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Abstract: Temporomandibular disorders (TMD) are a group of musculoskeletal diseases affecting
masticatory muscles and temporomandibular joints (TMJ). In this context, the chronic TMD could
be considered as a condition with chronic primary orofacial pain, presenting as myofascial TMD
pain or TMJ arthralgia. In this context, myogenous TMD may present overlapping features with
other disorders, such as fibromyalgia and primary headaches, characterized by chronic primary pain
related to dysfunction of the central nervous system (CNS), probably through the central sensitization.
This phenomenon could be defined as an amplified response of the CNS to sensory stimuli and
peripheral nociceptive, characterized by hyperexcitability in the dorsal horn neurons in the spinal
cord, which ascend through the spinothalamic tract. The main objectives of the management of TMD
patients are: decreasing pain, increasing TMJ function, and reducing the reflex masticatory muscle
spasm/pain. The first-line treatments are physical therapy, pharmacological drugs, occlusal splints,
laser therapy, extracorporeal shockwave therapy, transcutaneous electrical nerve stimulation, and
oxygen–ozone therapy. Although all these therapeutic approaches were shown to have a positive
impact on the central sensitization of TMD pain, there is still no agreement on this topic in the
scientific literature. Thus, in this comprehensive review, we aimed at evaluating the evidence on pain
management and rehabilitation for the central sensitization in TMD patients.

Keywords: temporomandibular disorders; central sensitization; pain; myofascial pain; rehabilitation

1. Introduction

Temporomandibular disorders (TMD) are a group of musculoskeletal and neuromus-
cular conditions affecting the masticatory muscles, the temporomandibular joint (TMJ), and
the other associated structures [1]. According to the Diagnostic Criteria for TMD (DC/TMD)
Axis I, TMD could be divided in intra-articular disorders, including disc displacement,
arthralgia, arthritis, and arthrosis, and muscle disorders [1]. These latter are also defined as
“myogenous TMD”, which can be further categorized into: local myalgia, if the pain is lo-
calized during palpation; myofascial pain, if the pain spreads within the palpated muscular
territory; and myofascial pain with referral, if the pain spreads beyond the boundary of the
masticatory muscles [1]. A recent systematic review and meta-analysis, with a combined
sample of 2518 subjects, suggested that the prevalence of TMD could range from 25.2% to
34.9%, with a predominance of myofascial pain diagnosis (10.3–15.4%) [2]. The etiology is
not clear, and it has been accepted as multifactorial, considering the multitude of initiating,
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predisposing, or perpetuating risk factors, including postural and parafunctional habits,
repetitive microtrauma, direct and indirect trauma, and psychological factors, such as
depression and anxiety [3]. The persistent and recurrent pain generated by the myofascial
pain may cause limitations in the main activities of daily living (ADLs) and reduce the oral
health-related quality of life (OHRQoL) [4]. If odontogenic causes are excluded [5,6], the
painful TMD could be considered as the main cause of pain in the orofacial region [2,4].

More in detail, according to the 11th version of the International Classification of
Diseases (ICD-11), the chronic primary pain was described as “pain in one or more anatom-
ical regions that persists or recurs for longer than 3 months; is associated with significant
emotional distress and/or significant functional disability; and the symptoms are not better
accounted by another diagnosis” [7,8]. In this context, chronic TMD could be considered
as conditions with chronic primary orofacial pain, presenting as myofascial TMD pain or
TMJ arthralgia [7,8]. Compared to arthrogenous TMD, which appears to be a localized
phenomenon, myogenous TMD may present overlapping features with other disorders,
such as fibromyalgia and primary headaches, characterized by chronic primary pain related
to dysfunction of the central nervous system (CNS), probably through the phenomenon of
central sensitization [9–13].

Central sensitization can be defined as an amplified response of the CNS to sensory
stimuli and peripheral nociceptive, characterized by hyperexcitability in the dorsal horn
neurons in the spinal cord, which ascend through the spinothalamic tract [14–17]. Central
sensitization could lead to the development of increased pain sensation from noxious
stimuli, known as hypersensitivity, or pain originating from non-noxious stimuli, known
as allodynia [14]. Moreover, other clinical features of central sensitization could be: increased
temporal pain, summation spontaneous pain, referred pain, and pressure hyperalgesia [14,18].

Thus, the central sensitization could represent the basis of chronic pain “or pain
that persists beyond a normal time of healing” in patients affected by TMD [19,20]. In
the scientific literature, the central sensitization showed to have a role not only in the
pathophysiology of TMD but also in other several chronic pain conditions, including:
fibromyalgia, migraine, tension-type headache, irritable bowel syndrome, and chronic
fatigue syndrome [21–23].

The psychological component in terms of emotional distress should be considered dur-
ing the diagnosis process to better manage chronic pain conditions [8]. Anxiety, frustration,
and depression may contribute to the development and to the persistence and exacerbation
of pain [7,8].

Concerning the management of patients with TMD, it should be taken into considera-
tion that the main objectives are: decreasing pain, increasing TMJ function, and reducing
reflex masticatory muscle spasm/pain [24]. The first-line treatment for TMD is consid-
ered the conservative approach [25,26], including physical therapy [27], biofeedback [28],
pharmacological drugs [29], TMJ injections [30], occlusal splints [31,32], laser therapy [33],
extracorporeal shockwave therapy (ESWT) [34], transcutaneous electrical nerve stimulation
(TENS) [35], and oxygen–ozone therapy [36].

All these therapeutic approaches might have a positive impact on the central sensitiza-
tion of TMD pain (see Figure 1), albeit there is still no agreement in the scientific literature
on this topic in terms of the management of these peculiar patients.

It should be noted that myogenous TMD might present a chronic primary pain related
to a CNS dysfunction due to the mechanism of central sensitization that could lead to
hypersensitivity in TMD patients [14]. To date, the scientific literature still lacks strong
evidence on the key role of central sensitization for chronic pain in TMD patients affected
by TMD [19,20], probably because this phenomenon showed to have a role in the patho-
physiology of other chronic diseases [21–23]. Therefore, the diagnosis and the treatment
of the central sensitization should be better investigated, taking into account the positive
results that some conservative approaches might have on the central sensitization of TMD
pain [25–36].
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In this context, by the present comprehensive review, we aimed to investigate the
state-of-the-art therapies regarding pain management and rehabilitation for the central
sensitization in TMD patients in order to adequately manage this detrimental condition.

2. Central Sensitization

In a neurophysiological scenario, two main physiological phenomena, namely cen-
tral sensitization and impairment of the inhibitory system of descending pain, together
with the physiological mechanism of neuronal convergence, might be considered fun-
damental factors explaining TMD clinical patterns of and the associations with other
comorbidities [15,24]. Other important mechanisms, such as central facilitation, peripheral
sensitization, and neuroimmune alterations, also contribute to the physiological frame and
rationale underlying the coexistence of TMD and painful conditions [15,24]. Furthermore,
the nociceptive pathways responsible for TMD and headache are similar; in fact, there
is an important area in the association between these disorders: the spinal trigeminalis
nucleus—in particular, the caudal subnucleus [37]. This region is primarily responsible
for nociceptive input from the head and face; therefore, it could be considered the first
“meeting point” between TMD and headache disorders [38]. The generic term central
sensitization is all neuronal alterations that may follow nociceptive processing within the
caudal subnucleus in patients with chronic trigeminal pain. In short, this phenomenon
may refer to a group of changes in the arrangement and quantity of membrane channels
and neurotransmitters that ultimately decrease neuronal threshold activation, increase the
firing rate, and widen receptor fields [39].

Many mechanisms are involved in central sensitization, but two main events (i.e.,
activation of the N-methyl-D-aspartate receptor and inhibition of gamma aminobutyric
acid (GABA) and glycine receptors) are assumed to be present in most chronic pain con-
ditions [40,41]. Furthermore, additional neurotransmitters, e.g., substance P (SP) and the
calcitonin gene-related peptide, both released by small fiber neurons, relate to the lasting
depolarization of the neuronal membrane and the sum of nociceptive inputs [42]. In ad-
dition to this hyperexcitable plasticity of the central nervous system, some mechanisms
include basic inhibitory activity and, consequently, facilitate nociceptive signaling. Inhibi-
tion of the activity of GABAergic and glycinergic interneurons is assumed to reduce this
second inhibitory activity, which, in turn, can increase the depolarization and excitation of
order neurons [43]. Positive feedback circuits can amplify these large, second-order central
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changes: dynamic range neurons. Finally, this state of hyperexcitability could be a gradual
and frequency-dependent facilitation of the nociceptive (wind-up phenomena) states of
chronic pain [44].

3. Diagnosis of Central Sensitization in TMD

The diagnosis of the central sensitization is mandatory for adequate management,
and, at the same time, it is considered a challenge that should be overcome in the near
future. The central sensitization is an important aspect that is involved in the pathophysi-
ology of different musculoskeletal painful conditions, including TMD [45]. Although the
central sensitization could not be directly measured, different assessment tools have been
developed to measure the sensory experiences that are greater than expected in amplitude,
duration, or spatial extent [46].

3.1. Algometry and Pressure Pain Thresholds

In this scenario, a pressure algometer could be an effective tool in the screening
and evaluation of patients with muscle pain due to central sensitization [47]. Pressure
algometry is predominantly a manual procedure that requires a perceptual response from
the participant or patient and is commonly used in quantitative sensory testing (QST), used
extensively in clinical and experimental pain studies [48]. More in detail, the pressure (i.e.,
force per area often expressed in kPa) that the participants first perceive to be painful is
defined as the pain threshold, and the maximum pressure endured by the participants is
defined as the tolerance threshold.

In this context, the pressure pain threshold (PPT), defined as the minimum amount
of pressure capable of inducing pain, is also frequently used in the evaluation of hyper-
algesia [49]. The reliability of PPT depends not only on the application technique of the
observer but also on the ability of the patient or participant to provide a consistent ver-
bal indication of the PPT level [50]. The simplest algometry type allows the assessment
of pressure using pressure-sensitive devices fitted to the finger [51]. Hand-held devices
based on spring coil systems are also frequently used [52]. More sophisticated pressure
algometers commonly provide visual feedback on the pressure application rate, which has
been shown to influence the pain threshold [53]. In this scenario, it was demonstrated that
patients with dysfunctions of the masticatory system showed variations in the repeatability
of the pain threshold during pressure algometry [54]. More specifically, in TMD patients,
the algometer can be applied to the masseter and temporal muscles and to the lateral pole
of the condyle, recording the measurement in Kg when the patient felt pain or placing the
algometer to measure 1 cm2 in direct contact with the joint and applied increasing pressure
until the patient reported pain [55,56].

3.2. Assessment of Orofacial Somatosensory Function

The assessment of somatosensory function within the distribution of pain plays a
central role in the certainty of the TMD diagnosis [57–59]. In this context, the QST is a
psychophysical test procedure used to quantify the functional state of the somatosensory
system of a patient by means of calibrated, graded innocuous or noxious stimuli and sub-
jective perception thresholds [60]. Furthermore, QST comprises a battery of somatosensory
tests assessing the response to a variety of standardized noxious and innocuous stimuli
in affected and neighboring regions [61]. The feasibility of adapting the protocol to the
orofacial region has been demonstrated recently [62]. Specifically, it has been shown that
all 13 somatosensory tests can be performed on the apex of the tongue and facial gingiva in
the upper jaw with moderate to excellent reliability for most measures. The duration of the
intraoral examination per test site is in the range of 35 min, which is a bit slower than on
extraoral sites [57].
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3.3. Temporomandibular Disorders, Primary Headaches, and Cervical Pain

Painful orofacial and neck comorbidities are often associated with the TMD [63]. These
coexisting conditions (particularly, headache, migraine, and neck pain) are not only highly
associated with chronic pain-related TMDs but also increase the risk of their develop-
ment [38,64,65]. The International Classification of Headache Disorders (ICHD) [66] and
the DC/TMD [1] consider the main characteristics of pain in headaches and TMD, respec-
tively. There are several hypotheses attempting to explain the association between TMD
and headaches, including neuronal convergence, central sensitization, and inhibition of the
descending pain downregulation mechanisms [67,68]. The strict relationship between TMD,
headaches, and neck pain has been recently evaluated, not only in terms of sharing common
pathogenic mechanisms and clinical features but also considering that one condition might
influence or promote the development of another [11,64,69]. These conditions can cause
facial pain and are frequently associated with the development of craniofacial allodynia
during painful exacerbation [12]. Indeed, pain in both conditions has been attributed to
common dysfunctions of the central pain regulation mechanisms [70,71]. On the other
hand, the concomitance of TMD and migraines has shown worse levels of hyperalgesia
and cutaneous allodynia, probably due to the sensitization of the central and peripheral
nervous systems and the impairment of the descending modulatory pain pathways [44,70].

3.4. Evaluation Tools for Central Sensitization

The central sensitization should be adequately assessed, and one of the main evalu-
ation scales in this field is the Central Sensitization Inventory (CSI) [72]. It includes two
parts: part A, comprising 25 symptoms, such as physical symptoms, emotional distress,
headache/jaw symptoms, and urological symptoms, and part B, consisting of 10 diseases,
to evaluate central sensitization syndrome (CSS) [72]. A 40-point cut-off score of CSI part A
was recommended to classify the presence of CSS in patients with chronic pain [73]. CSI
development was based on a group of chronic pain conditions that has, probably among
other mechanisms, central sensitization as a common putative pathophysiological mecha-
nism [22]. The CSI has excellent test–retest reliability and internal consistency; the clinical
and experimental characteristics of CSI could be commonly observed across many different
chronic pain conditions, such as pelvic pain, osteoarthritis, spinal pain, and hereditary
neuropathy [74–77]. Another evaluation tool is the Pain Sensitivity Questionnaire (PSQ),
developed to assess various aspects of the clinical pain perceived [78]. The PSQ is a 17-item
questionnaire that assesses a patient’s perceptions to various imagined physical stimuli
that may be experienced in daily life [79]. Participants are asked to rate the pain intensity
of each situational item on a 11-point scale, with 0 meaning “not painful at all” and 10
meaning “worst pain imaginable”. Three items (items 5, 9, and 13) are not normally rated
as painful and are not included in the scoring. The PSQ-total score is the average of all
items, except for the three nonpainful items. The PSQ-minor score is the average of items
3, 6, 7, 10, 11, 12, and 14—items, on average, that are perceived as causing minor pain.
In patients with chronic localized pain, the PSQ-total and PSQ-minor scores have shown
stronger correlations to QST compared to those found in healthy individuals [80].

Lastly, the Sensory Hypersensitivity Scale (SHS) is a 25-item instrumental tool assess-
ing general and specific sensitivity and appears to be suitable as a screening instrument for
central sensitization [81,82], albeit further studies should be performed to determine it in
patients with TMD.

4. Evidence for Central Sensitization in TMD

To date, the scientific evidence on central sensitization in TMD in terms of diagnosis
and treatment is still lacking.

In 2018, La Touche et al. [83] carried out a systematic review with a meta-analysis on
central sensitization in TMD patients to summarize the scientific knowledge on this topic.
The 22 included studies assessed the mechanical hyperalgesia (pressure pain thresholds),
the thermal hyperalgesia (hot and cold pain thresholds), and the central hyperexcitability.
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Twelve studies evaluated the PPT, and eight of them revealed that PPT was significantly
lower in TMD patients when compared to the control. Moreover, the meta-analysis showed
strong evidence in favor of greater trigeminal pain sensitivity pressure in these patients.
However, regarding thermal hyperalgesia, the meta-analysis comparing local and remote
pain thresholds in patients with TMD and asymptomatic controls indicated that there
were no significant differences in both cold and heat pain sensitivity between the groups.
Lastly, spinal and central hyperexcitability were reported in TMD patients, as exhibited by
increased mechanical temporal summation. Thus, the authors concluded that the findings
of their systematic review and meta-analysis suggested the presence of peripheral and
central nervous system sensitization in TMD patients.

However, the authors did not distinguish among different TMD subtypes, which
are known to share different etiologies and pain mechanisms. Therefore, in 2021, Meng
et al. [84] performed a meta-analysis to evaluate evidence in patients affected by only
muscle pain-related TMD according to the DC/TMD [1]. The results provided evidence
that, compared with the controls, these patients had reduced PPT and mechanical pain
thresholds, whereas no evidence of changes in the cold detection threshold, warm detection
threshold, heat pain threshold, cold pain threshold, and mechanical detection threshold
were found.

Fernandez-de-las-Penas et al. [85] investigated bilateral, widespread pressure–pain
hypersensitivity in nerve, muscle, and joint tissues in myofascial TMD women and controls.
Their results showed significant differences between groups, but not between sides, for PPT
levels over the supraorbital, infraorbital, mental, median, radial, and ulnar nerves; over the
lateral pole of the TMJ; and over the tibialis anterior muscle. Thus, the results suggested
both trigeminal and extratrigeminal sensitization of afferent inputs from neural tissues in
myofascial TMD. An explanation could be related to the antidromic discharges originating
from the central nervous system that may cause sensitization of peripheral nerve trunks
that may depolarize nociceptive second-order neurons [85,86].

Additionally, in the scientific literature, it was shown that myofascial TMD patients
presented larger referred-pain areas after intramuscular injection of hypertonic saline into
the masseter muscle [87] and greater temporal summation of pain [88].

Furthermore, it should be noted that therapeutic strategies applied for managing
central sensitization in TMD pain might be grouped into: bottom-up (i.e., tissue-based
impairment treatments) and top-down interventions (i.e., strategies targeting the central
nervous system) [89]. In this scenario, the bottom-up strategies could consist of joint-,
soft tissue-, and nerve-targeting interventions, whereas top-down strategies might include
physical therapy, motor imagery, and pain neuroscience education [89]. Therefore, we
could conclude that, to date, the scientific literature showed that multimodal approaches
seem to be more effective in patients with TMD, albeit it should be considered that the
presence of depression might definitely increase pain sensitivity [90].

In this context, COVID-19 distress might have a negative impact on their psychological
status, features of central sensitization, and facial pain severity in TMD patients [91].

5. Pharmacological Therapy and Central Sensitization in TMD

The purpose of pharmacological treatment of TMD is to alleviate the craniofacial
pain linked to this condition, which is usually the main reason why these patients request
medical attention [92,93]. Several therapeutic trials for TMD considered pain as the main
outcome, evaluated with scales such as the visual analogic scale (VAS).

The mechanisms regarding chronic craniofacial pain remain to be fully elucidated [94].
Preclinical studies suggest that changes in both peripheral inputs and central brain struc-
tures could initiate and sustain chronic pain in TMD [94–97]. Inflammation with the release
of many chemical mediators in TMD could result in the activation or peripheral sensiti-
zation of nociceptive endings of the trigeminal nerve [94]. Several mediators are linked
to the peripheral sensitization, such as gamma amino butyric acid (GABA), serotonin,
glutamate, and neuropeptides [94,95]. Conversely, the central sensitization strictly depends
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on an unbalance in the inhibitory and facilitatory descending pain modulatory systems,
which promote and contribute to sustained chronic TMD pain [96]. Increased knowledge
of those mechanisms underlying peripheral and central sensitization could improve pain
management for TMD patients.

Pharmacological treatment for TMD pain could be very challenging for several rea-
sons. First, as indicated above, multiple central and peripheral not yet fully elucidated
mechanisms are involved in craniofacial TMD pain. Second, TMD pain is often associated
with special emotional and psychological meanings, so a multidisciplinary approach could
be indicated. Third, randomized controlled trials for the pharmacotherapy of these specific
conditions are still lacking [98], so treatment is usually empirical. A Cochrane review
evaluating TMD medications only included 11 studies in the qualitative synthesis [98].
The authors found lacking evidence to support or refute the efficacy of any drug for the
treatment of TMD pain [98]. However, several medications typically prescribed in TMD
have proven their effects for other craniofacial conditions.

The following subsections describe the most used drugs for the management of
this condition, which are: nonsteroidal anti-inflammatory drugs (NSAIDs), beta-blockers,
antidepressants, anti-seizure medications (ASMs), and opioids, along with other therapeutic
approaches and new perspectives.

5.1. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)

NSAIDs are the most common class of medications prescribed for the treatment of
craniofacial pain and have a proven efficacy for relief pain in TMD [99]. This class of
medications include several molecules that exert their action inhibiting cyclo-oxygenase,
thereby preventing the formation of prostaglandins. These drugs are usually well-tolerated
and should be administrated for a minimum of two weeks to achieve an anti-inflammatory
effect in TMD [100]. The main disadvantages of NSAID treatment could be: gastrointestinal
adverse events, exacerbation of hypertension, and interactions with multiple drugs. The
efficacy of topical or oral NSAIDs for the management of TMD pain is supported by
controlled studies [101]. Ta and Dionne performed a six-week randomized double-blinded
controlled trial comparing the efficacy of celecoxib, naproxen, and placebo for the treatment
of TMD pain [101]. The authors showed that naproxen (500 mg twice a day) significantly
reduced the clinical symptoms of TMD compared with celecoxib or a placebo [101]. De
Carli and colleagues, in a double-blinded, randomized trial, showed that piroxicam, a
cyclo-oxygenase-2 inhibitor, exhibited the lowest pain at a 30-day follow-up compared
with the placebo [102]. Furthermore, Businco et al. showed that both topical and oral
diclofenac are equally effective in the treatment of temporomandibular joint dysfunction
symptoms [103]. One of the main advantages of the topical administration of diclofenac is
preventing systemic adverse events of NSAIDs [103]. Topical creams of NSAIDs such as
diclofenac could also reduce pain through the peripheral NMDA receptor antagonism [104].
Recently, a systematic review, including 11 randomized trails evaluating NSAIDs for the
management of TMD, supported the use of NSAIDs in patients with TMD for the relief of
pain [105].

5.2. Beta-Blockers

Beta-blockers exert their action by beta-adrenergic receptor antagonists. These drugs
are widely used in other craniofacial conditions, such as for migraine prophylaxis [106].
Propranolol, a nonselective beta-blocker, is one of the most effective first-line drugs used
for migraine prophylaxis [106]. The rationale for using beta-blockers to manage TMD pain
comes from preclinical and animal models [107,108]. It was demonstrated that the activation
of β1 and β2 adrenoceptors located in the TMJ region promotes serotonin (5-HT)-induced
nociception [107,108]. To date, only few randomized controlled studies [98–109] have
evaluated beta-blockers for TMD pain relief. A multicenter placebo-controlled trial using a
“facial pain index” (FPI) as the primary endpoint evaluated the efficacy of propranolol in
200 TMD patients [109]. The authors showed that propranolol 60 mg twice a day was
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efficacious in achieving ≥30% and ≥50% FPI reductions after 9 weeks of treatment [109].
Tchivileva and colleagues showed a greater effect of propranolol in reducing FPI in mi-
graineur TMD patients, suggesting that beta-blockers could be a reasonable option for
treating the comorbidities of TMD and migraine [109].

5.3. Antidepressants

Both tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors
(SSRIs) have been reported to reduce pain in TMD patients. These molecules act by
binding 5HT receptors, thus producing a significant modulation of the nociceptive system.
TCAs, particularly amitriptyline and nortriptyline, have been extensively used for both
the prevention of primary headaches and for the treatment of myofascial masticatory
chronic pain [63,110,111]. Among various antidepressants, TCAs and SSRIs seem to be the
most effective for chronic orofacial pain [112]. A placebo-controlled study with a 14-day
follow-up demonstrated a significant reduction in pain and discomfort of TMD patients
treated with 25 mg/day of amitriptyline compared with the placebo [113]. A systematic
review suggests a type B level of recommendation in favor of using TCAs for TMD [114].
Among SSRIs, paroxetine, duloxetine, and citalopram have been used for treating TMD
symptoms [115]. A recent study suggested a better outcome for TMD management when
including a combination of duloxetine 30 mg twice daily and TMJ arthrocentesis [115].
Thus, we might conclude that doses of antidepressant drugs, if used to treat TMD pain,
should be lower than those used to control depression symptoms.

5.4. Antiseizure Medications

Antiseizure medications (ASMs) were extensively used to treat neuropathic pain and
primary headaches such as migraines. These drugs act at several sites of action, reducing
neural hyperexcitability. The relevant sites of action include both voltage- and ligand-gated
ion channels. Among several ASMs, gabapentin and pregabalin were extensively used
for managing chronic facial pain [29,116]. These compounds were structurally related
to GABA, the main inhibitory neurotransmitter in the central nervous system; in this
context, ASMs could be considered as an alternative therapy for refractory TMDs [29].
Kimos et al. [116] randomized 44 patients with TMD pain either to take gabapentin or
a placebo, demonstrating that gabapentin had a statistically significant effect over the
placebo in reducing spontaneous pain in the TMJ and the number of tender sites on the
muscles of mastication. Some ASMs such as clonazepam or diazepam belong to the class
of benzodiazepines, which enhance the response to GABA by facilitating the opening of
chloride channels and, thus, cause hyperpolarization. BDZ have an antiseizure, anxiolytic,
muscle relaxant, and hypnotic effect; thus, they can modulate TMD pain at several levels.
Harkins et al. conducted a 60-day double blinded, randomized trial, comparing clon-
azepam versus a placebo in the management of chronic TMD pain [117]. As argued by a
Cochrane meta-analysis [98], clonazepam did not show a statistically significant difference
compared to a placebo on pain in the right or left temporomandibular joints [117]. Another
double-blinded clinical trial, in which patients with TMD pain were randomized to take
clonazepam, cyclobenzaprine, or a placebo, failed to demonstrate statistically significant
differences between clonazepam and cyclobenzaprine compared to the placebo on jaw
pain [118].

5.5. Opioids

Opioids are a class of analgesic drugs, which act at the central and peripheral opioid
receptors, resulting in the blockage of painful neural inputs. It has also been postulated
on the existence of a peripheral m-opioid receptor event at the level of the TM joint, thus
providing a rationale for their topical use in the management of TMD pain [119,120]. The
most common prescribed opioids for oral administration are codeine and oxycodone, but
their use is not recommended. If prescribed, they should be used for a short period only in
patients complaining about severe TMD pain, refractory to other treatments [121].
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5.6. Other Therapies and New Perspectives

Many other types of drugs are used for the management of TMD pain, such as
corticosteroids or muscle relaxants such as cyclobenzaprine [122]. A meta-analysis showed
that cyclobenzaprine could ameliorate TMD muscle pain in the short term through its effect
on local spasms and the associated acute pain [123].

As demonstrated above, multiple oral drugs are quite effective in the management of
TMD pain; however, systemic adverse events for oral drugs raise issues for any long-term
treatment strategy. Future perspectives include novel delivery systems for therapeutic
and regenerative agents to obtain satisfied clinical outcomes [124]. Minimally invasive
delivered approaches containing biomaterials, cells, and/or bioactive molecules could
complement classic pharmacotherapy, thus finally resulting in pain relief and improving
joint function.

Lastly, both a hyaluronic acid (HA) injection and a platelet-rich plasma (PRP) injection
may have a remarkable efficacy in the treatment of TMDs. More in detail, as depicted by
Harba et al. [30], HA and PRP injections provide greater improvement in patients with
TMDs as compared to a HA injection alone.

6. Physical Therapy and Rehabilitation for the Central Sensitization in TMD
6.1. Physical Therapy

Several clinical protocols for interventions and control groups differ; randomized
clinical trials (RCTs) of jaw mobilization or stretching conditioning for TMD muscle pain
indicate improvements in pain and jaw mobility compared with education and transcranial
direct current stimulation, as well as betterment in pain compared with stabilization
splints [125–130]. Reviews of postural exercises present progress in TMD muscle pain
and jaw mobility compared with education alone [28,126,131]. Moreover, combinations of
jaw-strengthening and coordination approach, with mobilization and postural programs,
enhanced jaw mobility, and reducing joint pain [132]. In this scenario, resistance training
with isotonic jaw-opening exercises plays a key role in muscle pain relief and mandibular
range of motion improvement [132]. The underlying mechanism appears to be an inhibitory
effect on the Golgi tendon. Golgi tendons, located in the target muscle, are stretched by
isometric contraction, inducing an inhibitory effect on the muscle activity through Ib
muscle fiber [133]. Moreover, postural exercise is typically employed for cervical spine
pain management, but it can also be applied in the orofacial region, relieving muscle
symptoms such as pain, tension, and stiffness by the influence of the head and mandibular
position [134]. It is believed that the incorrect head position can induce muscle pain due
to the acceleration of muscle activity in the neck and jaw muscles, as well as postural
reflexes [135].

6.2. Occlusal Splints

The difficult relationship between occlusal interferences and temporomandibular dis-
turbance seems to be explained on an animal model, such as the NMDA antagonist MK801
can attenuate occlusal interference-induced hyperalgesia, which suggests that central sen-
sitization mechanisms are involved in the maintenance of the occlusal interference–TMD
association [136]. In fact, Xie et al. [136] reported that occlusal interference could directly
cause long-term masticatory muscle response in a laboratory animal model. Whether
this mechanism may account for cases of TMD in humans needs further investigation.
In this scenario, there were no inflammatory cells present, but Substance P expression
in masseter muscles of both sides peaked at day 5 and then gradually decreased to the
level of the control [137,138]. Their study suggests that, although no evidence of muscle
damage and inflammation was found, peripheral sensitization appears to be involved
in the mechanism of the EOI-induced masticatory muscle response [139]. However, the
peripheral sensitization of nociceptive neurons cannot fully account for the long-standing
nociceptive responses of masticatory muscles; a central sensitization mechanism may also
be involved [136,140].
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6.3. Extracorporeal Shockwave Therapy

The radial ESWT is a pneumatic pressure physical agent modality with direct mechani-
cal stimulation that develops the maximum energy on the skin surface and radially diffuses
into the tissues that might be used for musculoskeletal pain relief [34]. Radial ESWT has
been widely recognized as a biological modulator that results in the differentiation of
mesenchymal stem cells, neovascularization, and release of angiogenetic factors [141]. To
date, it is unclear how ESWT can affect temporomandibular disorders. Taking as valid
the hypothesis of the mechanotransducive effect of ESWT in other diseases, it could be
hypothesized that the waves at the level of the microcirculation can increase the perfusion,
promote angiogenesis, and alter the signaling of pain in ischemic tissues caused by the
influx of calcium [34,142]. On the other hand, recent articles have shown that free nerve
endings degenerate after the application of ESWT and that ESWT produces a transient
dysfunction of nerve excitability at the neuromuscular junction, resulting in the down-
stream of AChR [143]. Although this test was performed on spastic muscles, it could also
be extrapolated to the MTP and the energy crisis hypothesis [144]. Lastly, following a
purely mechanistic approach, shockwaves may be able to break actin-myosin bonds, as
they propagate perpendicular to the sarcomere contractions [143].

6.4. Laser Therapy

Low-level laser therapy (LLLT) has recently been put under the spotlight, because the
proponents claim its easy application, limited treatment time, and minimum contraindi-
cation. Theoretically, LLLT is a nonthermal type of light, thought to reduce inflammation
through the increase of ATP production, improvement of local microcirculation, reduction
of edema through an increase of lymphatic flow, and decrease of the prostaglandin E2 and
cyclooxygenase-2 levels, albeit the mechanism underlying the therapeutic effects of LLLT is
still under debate [145]. Actually, it has a complex mechanism of action, resulting in three
main effects on tissues- through direct irradiation without causing a thermal response [146].
Biostimulation occurs through metabolic activation and increased vascularization and fi-
broblast formation, while the anti-inflammatory and analgesic effects of LLLT are probably
due to multiple actions [147,148]. It increases the beta-endorphin level in spinal liquor and
increases the urinary excretion of glucocorticoids, which are inhibitors of the synthesis of
beta-endorphins [149,150]. It also increases the pressure pain threshold through a com-
plex electrolytic nerve fiber-blocking mechanism and causes a decrease in the release of
histamine and acetylcholine and a decrease in the synthesis of bradykinin [151].

6.5. Transcutaneous Electrical Nerve Stimulation

TENS is defined as the application of electrical stimulation to the skin for pain control.
It is a well-known form of physical therapy, which is useful for the relief of pain. It is
a safe, noninvasive, effective, and swift method of analgesia, and the potential adverse
reactions of other methods of pain control are eliminated [152]. Particularly, at the spinal
level, low-frequency low-amplitude TENS works on µ receptors, while high-frequency
high-amplitude TENS works on δ receptors. Spinal administration in an animal model
of a low dose of naloxone (at a low dose, naloxone works as a specific antagonist of the
µ receptor of endogenous opioids) and naltrindole (antagonist of δ receptors) in arthritic rats
prevented anti-hyperalgesia after both low-frequency low-amplitude and high-frequency
high-amplitude TENS showed that the δ and µ receptors were the target of the stimu-
lation [153,154]. Moreover, a particular type of TENS has been used for a long time in
dentistry for a variety of purposes, ultralow-frequency TENS (ULFTENS), because of
the frequency of the stimulation (0.66 Hz) belonging to the field of ultralow frequencies
(<20 Hz) [155]. In the “normal” condition, collaboration exists for the control of arousal
between the cortical and subcortical centers [156]. Information transmitted through sensory
ULFTENS reaches the nuclear trigeminal sensory complex and, through the latter, is pro-
jected to the subcortical areas that control arousal. Acute stress and pain lead to increased
arousal (allostasis), followed by the temporary activation of peripheral responses mediated
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by the autonomous nervous system, as well as the inflammatory, immune, hormonal,
and neuromuscular systems [157,158]. It is probable that such action takes place by the
“inhibition of the inhibition” of the “activation system”, according to the hypothesis of
Thayer [24]. Thus, ULFTENS acts through the balance of the subcortical arousal circuit by
enhancing the inhibition through the endorphin system and reducing the cortical activation
induced by stress or pain [24].

6.6. Biofeedback

In recent years, the usefulness of biofeedback therapy in patients with different muscle
disorders, including TMD, was suggested. Florjanski et al. [28] conducted a systematic
review to evaluate the efficacy of biofeedback and concluded that the majority of the
included studies presented a significant correlation between biofeedback usage and the
reduction of muscle activity.

7. Interventional Therapies and Central Sensitization in TMD
7.1. Acupuncture and Dry Needling

Since the introduction of acupuncture therapy into modern Western medicine, nu-
merous studies have been carried out to investigate and explain the scientific basis behind
it [159]. The arrival of qi or “de qi” refers to the transmission of a needling sensation along
the meridians, which is often described by the patients as soreness, numbness, fullness,
warm sensations, or aching as a result of needle manipulation [160]. Recent histological
evidence using rat models seems to suggest this needle grasp sensation is the result of
collagen and elastic fibers tightening around the needle during needle manipulation [161].
The authors went further to postulate this mechanical coupling between the needle and soft
tissue as being responsible for transducing mechanical signals into fibroblasts and other
cells, with resultant therapeutic downstream effects [160,162]. The authors proposed that
the stimulation of acupuncture points can relieve pain by causing “hyperstimulation analge-
sia”, which can be explained by the concept of the “gate control theory of pain”, proposing
that the activation of A-δ and C afferent fibers through acupuncture point stimulation
sends signals to the spinal cord with a local release of dynorphin and enkephalins [162].
In this scenario, neurotransmitters such as serotonin, dopamine, and norepinephrine are
produced, causing the pre- and postsynaptic inhibition of pain transmission, and when the
signals reach the hypothalamus and pituitary gland, adrenocorticotropic hormones and
endorphins may be produced [163].

7.2. Botulinum Toxin

Botulinum toxin (BoNT) is the protein group produced by anaerobic bacteria called
Clostridium botulinum, which has approximately 40 subtypes. However, seven serotypes are
typically noted based on antigen specificity. BoNT-A has been the subject of innumerous
studies to confirm its antinociceptive effect [164]. Indeed, for a long time, the analgesic
effect of BoNT type A (BoNT-A) was considered to be due to the effect of muscle relaxation,
particularly in the case of stroke spasticity [165,166]. However, BoNT has been used for neu-
ropathic pain with an analgesic effect independent of muscle relaxation by demonstrating
dissociation of the duration of muscle relaxation and duration of pain relief [167,168]. More
in detail, the reduction of inflammatory hyper-nociception may be due to an inhibition in
the release of certain pain-related neurotransmitters and proinflammatory cytokines [169].
Moreover, the BoNT-A mechanism of action could be not only restricted to a peripheral
mechanism but also to a central action on three neurotransmitters: SP, CGRP, and glutamate
(Glu), where the inhibition of Glu release takes on a more important role than the one
earned peripherally [170]. In vitro models, using cultures of embryonic rat dorsal root
ganglion, demonstrated BoNT-A inhibition of SP release and the reduction of stimulated
CGRP [171]. Specifically, BoNT-A can directly decrease the amount of CGRP released from
trigeminal sensory neurons in cultures of rat trigeminal ganglia. CGRP is a multifunctional
regulatory neuropeptide strongly related in the underlying pathology of migraines [172].
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In addition, it was found that albumin-induced arthritis increased the release of the proin-
flammatory cytokines IL1-β and TNF-α [173]. Despite these studies providing important
contributions to the better understanding of the antinociceptive mechanism of BoNT-A,
more experiments to elucidate this effect are necessary [168].

7.3. Oxygen–Ozone Therapy

Oxygen–ozone therapy is an adjuvant treatment that plays an anti-inflammatory and
analgesic effect in several pathological musculoskeletal disorders characterized by chronic
inflammatory processes (e.g., low back pain, osteoarthritis, cervical pain, fibromyalgia,
and TMD) [36]. The effect of oxygen–ozone therapy mimics an acute oxidative stress that,
if properly balanced, is not harmful but is able to provoke positive biological responses
and reverse chronic oxidative stress (degenerative process, aging, etc.) [174]. This hy-
pothesis about ozone and oxidative stress modulation could be better defined as a “real
non-toxic therapeutic shock able to restore homeostasis” [175]. Low doses of oxygen–ozone
could therefore play a role in the regulation of prostaglandin synthesis, in the release
of bradykinin, and in the increase of macrophage and leukocyte secretions. It is widely
accepted that pain is a common symptom related to the inflammatory process, and oxygen–
ozone therapy could play a key role not only in the management of inflammation but
also in nociceptive perception and modulation [176]. As for the analgesic use, after the
administration of oxygen–ozone, an increase in the antioxidant molecules (serotonin and en-
dogenous opioids) has been demonstrated, which would induce pain relief by stimulating
the antinociceptive pathways [177,178].

8. Study Limitations and Strengths

In conclusion, the diagnosis was a fundamental starting point to comprehend the
pathology of these subjects; indeed, although all of them presented craniofacial pain, it
varied depending on the origin: muscular, arthrogenous, or a combination of them. Chronic
craniofacial muscle pain associated with TMD involves multiple peripheral and central
mechanisms, and it should be taken into consideration that the coronavirus pandemic
has caused significant adverse effects on their psycho-emotional status, resulting in the
intensification of their bruxism and TMD symptoms and thus leading to increased orofacial
pain [179,180].

This study is not free from limitations, such as the lack of systematic research of the
literature and the absence of a meta-analysis. However, the study heterogeneity might not
allow a quantitative analysis, in accordance with the Cochrane Handbook for Systematic
Review of Intervention (Ver, 6.2, 2021) [181]. Furthermore, it could be difficult to draw
strong conclusions starting from so wide a presence of observational studies with different
outcomes measured, testifying to the difficulty in the assessment of the central sensitization.

On the other hand, it should be noted that this comprehensive review is the first in the
scientific literature investigating both the diagnosis and treatment of patients with TMD by
adequate control of the central sensitization. The resulting evidence showed that several
pharmacological and conservative approaches could have a potential effective role in the
regulation of the central sensitization in patients affected by TMD pain.

9. Conclusions

Taken together, the findings of the present comprehensive review showed that the
central sensitization and the inhibitory system of descending pain might play a role in the
TMD clinical pattern. In this context, pharmacological drugs and conservative approaches
(e.g., occlusal splints, ESWT, LLLT, TENS, and oxygen–ozone therapy) could have a positive
impact in terms of the central sensitization of TMD pain. Further observational studies
should investigate the role of these rehabilitative approaches in pain relief in patients
affected by TMD.
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