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Abstract

Background: Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against
pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to
evaluate the cost-effectiveness of pH1N1 vaccination.

Methodology: A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination
program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived
from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1
illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6
months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes
longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e.,
herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in
dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted.

Results: For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years
under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–
$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of
vaccination, illness rates, and timing of vaccine delivery.

Conclusions: Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive
health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations
that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial impact on
the cost-effectiveness of vaccination.

Citation: Prosser LA, Lavelle TA, Fiore AE, Bridges CB, Reed C, et al. (2011) Cost-Effectiveness of 2009 Pandemic Influenza A(H1N1) Vaccination in the United
States. PLoS ONE 6(7): e22308. doi:10.1371/journal.pone.0022308

Editor: Benjamin J. Cowling, University of Hong Kong, Hong Kong

Received July 14, 2010; Accepted June 23, 2011; Published July 29, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: Funding for this project was provided from the Harvard-CDC Joint Initiative in Vaccine Economics. The findings and conclusions in this report are those
of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lisapros@med.umich.edu

Introduction

2009 pandemic influenza (A)H1N1 (pH1N1)was first identified

in Spring 2009 and has continued to circulate in North America

and elsewhere.[1,2,3,4,5] Initial doses of a vaccine to prevent

pH1N1 infection first became available starting in early October

2009. At that time, target groups for vaccination were identified by

the Centers for Disease Control and Prevention’s Advisory

Committee for Immunization Practices (ACIP).[6] Targeted age

groups differ considerably than those for seasonal influenza

vaccine for people 65 years and older. Supply of the pH1N1

vaccine was anticipated to be limited initially, raising questions of

prioritization. Consideration of the economic consequences of a

vaccination program for pH1N1 can aid decision makers in

vaccine allocation decisions by providing information on the

relative cost-effectiveness of vaccinating specific age and risk

groups.

Most studies using dynamic models suggest that vaccinating

school-aged children preferentially over other age groups is the

optimal strategy for reducing the health consequences of a future

pandemic [7,8,9], although one study supports the ACIP priori-

tization strategy of vaccinating high-risk individuals first.[10] The

approach of preferentially vaccinating schoolchildren, however,

assumes sufficient vaccine is available for all schoolchildren and

that coverage rates among this target group will be high enough to

reach coverage levels that would achieve herd effects. Such an

approach also makes the assumption that society is willing to

accept health risks of vaccine adverse events for school-aged

children in return for health benefits to adults and younger

children. Given the likelihood that vaccine coverage levels may not
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be sufficient to achieve herd effects and acknowledging that parent

preferences may not favor vaccinating school-aged children as a

strategy for protecting other individuals but may favor vaccination

of children to prevent illness in their own children, the current

study evaluates the cost-effectiveness of pH1N1 vaccination by

measuring the health benefits that accrue to the vaccinated

individual and does not consider indirect effects of vaccination.

Methods

We used a decision analytic model, built using standard software

(TreeAge Pro 2009 Software, release 1.0, Treeage Software,

Williamstown, MA), to estimate costs and health outcomes for

pH1N1 influenza vaccination compared to no vaccination. A

simplified schematic of the decision model is shown in Figure 1.

Input parameters were derived from emerging data available for

pH1N1 influenza illness in the US in spring/summer 2009,

published data, and expert opinion and are described in more

detail below (Tables 1, 2) and in supplemental materials (Tables S1,

S2). We used a time frame of one year because most costs and

consequences related to influenza occur during a single influenza

season. However, two key outcomes with longer-term effects,

influenza-related deaths and long-term sequelae of influenza-related

illness, were included. The analysis used a societal perspective.

Target population
The model includes cohorts of children and adults aged 6

months and older stratified by age and risk of complications. Age

groups were: 6–23 month, 24–35 month (2 yrs), 3–4 years, 5–11

years, 12–17 years, 18–49 years, 50–64 years, and 65 years and

older. Each age group was then divided into two risk-based

groups, higher risk and lower risk, except for age 65 years and

older who are all assumed to be at higher risk for complications.

Higher risk groups were defined using conditions identified by

CDC as placing individuals at higher risk for medical complica-

tions of influenza illness.[6]

Natural history of influenza
Probabilities of hospitalization and death following pH1N1

illness were derived from emerging data for pH1N1 in spring/

summer 2009.[11](Table 1) Input values for probabilities of other

influenza-related outcomes were based on previously established

estimates for seasonal influenza, such as probability of seeking

medical attention during an episode of influenza illness, other

complications treated on an outpatient setting, and long-term

sequelae following hospitalization.[12,13] The range of possible

values for probability of pH1N1 influenza illness during a single

season was varied from 5% to 30% to reflect the limited data on

Figure 1. Simplified representation of simulation model. Systemic reaction = fever and flu-like symptoms for 24 hours following vaccination.
doi:10.1371/journal.pone.0022308.g001
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possible overall pH1N1 illness attack rates with intermediate

probabilities of 7.6%, 15%, and 21%. One intermediate

probability, 21%, represents the most recent estimate for the

pH1N1 pandemic derived from Shrestha et al (2011).[14] The

probability of 7.6% represents an average non-pandemic influenza

season.

Table 1. Probabilities of H1N1 influenza illnesses, hospitalizations, and deaths by age and risk status.

Age Group Overall Attack Rate Source

5% 7.6% 15% 21% 30%

pH1N1 Influenza Illness Rate [11]

6–23 months 0.0924 0.1405 0.2772 0.3929 0.5544

2 y 0.0924 0.1405 0.2772 0.3929 0.5544

3–4 y 0.0924 0.1405 0.2772 0.3929 0.5544

5–11 y 0.1085 0.1649 0.3254 0.4613 0.6509

12–17 y 0.1085 0.1649 0.3254 0.4613 0.6509

18–49 y 0.0460 0.0699 0.1380 0.1956 0.2760

50–64 y 0.0158 0.0240 0.0474 0.0671 0.0947

$65 y 0.0053 0.0080 0.0159 0.0225 0.0317

Incidence of hospitalizations for pneumonia or other respiratory conditions due to pH1N1 influenza per 100,000 [11,12,13]1

6–23 months, LR 95.22 141.45 261.41 424.58 459.98

2 y, LR 102.08 151.64 280.25 455.22 493.18

3–4 y, LR 84.63 125.71 232.31 377.28 408.73

5–11 y, LR 33.70 49.84 91.08 151.30 156.92

12–17 y, LR 33.70 49.84 91.08 151.30 156.92

18–49 y, LR 25.60 38.45 73.42 111.43 137.42

50–64 y, LR 13.25 20.04 39.13 56.73 76.39

6–23 months, HR 285.93 424.94 786.28 1279.19 1386.34

2 y, HR 306.55 455.60 843.13 1371.93 1486.91

3–4 y, HR 338.94 503.79 932.48 1517.75 1645.05

5–11 y, HR 202.40 299.39 547.71 911.27 945.26

12–17 y, HR 202.40 299.39 547.71 911.27 945.26

18–49 y, HR 128.07 192.39 367.65 558.41 689.01

50–64 y, HR 66.26 100.26 195.82 283.95 382.55

$65 y, all 14.08 21.23 42.03 59.96 83.16

Incidence of pH1N1 influenza death per 100,000 [11,12,13]

6–23 months, LR 0.0843 0.1252 0.2313 0.3754 0.4066

2 y, LR 0.0904 0.1342 0.2480 0.4024 0.4359

3–4 y, LR 0.0749 0.1113 0.2056 0.3336 0.3614

5–11 y, LR 0.0299 0.0441 0.0807 0.1340 0.1389

12–17 y, LR 0.0299 0.0441 0.0807 0.1340 0.1389

18–49 y, LR 2.8483 4.2772 8.1666 12.3926 15.2811

50–64 y, LR 1.6245 2.4575 4.7975 6.9538 9.3638

6–23 months, HR 0.2530 0.3757 0.6939 1.1262 1.2198

2 y, HR 0.2712 0.4027 0.7439 1.2072 1.3077

3–4 y, HR 0.2998 0.4452 0.8223 1.3346 1.4456

5–11 y, HR 0.1791 0.2649 0.4839 0.8037 0.8336

12–17 y, HR 0.1791 0.2649 0.4839 0.8037 0.8336

18–49 y, HR 14.2422 21.3880 40.8398 61.9785 76.4289

50–64 y, HR 8.1227 12.2882 23.9900 34.7736 46.8276

$65 y, all 1.8141 2.7346 5.4138 7.7222 10.7092

LR = lower-risk; HR = higher-risk.
1Data from seasonal influenza illness was used to estimate the ratio of high risk to low risk based on expert opinion that although the incidence for pH1N1 and seasonal
influenza varied substantially by age, the conditional probability of influenza-related complications for high risk and low risk patients would likely be similar for pH1N1
and seasonal (i.e., within an age group, high risk patients would be more likely to experience influenza-related complications than low-risk patients for both pH1N1 and
seasonal influenza).

doi:10.1371/journal.pone.0022308.t001
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Costs of influenza-related health events
Costs included direct medical costs for influenza events,

including physician visits, over-the-counter and prescription

medications, diagnostic tests, hospitalizations, and long-term

sequelae, based on established costs for seasonal influen-

za.[12,13,15,16] Direct medical costs were adjusted to 2009

dollars using the medical component of the Consumer Price

Index.[17]

Vaccination assumptions
Pandemic H1N1 vaccine effectiveness was assumed to have

similar effectiveness as for seasonal influenza vaccine based on

preliminary studies of 2009 pH1N1 vaccine immunogenicity which

shows immune responses comparable to seasonal influenza

vaccine.[18,19,20,21] Base case (range) vaccine effectiveness was

assumed to be 69% (40%–90%) for individuals aged 6 months to 17

years, 69% (30%–90%) for those 18 to 64 years and 60% (30%–

90%) for those 65 years and older. (Table 2) Vaccination-related

adverse events were assumed to be consistent with rates for seasonal

influenza vaccine. Injection site reactions, systemic reactions,

anaphylaxis, and Guillain Barré syndrome varied by age and are

listed in Table S1. Incidence of Guillain Barré syndrome was based

on data from seasonal influenza vaccine[22] and varied in sensitivity

analyses to reflect rates observed in the 1976 swine flu vaccination

program.[23,24,25,26,27,28,29,30,31,32].

Vaccination-related costs included cost of pH1N1 vaccine

doses, administration fees, and time costs (for parents or patients,

depending on the age of the vaccinee).(Tables 2, S1, S2) We

assumed full vaccination required 2 doses for individuals aged 6

months to 9 years and 1 dose for individuals aged 10 years and

older. Administration costs varied by setting: lower for mass

vaccination clinic and higher for the physician office setting.[33]

For the physician office setting, the proportion of persons

vaccinated at an existing or vaccination-specific visit varied by

age. Assumptions for mid-range costs use data on vaccination

setting by age from seasonal influenza vaccination for adults and

assume a mix of vaccination settings.[34] The proportion of

individuals receiving vaccination in a mass vaccination or

physician office setting varied by age and risk group. Assumptions

for mid-range costs for children also vary by age. 75% of school-

aged children were assumed to be vaccinated in a school-located

setting. Children younger than 5 years were assumed to be

vaccinated in the physician office setting. Costs of adverse events

were based on costs of adverse events associated with inactivated

influenza vaccine.[15] Time costs for vaccination time for adults

and parents of vaccinated children were also included.

Table 2. Effectiveness and costs associated with pH1N1 vaccination by age and risk status (inactivated vaccine).

Vaccine Effectiveness

Age Group Most Likely Minimum Maximum Source

6 mo–17 y 0.690 0.40 0.90 [19]

18–64 y 0.690 0.30 0.90 [18,19]

$65 y 0.600 0.30 0.90 [20,21]

Vaccination Costs2

Mass Vaccination Setting Mid-Range3 Physician Office Setting4 [13,33,58,59]

6–23 months $68.67 - $93.32

2 y $68.67 - $93.32

3–4 y $68.67 - $93.32

5–11 y $39.80 $53.18 $93.32

12–17 y $19.90 $25.72 $43.18

18–49 y, LR $34.33 $35.30 $37.89

50–64. LR $34.33 $35.07 $37.06

18–49 y, HR $34.33 $36.11 $37.89

50–64. HR $34.33 $35.97 $37.06

$65 y, all $34.33 $33.05 $31.77

LR = lower-risk; HR = higher-risk.1
1Individuals were defined to be at higher risk for influenza-related complications due to underlying medical conditions, which include chronic pulmonary and significant
cardiac conditions and other recognized high-risk conditions.[6]

2Total vaccination costs include the cost for the vaccine (1 dose for persons aged 10 years or older and 2 doses for children aged 6 months to 9 years), administration
costs, and time costs as appropriate. Cost of the vaccine dose was based on the contracts negotiated by the Biomedical Advanced Research and Development
Authority for pH1N1 vaccine in 2009 (average cost: $8.60 per dose). Administration costs are assumed to be $11.30 per dose in a mass vaccination and either $13.71 for
administration during an existing visit to a clinician in a physician office setting or $20.92 for administration during an extra physician office setting visit based on
Medicare payment rates.[33] For vaccination cost estimates in the mass vaccination setting, (travel and vaccination) time costs included 12 minutes for waiting and
vaccination time[13] at the clinic and 30 minutes of travel time for all adult age groups and for age groups less than 5 years to account for parent time costs. Children
5–17 years in the mass vaccination setting are assumed to be vaccinated in a school setting and therefore no parent time costs were included.

3Assumes a mix of mass vaccination and physician office. For the mixed setting, the proportion of persons vaccinated in a mass vaccination setting vs. a physician’s
office was varied by age. Time costs are always included for parents of children younger than 5 years of age assuming that a parent will need to be present for
vaccination of young children in any setting. See supporting information for additional details.

4For the physician office setting, the proportion of persons needing one vs. two extra physician visits to accommodate vaccination was varied by age. Time costs were
included for parents of children ,18 and for adults for each extra visit required for vaccination. For the physician office setting, we include 60 minutes of time for travel,
waiting, and vaccination time for either the vaccinee or the parent, which assumes a streamlined setting is used for vaccination.

doi:10.1371/journal.pone.0022308.t002
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Health outcomes and quality adjustments
The primary health outcome for the analysis is the quality-

adjusted life year (QALY). A QALY attempts to measure a

patient’s physical health and well being including, among other

factors, the ability to engage in ‘‘normal,’’ everyday activities.

QALYs lost to a disease or condition, therefore, measure the

overall reduction in a patient’s well being, or health-related quality

of life, due to an episode of disease and its consequences (which

may last a life time). We obtained the loss in QALYs associated

with each influenza-related health event from published studies

and primary data.[35,36,37] In these studies, respondents were

asked how much of their own lifetime they would be willing to

trade in order to avoid a case of influenza-related illness or a

vaccination-related adverse event (i.e., a time-tradeoff valuation).

(Tables S1, S2)

Cost-effectiveness Analysis
The main endpoint for the study was the incremental cost-

effectiveness ratio (ICER) calculated by dividing the net costs by

the net health benefits (as measured via QALYs) for vaccination

compared to no vaccination. An intervention is defined as cost-

saving if the intervention decreases dollar costs and also results in

an increase in QALYs. An intervention is defined as cost-effective

if it results in an increase in both costs and QALYs and the

resulting ratio is less than a determined threshold.[38] The

primary analysis explored a range of values for pH1N1 illness rates

and vaccination costs due to uncertainty regarding the severity of

the pH1N1 influenza season and preferred vaccination settings. All

costs and health effects lasting more than 1 year were discounted

at 3% per year.

Considerable uncertainty exists regarding the most likely setting

for pH1N1 vaccination (i.e., mass vaccination clinics compared

with physician offices). Therefore the primary analysis includes a

mass vaccination setting, a physician office setting, and a ‘‘mid-

range’’ cost setting that assumes a proportion of individuals is

vaccinated in each setting. This proportion varies by age. The

primary analysis assumes that some individuals will receive

pH1N1 vaccination at an existing physician visit which would be

associated with lower administration costs. An existing visit is

defined as a visit previously-scheduled for a purpose other than

pH1N1 vaccination. In the sensitivity analysis, we include a more

conservative scenario in which all individuals are vaccinated in the

physician office setting and require a vaccine-specific visit.

Sensitivity analyses explored changes in key variables including

the number of doses required for vaccination, costs of vaccination,

vaccination-related adverse events, and influenza-related hospital-

ization rates. A sensitivity analysis explored the change in cost-

effectiveness ratios if only one dose were required for children

younger than 10 years. Some studies have suggested higher costs of

influenza vaccination in the physician office setting[39,40],

therefore, we also conducted a sensitivity analysis that assumed

higher administration costs. Due to concerns that swine influenza

vaccination in 1976–1977 may have been associated with Guillain-

Barré syndrome, sensitivity analyses included varying the proba-

bility of Guillain-Barré syndrome following vaccination over a

wide range of possible values, from rates that may occur with

seasonal influenza vaccine (1 per million) to rates observed with

1976 swine influenza vaccine (1 per 100,000).

The primary analysis assumed timely pH1N1 vaccination prior

to the start of the outbreak. A scenario analysis evaluated initiation

of vaccination after the start of a hypothetical influenza season.

Each week after the start of the season that vaccination was

initiated was assumed to reduce the protective effect of the vaccine

according to the expected distribution of cases over a hypothetical

16-week influenza season assuming peak at 9 weeks and 70% of

cases occur between weeks 7–10.(Table S3) [41]

Results

Assuming a 21% overall attack rate and assuming that persons

were fully vaccinated prior to the start of the outbreak, pH1N1

vaccination was cost-saving for all high-risk subgroups ages 6

months to 64 years. For low-risk subgroups 6 months to 64 years,

pH1N1 vaccination required a net investment for a return in

health benefits. The cost-effectiveness ratios for these subgroups

ranged from $5,000–$18,000/QALY depending on age and risk.

Cost-effectiveness ratios were least favorable for persons aged 65

years and older.(Table 3)

Assuming a higher overall attack rate of 30%, cost-effectiveness

ratios were less than $30,000/QALY for all age and risk groups for

the full range of vaccination costs. Vaccination remained cost-

saving for all high-risk subgroups. For lower attack rates, cost-

effectiveness results were less favorable. Assuming an attack rate

similar to that for an average influenza season (7.6%), vaccination

was no longer cost-saving for all high-risk subgroups.(Table 3)

Results were sensitive to changes in the number of doses

required for children, costs of vaccination, and timing of vaccine

delivery. Requiring only one vaccine dose for children resulted in

more favorable cost-effectiveness ratios compared to two doses.

(Table S4) Cost-effectiveness ratios were 72-89% lower for lower-

risk children and vaccination remained cost-saving for high-risk

children.(Table S4)

Higher vaccination costs were associated with less favorable

cost-effectiveness ratios for vaccination. If we assume that all

adults will receive vaccination in the physician office setting at a

vaccine-specific visit (our most conservative setting for vaccina-

tion costs), cost-effectiveness ratios become less favorable by 26–

44% for lower-risk individuals, but remained cost-saving for

higher-risk adults who were younger than 65 years of age.

Assuming the cost per dose to be twice that in the primary

analysis resulted in cost-effectiveness ratios up to 68% higher than

the primary analysis, but cost-effectiveness ratios remained below

$100,000/QALY. Higher administration costs in the physician

office setting would result in higher cost-effectiveness ratios (up to

18% higher); vaccination remained cost-saving for high-risk

subgroups.(Table S4)

Results were not sensitive to changes in the probability of

Guillain-Barré syndrome following vaccination when varying the

probability up to 1 in 100,000. Results were also not sensitive to an

increase in hospitalization rates for high-risk individuals based on

emerging pH1N1 data; vaccination remained cost-saving for high

risk groups.

Timing of vaccination affects the cost-effectiveness of vaccina-

tion and depended on when vaccination occurred and if the age

group under consideration required one or two doses. For

subgroups requiring two doses and vaccination is not initiated

until the third week of the season, vaccination remains cost-saving

for high-risk children and cost-effectiveness ratios remain below

$10,000/QALY for lower-risk children assuming a hypothetical

16-week flu season and normalized epidemic curve of illness. If

vaccination is initiated beyond the tenth week into a hypothetical

16-week influenza season, the cost-effectiveness ratios become less

favorable for subgroups requiring two doses. If vaccination is

initiated beyond the fifteenth week, no vaccination becomes the

preferred strategy from an economic perspective. For age groups

requiring one dose, cost-effectiveness ratios increase markedly if

vaccination is initiated at the ninth or tenth week of the epidemic.

Results are similar for adults with the exception of individuals 65

H1N1 Vaccination
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Table 3. Incremental cost-effectiveness ratios, $/QALY (2009 US dollars).1

Vaccination Costs

Age Group Mass Vaccination Setting Mid-Range2 Physician Office Setting3

a. 5% influenza illness attack rate

6–23 months, LR $37,896 - $54,182

2 y, LR $42,190 - $60,278

3–4 y, LR $55,321 - $78,481

5–11 y, LR $41,664 $57,471 $106,152

12–17 y, LR $26,049 $35,998 $65,804

18–49 y, LR $38,393 $40,825 $43,257

50–64 y, LR $113,660 $119,678 $123,690

$65 y, all $255,920 $245,729 $235,537

6–23 months, HR $3,515 $10,104 $10,104

2 y, HR $3,709 $10,668 $10,668

3–4 y, HR $440 $8,218 $8,218

5–11 y, HR Cost-saving $3,130 $20,852

12–17 y, HR Cost-saving Cost-saving $4,668

18–49 y, HR Cost-saving Cost-saving Cost-saving

50–64 y, HR $1,795 $3,357 $4,398

b. 7.6% influenza illness attack rate (comparable to average attack rate for seasonal influenza)

6–23 months, LR $22,374 - $33,339

2 y, LR $25,312 - $37,492

3–4 y, LR $33,892 - $49,486

5–11 y, LR $25,515 $36,419 $69,130

12–17 y, LR $14,859 $21,581 $41,475

18–49 y, LR $22,552 $24,163 $25,775

50–64 y, LR $69,691 $73,615 $76,230

$65 y, all $158,736 $152,171 $145,607

6–23 months, HR Cost-saving $1,589 $1,589

2 y, HR Cost-saving $1,820 $1,820

3–4 y, HR Cost-saving Cost-saving Cost-saving

5–11 y, HR Cost-saving Cost-saving $7,351

12–17 y, HR Cost-saving Cost-saving Cost-saving

18–49 y, HR Cost-saving Cost-saving Cost-saving

50–64 y, HR Cost-saving Cost-saving Cost-saving

c. 15% influenza illness attack rate

6–23 months, LR $7,702 $13,638 $13,638

2 y, LR $9,360 $15,954 $15,954

3–4 y, LR $13,637 $22,079 $22,079

5–11 y, LR $10,240 $16,207 $34,109

12–17 y, LR $4,275 $7,953 $18,989

18–49 y, LR $7,662 $8,502 $9,342

50–64 y, LR $28,976 $30,960 $32,282

$65 y, all $69,236 $66,011 $62,787

6–23 months, HR Cost-saving Cost-saving Cost-saving

2 y, HR Cost-saving Cost-saving Cost-saving

3–4 y, HR Cost-saving Cost-saving Cost-saving

5–11 y, HR Cost-saving Cost-saving Cost-saving

12–17 y, HR Cost-saving Cost-saving Cost-saving

18–49 y, HR Cost-saving Cost-saving Cost-saving

50–64 y, HR Cost-saving Cost-saving Cost-saving

d. 21% influenza illness attack rate

H1N1 Vaccination
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years and older, for whom cost-effectiveness ratios are overall less

favorable.(Table 4)

Discussion

The Advisory Committee on Immunization Practices (ACIP)

recommended initial target groups for vaccination against pH1N1

influenza, which include pregnant women, household contacts of

infants younger than 6 months, health care and emergency

medical personnel, persons aged 6 months through 24 years, and

persons aged 25 through 64 years at higher risk for influenza-

related complications.[6] Using the assumptions from the primary

analysis, we find that the cost-effectiveness of vaccinating children

and high-risk working-age adults against pH1N1 is within the

range of cost-effectiveness for other vaccines recently recom-

mended by ACIP, including seasonal influenza vaccine[12],

pneumococcal conjugate vaccine[36], and HPV[42,43,44,45].

We also find that pH1N1 vaccination is cost-saving for high-risk

individuals less than 65 years under a wide range of assumptions.

We did not include separate analyses for some of the initial

target groups for recommendation, such as health care workers,

pregnant women, or household contacts of infants younger than 6

months. However, health care workers and pregnant women

would be included as part of the overall high-risk and low-risk

Vaccination Costs

Age Group Mass Vaccination Setting Mid-Range2 Physician Office Setting3

6–23 months, LR $1,053 $4,711 $4,711

2 y, LR $2,131 $6,194 $6,194

3–4 y, LR $4,459 $9,661 $9,661

5–11 y, LR $2,893 $6,486 $17,265

12–17 y, LR CS $1,399 $8,043

18–49 y, LR $2,115 $2,667 $3,220

50–64 y, LR $15,942 $17,305 $18,214

$65 y, all $42,901 $40,659 $38,417

6–23 months, HR Cost-saving Cost-saving Cost-saving

2 y, HR Cost-saving Cost-saving Cost-saving

3–4 y, HR Cost-saving Cost-saving Cost-saving

5–11 y, HR Cost-saving Cost-saving Cost-saving

12–17 y, HR Cost-saving Cost-saving Cost-saving

18–49 y, HR Cost-saving Cost-saving Cost-saving

50–64 y, HR Cost-saving Cost-saving Cost-saving

e. 30% influenza illness attack rate

6–23 months, LR $234 $3,611 $3,611

2 y, LR $1,240 $4,991 $4,991

3–4 y, LR $3,328 $8,130 $8,130

5–11 y, LR $2,495 $5,960 $16,352

12–17 y, LR Cost-saving $1,044 $7,450

18–49 y, LR $93 $541 $989

50–64 y, LR $8,528 $9,537 $10,211

$65 y, all $25,910 $24,302 $22,694

6–23 months, HR Cost-saving Cost-saving Cost-saving

2 y, HR Cost-saving Cost-saving Cost-saving

3–4 y, HR Cost-saving Cost-saving Cost-saving

5–11 y, HR Cost-saving Cost-saving Cost-saving

12–17 y, HR Cost-saving Cost-saving Cost-saving

18–49 y, HR Cost-saving Cost-saving Cost-saving

50–64 y, HR Cost-saving Cost-saving Cost-saving

LR = lower-risk; HR = higher-risk.
1Vaccination in each setting is compared to no vaccination.
2Assumes a mix of mass vaccination and physician office for individuals aged 5 years and older. For the mixed setting, the proportion of persons vaccinated in a mass
vaccination setting vs. a physician’s office was varied by age. For children younger than 5 years of age, the assumption is that very few children will be vaccinated in the
mass vaccination setting, therefore the physician office setting is considered to be the primary setting.

3For the physician office setting, the proportion of persons needing one vs. two extra physician visits to accommodate vaccination was varied by age. Time costs were
included for parents of children ,18 and for adults for each extra visit required for vaccination.

doi:10.1371/journal.pone.0022308.t003
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Table 4. Scenario analysis for delayed vaccine availability (by week)1, assuming 16-week influenza epidemic.

a. Age groups that require two doses (assumes 5 weeks to full protection; e.g., ‘‘Week 0’’ assumes that children are fully vaccinated prior to the first
week of the outbreak)

Week of Full
Immuniz-ation2 6–23 m, HR 2 y, HR 3–4 y, HR 5–11 y, HR 6–23 m, LR 2 y, LR 3–4 y, LR 5–11 y, LR

0 CS CS CS CS $4,711 $6,194 $9,661 $6,486

1 CS CS CS CS $4,712 $6,195 $9,662 $6,487

2 CS CS CS CS $4,716 $6,199 $9,667 $6,490

3 CS CS CS CS $4,726 $6,210 $9,682 $6,501

4 CS CS CS CS $4,761 $6,248 $9,730 $6,537

5 CS CS CS CS $4,876 $6,374 $9,891 $6,656

6 CS CS CS CS $5,256 $6,790 $10,419 $7,045

7 CS CS CS CS $6,506 $8,156 $12,158 $8,329

8 CS CS CS CS $10,624 $12,658 $17,887 $12,556

9 CS CS CS CS $24,190 $27,489 $36,757 $26,482

10 $16,122 $16,921 $15,151 $8,635 $68,912 $76,383 $98,973 $72,398

11 $76,497 $79,656 $84,715 $64,147 $216,721 $237,985 $304,628 $224,209

12 $277,592 $288,617 $316,434 $249,119 $709,347 $776,645 $990,353 $730,798

13 $965,431 $1,003,421 $1,109,230 $882,681 $2,400,000 $2,638,889 $3,357,143 $2,474,642

14 $3,551,412 $3,691,592 $4,092,708 $3,276,700 $8,727,273 $10,555,556 $13,428,571 $9,200,000

15 $18,204,581 $18,948,070 $21,085,287 $17,213,376 $48,500,000 $95,000,000 $94,000,000 $46,000,000

16 NV NV NV NV NV NV NV NV

CS = Cost Saving; NV = No Vaccination is the preferred alternative as health risks of vaccination outweigh health benefits for these conditions.

b. Age groups that require one dose only (assumes that vaccination occurred 2 weeks prior to the ‘‘Week of Full Immunization’’3)

Week of Full
Immuniz-ation4 12–17 y, HR 18–49 y, HR 50–64 y, HR 12–17 y, LR 18–49 y, LR 50–64 y, LR $65 y, all

0 CS CS CS $1,399 $2,667 $17,305 $40,659

1 CS CS CS $1,400 $2,668 $17,037 $40,663

2 CS CS CS $1,402 $2,670 $17,314 $40,676

3 CS CS CS $1,409 $2,679 $17,337 $40,720

4 CS CS CS $1,433 $2,706 $17,411 $40,864

5 CS CS CS $1,513 $2,797 $17,654 $41,338

6 CS CS CS $1,776 $3,095 $18,456 $42,902

7 CS CS CS $2,641 $4,078 $21,099 $48,063

8 CS CS CS $5,491 $7,318 $29,836 $65,185

9 CS CS CS $14,881 $18,037 $58,951 $122,985

10 CS CS $13,120 $45,841 $53,880 $158,715 $330,107

11 $33,027 $21,073 $99,555 $148,216 $178,107 $536,073 $1,266,867

12 $156,273 $134,121 $423,416 $489,987 $668,719 $2,752,458 $71,159,030

13 $578,619 $586,517 $2,232,044 $1,668,217 $4,418,475 NV NV

14 $2,177,431 4,392,915 NV $6,500,000 NV NV NV

15 $11,577,092 NV NV $27,000,000 NV NV NV

16 NV NV NV NV NV NV NV

CS = Cost Saving; NV = No Vaccination is the preferred alternative as health risks of vaccination outweigh health benefits for these conditions.

LR = lower-risk; HR = higher-risk.
121% influenza illness attack rate, mid-range costs assumption.
2For children ,10 y needing two doses, vaccination would need to have been initiated $5 weeks earlier assuming 3 weeks between doses and 2 weeks after the
second dose for peak antibody response. http://www.cdc.gov/h1n1flu/vaccination/public/vaccination_qa_pub.htm For children $10 y, only one dose is needed.;
vaccination would need to have been initiated $2 weeks earlier for peak antibody response. Intermediate protection in between weeks 3 and 5 for children who have
received the first of two doses is conservatively assumed to be zero.

3Vaccination is assumed to require 2 weeks to achieve full protection.
4For individuals $10 y, only one dose is needed. Vaccination would need to have been initiated $2 weeks earlier for peak antibody response.
doi:10.1371/journal.pone.0022308.t004
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group calculations. Given increased exposure of health care

workers influenza and increased risk of complications of pH1N1 in

pregnant women[46], cost-effectiveness ratios would likely be at

least as favorable as for corresponding target groups as defined by

age and risk category.

The live attenuated formulation is not explicitly included in the

current analysis. Live attenuated vaccine for seasonal influenza

may be more effective than inactivated vaccine for young

children[47], yet recent data suggest that inactivated vaccines

may be more effective for young adults[48]. However, there are no

data on the effectiveness of live attenuated pH1N1 vaccine by age

group and it is possible that this may differ from that for seasonal

vaccine.

Emerging data on the epidemiology of pH1N1 influenza virus

infection were used in the simulation model where available, but

some assumptions were based on data from seasonal influenza.

These include the probability that an individual will seek medical

attention if they experience influenza-like illness. If individuals are

more likely to seek medical attention if they think they have

pH1N1 infection, these results represent a conservative approach

to assessing the cost-effectiveness of vaccination. Similarly, if the

costs of treating pH1N1 infection are substantially higher than for

seasonal influenza, the results of this analysis will also be

conservative. We did not consider any costs related to potential

school closures or mandated absences from school or work due to

illness. If these costs were appreciable, the results would be more

favorable for vaccination if these additional costs of illness were

included.

Policy Implications
This analysis differs from dynamic models, which model the

indirect effects of vaccination. One such model suggested that

vaccinating school-aged children and adults between the ages of

30 and 40 would be most cost-effective.[7] Dynamic models

simulate the transmission of infection among individuals and

estimate the reduction in infections as a result of reduced

transmission among unvaccinated age groups (e.g., vaccinating

school children will reduce transmission to individuals of other

ages and result in indirect effects of reducing illness and deaths in

infants and the elderly). The current analysis intentionally excludes

possible indirect effects of vaccination and restricts the primary

analysis to the costs and health benefits to the vaccinated

individual. Required coverage rates to generate herd effects for

pH1N1 are unknown and substantial uncertainty exists for the

required minimum coverage level for seasonal influen-

za[49,50,51]. Even if higher coverage rates are attained or

pH1N1 vaccination compared to seasonal influenza vaccination,

the effect of herd immunity is uncertain.[49,50,51] Another

rationale for restricting the analysis to individual-level benefits

relates to societal preferences. A policy of vaccinating school

children to prevent illness in other age groups assumes that public

preferences are consistent with trading off the health and well-

being of school-aged children (in the form of risk for vaccination-

related adverse events) to protect people in other age groups.

Evidence suggesting that societal preferences may be more

consistent with prioritizing child health over adult health could

clearly support the vaccination of children if the expected benefits

to the child outweighed the potential costs and risks but the

decision to vaccinate a child may only consider benefits and risks

to the vaccinated child.[37] Given that the inclusion of herd effects

would result in an increase in the health benefits associated with

vaccination, an extension of the current analysis to include herd

effects would result in more favorable cost-effectiveness results.

The costs of vaccination have a substantial impact on cost-

effectiveness results. Uncertainty exists as to the proportion of

individuals likely to get vaccinated in each type of setting. Since

costs of vaccination will vary with setting, these are key

assumptions for the analysis. For higher attack rate scenarios,

cost-effectiveness ratios vary about 10% across settings, however, if

most people are vaccinated in the physician office setting and

require a vaccine-specific visit, vaccination costs will be higher and

associated cost-effectiveness ratios will be less favorable. On the

other hand, if only one dose is required for vaccinating children,

the associated costs will be lower and cost-effectiveness ratios will

be more favorable. Recent data from the 2009–2010 pH1N1

vaccination season indicate that a mix of settings was used for

vaccination against pH1N1 influenza.[52] Results of sensitivity

analysis varying the costs of vaccination could provide useful

information for future decision making given the sensitivity of the

results to this input parameter.

Initiation of vaccination after the start of the season will affect

the cost-effectiveness of vaccination depending on the timing of

availability relative to the start, duration, and intensity of influenza

activity in a community. For children who require two doses,

vaccination may not be cost-effective if vaccine is delivered such

that full protection is not achieved until after the 8th week (the

peak) of a hypothetical influenza season. For adults and children

requiring only one dose, results are similar but the timing of

vaccination required will differ since only one dose is assumed to

be required for full protection. Cost-effectiveness results would

differ if additional pandemic waves caused by a similar virus were

to occur within the same vaccination year, or if vaccination later

during a single pandemic wave provided some beneficial

immunologic priming for subsequent vaccination against a drifted

influenza virus, or if the pattern of disease during the pandemic

wave does not conform to our model of a hypothetical season.

Comparison to Other Economic Studies of pH1N1
Vaccination

Estimates of the economic impact of vaccination are available

for the US and other countries. In the US, Beigi et al. evaluate the

economic value of vaccinating pregnant women, a very high risk

group not included in our analysis, and report favorable cost-

effectiveness ratios for maternal influenza vaccination.[53] Kha-

zeni et al. (2009) evaluate the cost-effectiveness of vaccination

against pandemic influenza A (H1N1) for a major US metropol-

itan city and early vaccination to be cost-saving.[54] Lee et al.

(2010) estimate averted lost productivity costs for an employee

population but do not report results using an economic metric

such as an incremental cost-effectiveness ratio making it difficult to

compare these results with those from our study.[55] Sander et al

(2010) find the cost-effectiveness of a mass immunization program

for pandemic H1N1 to be favorable but this study does not

evaluate the cost-effectiveness of individual age and risk

groups.[56] Baguelin et al. (2010) use a dynamic model to

evaluate vaccination against pandemic influenza A(H1N1) in

England.[57] Our analysis complements other published analyses

both for the US and abroad by evaluating the cost-effectiveness of

individual age and risk groups and considering explicitly the effects

of delay in vaccination on cost-effectiveness. While it is difficult to

directly compare cost-effectiveness analyses across countries due to

differences in costs of services and level of intensity of care, results

from other countries were consistent with ours in estimating

favorable cost-effectiveness for mass vaccination in England and

Canada. Our analysis provides additional information to the

previously published studies by providing incremental cost-

effectiveness ratios for separate age and risk groups relevant to

H1N1 Vaccination
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the US setting. In addition, we explored sensitivity analyses

relevant to the US decision maker perspective for costs of

vaccination, influenza illness rates, and delays in vaccination

using the best available information at the time of the pandemic.

None of the published studies reviewed above appear to have

accounted for costs or health consequences potentially associated

with H1N1 vaccination, except for the Khazeni et al and Beigi et

al. studies. The exclusion of vaccination-related adverse events

would yield more favorable results for vaccination compared with

a more comprehensive analysis that included adverse events. Both

costs and health effects of potential vaccine adverse events are

explicitly accounted for in our analysis. Additionally, outside the

US, adjuvanted vaccine was typically used and this formulation

could result in a different risk profile than non-adjuvanted vaccine.

The study by Khazeni et al. assumed the use of adjuvanted vaccine

for a US setting and is not directly comparable to our study due to

assumed differences in effectiveness and side effect profile between

the two formulations.

Conclusions
Vaccination for pH1N1 influenza for children and young adults

is cost-effective compared to other preventive health interventions

under a wide range of scenarios. Delayed availability of pH1N1

vaccine results in less favorable cost-effectiveness results. A

vaccination program for pH1N1 influenza for target groups can

be justified from an economic perspective when indirect benefits

are not considered and assuming that vaccine supplies are

sufficient. Additional economic and health benefits beyond direct

benefits would only add to the cost-effectiveness of pandemic

influenza vaccination.
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