracellular pH and extracellular
lactate accumulation in the CaNT tumour over the period of study
(r=0.97, P<0.03, n=4) (Figure 4). No significant correlation was

found between LACTe and decrease in PHe in tumours occluded at
35°C (r=0.74, P>0.09, n=6).

DISCUSSION

This study has shown that total vascular occlusion resulted in a

time-dependent decrease in tumour cellular adenine nucleotide
levels. The decrease is also temperature dependent with signifi-
cantly lower tumour nucleotide levels achieved by maintenance of
the tumour temperature at 35°C, thereby preventing cooling during
the clamping. The use of superficial tumours alone in any study
would, therefore, underestimate the effect of occlusion and would
not reflect the potential anti-tumour effect that would occur if the
tumour had been centrally located where temperature would be
maintained by surrounding tissue.

In a recent study, we investigated the changes in both intra-
and extracellular pH using non-invasive magnetic resonance
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spectroscopy (MRS) techniques during complete vascular occlu-
sion. Data from both techniques show that tumours commonly
have an acidic extracellular pH compared with the relatively
neutral intracellular compartment (McCoy et al, 1995). Intra-
cellular pH is maintained by membrane-based proton transporters,
which are indirectly dependent on cellular energy to transport
protons into the extracellular space. It is probable, therefore, that
the greater breakdown of adenine nucleotides in the 35°C-main-
tained tumours, in addition to causing loss of ion gradients, would
add to the proton load by the release of protons from the break-
down of ATP, causing a lower PHe under these conditions. In the
room temperature-maintained tumours, the loss of adenine nucleo-
tides is much less severe, with relatively higher pHe for a given
period of occlusion, and, more importantly, the levels of AMP are
maintained throughout the clamp. When the blood flow is restored
AMP can be reconverted to ATP, whereas in the 35°C-maintained
tumours not only was the blood flow inadequately restored, but
most of the AMP has been irretrievably lost.
The reciprocal relationship between PHe and LACTe levels was

previously found in tumours occluded at room temperature
(Stratford et al, 1995). The correlation is significant for room
temperature tumours, but not in this study when the tumour
temperature was maintained at 35°C during occlusion. This might
be expected on the grounds that the greater breakdown of adenine
nucleotides under these conditions causes an increase in H+
and, thus, a lower pHe. A key enzyme of glycolysis is phospho-
fructokinase (PFK), whose action is inhibited when H+ levels rise
(Ui, 1966; Halperin et al, 1969), preventing excessive formation
of LACTe and a precipitous drop in blood pH (acidosis). Such a
mechanism could explain the absence of increase in LACTe seen
at 35°C. Our previous studies have shown no loss of clonogenic
potential during a 3-h period of occlusion at room temperature
(Parkins et al, 1994b). However, significant reductions in cell
survival are observed after clamp periods of I h or more when
tumour temperature is maintained. It is of interest to note that the
loss of relationship between PHe and LACTe is observed in the
present study under conditions known to influence cellular
integrity and clonogenicity.
The recovery of tumour blood flow following clamp removal

has previously been shown to be inversely related to clamp dura-
tion; relative tumour perfusion at 1 h following either a 1- or 3-h
period of occlusion at room temperature was 70.1% ± 14.6% of
control compared with 50.5% ± 6.3% respectively (Parkins et al,
1995). Vascular occlusion at 35°C is significantly more damaging
than occlusion at room temperature, so it is likely that recovery of
blood flow following vascular occlusion at 35°C will be reduced
compared with that at room temperature (Parkins et al, 1994b).
The observation in this study that tumour LACTe levels were not
reduced in the 35°C tumours following clamp removal may indi-
cate some irreversible vascular damage, thus preventing LACTe
washout. These findings emphasize the important role of glycol-
ysis in determining vascular and tissue function in tumours under
conditions of total vascular occlusion. The correlation between
LACTe and PHe is only evident under ischaemic conditions that
elicit no tumour cell death. Clearly under more extreme conditions
that elicit marked breakdown of high-energy phosphates and other
biochemical changes concomitant with the loss of cellular
integrity, this relationship no longer holds. It should be noted that
within a particular tumour there may be a correlation between
LACTe and PHe following an intervention such as ischaemia;
however, it is clear thatPH- of different types of tumours may

depend on factors other than LACTe. This is emphasized by a
recent study using ras-transfected fibroblast cells, which are
glycolysis deficient (Newell et al, 1993). These variant cells
produce approximately 1% of the parental line's production of
lactic acid but have similar PHe (pHe = 6.78 ± 0.04) compared with
the parental line (pH.e= 6.65 ± 0.07) when grown in vivo. These
investigations attributed such a finding to the fact that other
proton-producing processes contribute to extracellular acidity.
The present study shows that accumulation of extracellular lactate
is not the only determinant of an acidic environment in solid
tumours. Understanding the mechanisms that contribute to tumour
acidosis could provide improved understanding of tumour physi-
ology and identify potential targets for therapeutic intervention.
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