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Abstract

Increased availability of epidemiological data, novel digital data streams, and the rise of

powerful machine learning approaches have generated a surge of research activity on real-

time epidemic forecast systems. In this paper, we propose the use of a novel data source,

namely retail market data to improve seasonal influenza forecasting. Specifically, we con-

sider supermarket retail data as a proxy signal for influenza, through the identification of

sentinel baskets, i.e., products bought together by a population of selected customers. We

develop a nowcasting and forecasting framework that provides estimates for influenza inci-

dence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR)

model to produce the predictions of seasonal flu incidence. Our predictions outperform both

a baseline autoregressive model and a second baseline based on product purchases. The

results show quantitatively the value of incorporating retail market data in forecasting mod-

els, acting as a proxy that can be used for the real-time analysis of epidemics.

Author summary

Seasonal influenza is a major burden to the health care systems of countries. Machine

learning approaches and data from external sources are increasingly used for flu forecast-

ing in recent years. In this study, we explore whether the inclusion of retail records in a

predictive model improves seasonal influenza forecasting. Specifically, we consider super-

market retail data as a proxy signal for influenza, through the identification of sentinel

baskets, i.e., products bought together by a population of selected customers. We develop

a nowcasting and forecasting framework that provides estimates for influenza incidence

in Italy up to 4 weeks ahead. Our predictions outperform the baseline approaches thus

proving the added value of incorporating retail market data in forecasting models.

Introduction

Recent years have seen a growing interest in generating real-time epidemic forecasts through

novel digital data streams and machine learning approaches. Seasonal influenza forecasting
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approaches are leading the way in this rapidly advancing research landscape. Seasonal influ-

enza is still a major burden to the health care systems of countries with 3 to 5 million infected,

and 290,000–650,000 deaths caused by influenza worldwide every year [1]. For this reason, the

US Centers for Disease Control and Prevention (CDC) formally pioneered infectious disease

forecasting by starting the Flusight consortium focused on prediction of seasonal flu incidence.

The CDC seasonal influenza challenge has been remarkably successful in maintaining momen-

tum for a coordinated focus on the operational implementation of disease forecasting. Simul-

taneously, it fuels the research on developing forecasting models based both on traditional

surveillance systems such as influenza-like illness (ILI) incidence captured by the network of

outpatient clinics, and novel digital data streams such as search engine queries and social

media [2–7]. In this context the use of machine learning techniques has received considerable

attention [8], and although the use of novel digital data streams as proxy data for disease fore-

casting did show evident limitations in early approaches, the use of multiple data sources and

ensemble of models is now defining the second generation of forecasting tools defining the

state of the art in the field.

The pioneer in the use of machine learning and proxy data for flu forecasting has been the

famous Google Flu Trends (GFT) platform. The platform was providing forecasts of the current

level of influenza-like illness (ILI) incidence in the USA by using search engine queries associ-

ated with flu-related keywords [9]. The initial successes of the platform were followed by a

number of problems and inaccuracies discussed in several in-depth analyses of the GFT results

[10–12].

The failure of GFT was, however, success in disguise, as it stimulated the research com-

munity to develop novel ways to integrate proxy data that have considerably improved on

the initial results. In particular, several research efforts were devoted to the exploration and

combination of additional novel data streams—such as Twitter, hospital records, Wikipedia

searches, anonymous influenza test or syndromic records, to name a few—in their predictive

system of seasonal influenza [13–31]. Similar data streams have been explored for other epi-

demics like Dengue [32], Zika [33], hand-foot-mouth diseases [34], Ebola, plague, and yellow

fever [35]. Most recently, forecasting and nowcasting models have been employed on differ-

ent scales to address the COVID-19 pandemic crisis with a wide range of data proxies: the

Internet search activity, news media, social media, social networking sites, wearable devices,

etc. [36–41].

Along with the traditional flu surveillance system data, other innovative participatory sur-

veillance systems, which aim at capturing influenza activity directly from the general popula-

tion through Internet-based surveys, were developed and integrated into the forecasting

approaches; Influenzanet, a network of Web platforms running in 11 European countries

[42, 43], FluNearYou in the United States [44–46], and FluTracking in Australia [47–49].

These data are also used along with mobility and sociodemographic data to define new strat-

egies for influenza incidence inference, such as mobility traces from mobile phones and the

daily self-reported flu-like symptoms [50], or mobility data and the underlying social net-

work [51].

Novel digital data streams and data collections approaches have also been used in the

context of flu forecasting based on mechanistic models, defined as methods that include the

mechanism of transmission of infection from an infected to an uninfected host. In these

approaches, historical surveillance data, mobility, and socioeconomic data, along with novel

digital data streams, are used to calibrate and initialize mechanistic models in a way akin to

classic weather forecasting models [2, 5, 17, 52]. While these models provide access to the flu

transmission mechanisms, they challenge us in the understanding of the assumptions and

inputs employed in the definition of the transmission dynamics, and how these choices affect
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the forecast results. The influenza challenge initiated by the US Centers for Disease Control

and Prevention (CDC) in the 2013/2014 winter season has been a major initiative that fostered

the research in infectious disease forecasting in a formal way and led to modeling advances

that have been integrated into the CDC’s operations [53]. Among the most relevant results

that emerged from this coordinated effort, involving more than three dozen different forecast-

ing methods [54, 55], is the evidence that ensemble forecasts that combine outputs from differ-

ent models appear to offer the best trade-off between reliability and accuracy of the results

[56–58].

Despite the advances in the field, more work is needed to rigorously understand the rela-

tionships among forecasting accuracy, modeling approaches, and data availability. Further-

more, most of the research has focused on a limited number of countries outside the USA, and

there is a dire need for more systematic investigations of the feasibility and performance of flu

forecasts across the world.

Here we propose a novel, high quality data source, particularly retail market data, as a

proxy for seasonal influenza nowcasts and forecasts. The assumption behind the use of this

dataset is that items purchased in a shopping cart are a good proxy of consumers’ behavioral

changes, thus allowing to capture the spread of seasonal flu reflected in a specific set of super-

market purchases. More specifically, we first identify a set of sentinel products whose volume

of purchase is historically correlated with the previous flu season. In order to avoid the use of

spurious correlations and seasonal predictors (items generally available during the flu season

but not related to flu), we consider the whole purchase history of customers buying sentinel

products. This allows the identification—with an Apriori algorithm—of sentinel baskets, i.e.,

products bought together that we can use as a proxy for the actual seasonal flu. By using sen-

tinel baskets purchases, we develop a nowcasting and forecasting algorithm that provides

seasonal flu incidence in Italy estimates up to 4 weeks ahead of the regular surveillance sys-

tem. We make use of the Support Vector Regression (SVR) model to produce our predic-

tions. We need to emphasize that the most important component in our framework is the

data proxy—sentinel baskets—and that any other forecasting method can be applied in this

framework.

Our results show that exploiting the information hidden in the retail market data can con-

tribute to predicting the future incidence of influenza. Our findings indicate that the seasonal

influenza forecast accuracy improves with the use of retail records and our predictive frame-

work outperforms the baseline autoregressive model with historical ILI reports. More specifi-

cally, with two-week and three-week forecasts ahead, forecast performance indicators improve

consistently with error estimates decreasing of about 50%. In order to support the rationale

behind our choice of sentinel baskets as a proxy for predicting seasonal influenza, we introduce

a second baseline using single products’ time series of retail market data. Forecasts obtained by

using sentinel baskets are significantly more accurate than those obtained using single prod-

ucts’ time series. It’s not the predictive power of our framework that is important, but rather

the increase of the predictive power when we add the sentinel baskets that capture hidden

human behaviors adapted to ongoing influenza epidemics. The presented work shows quanti-

tatively the value of incorporating retail market data in forecasting approaches, adding one

more dataset to the armory of proxy signals that can be used for the real-time analysis of epi-

demics. The framework developed in this paper has shed lights on the great potential of com-

bining other predictive approaches (e.g., mechanistic models and/or deep learning models)

and assimilating algorithms based on different proxy data [59], thus defining ensemble fore-

casting methodologies that have proven to achieve the reliability required in the policy-making

process.
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Results

Our main goal is to study whether retail market data can act as a proxy for predicting influ-

enza. Specifically, our aim is the development of influenza incidence forecasts 4 weeks in

advance of the latest ground truth data released from the regular surveillance system. Gener-

ally, the release date of the ground truth is delayed by one week, according to the value of k,

where k be the k week ahead (k = 1, 2, 3 or 4). Therefore a distinction can be made between

hindcast targets (k = 1), i.e. inferring the present influenza incidence value of a week that has

already passed by, nowcasting (k = 2), i.e. predicting the influenza incidence value during the

week in which the forecast is prepared, and forecasting (k> 2), i.e. predicting the flu activity

in the future weeks from the moment in time the analysis is performed.

The novelty of our work lies in the framework we design to tackle this task. We built a data-

driven approach, exploiting information extracted from the retail market data, using data min-

ing and machine learning techniques, leveraging customers’ behavioral changes during the

influenza peak as observed from the items they purchased in their shopping carts. We develop

a nowcasting and forecasting framework that makes use of sentinel baskets, i.e., products

bought together, to provide estimates for seasonal flu incidence in Italy up to 4 weeks ahead of

the latest ground truth data.

We base our analysis on real-world data describing the purchases of the customers of

COOP, one of the largest supermarket chains in Italy. This source of data has been used for dif-

ferent purposes, such as identifying successful innovations, meant to be a success later on [60],

introducing an alternative metric to GDP by quantification of the average sophistication of sat-

isfied needs of a population [61], creating a personal cart assistant that suggests to the customer

the items to put in her shopping list based on a innovative clustering method [62] and finally,

describing the buying behavior of different classes of customers, as highly ranked customers

that have more sophisticated needs tend to buy niche products, i.e., low-ranked products, and

on the other hand, low-ranked, low purchase volume customers tend to buy only high-ranked

products, very popular products that everyone buys [63].

We generate influenza activity forecasts for the 2011/12, 2012/13, 2013/14, and 2014/15

influenza seasons. Influenza activity in Italy is officially monitored by the Italian National

Institute of Health, “Istituto Superiore di Sanità” (ISS) and the Interuniversity Research Centre

on Influenza (Ciri), through a system called Influnet. As ground truth data and forecast targets,

we consider the ILI incidence defined as the number of patients presenting ILI symptoms over

all the persons seeking medical attention during a specific week in the network of about 900

sentinel General Practitioners (GPs) and pediatricians of the Influnet system.

Fig 1 displays the predictions against the reported influenza activity level for the four time

horizons, 1, 2, 3, and 4 weeks ahead. Overall predictions track the influenza activity level very

accurately, as shown in the top panel of the figure. Close inspection shows that the 1 week

ahead predictions from the regression model with the sentinel baskets and the reported influ-

enza activity level is very similar, with small errors. For 2, 3, and 4 weeks ahead, our sentinel
baskets continue to track rather closely the influenza activity level with some overshooting in

some cases.

In order to evaluate the forecast performance of our approach we consider standard indica-

tors such as the Pearson correlation, the mean absolute percent error (MAPE) and the root
mean square error (RMSE) of the 1–4 weeks ahead forecast time series with respect to the

ground truth provided by the Influnet system. In Table 1, we report these indicators calculated

over all the influenza seasons considered here. Specifically, we report the performance of fore-

casts obtained by considering the top 1 and top 5 most correlated sentinel baskets called Bas-
ket-1 and Basket-5, respectively. We test numerically that the performance remains stable,
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increasing the number of baskets considered in the predictive framework. Along with the

results from our forecast framework augmented with the sentinel basket data, we report the

performance of two baseline forecast approaches: i) autoreg: this approach only uses historical

Influnet data via the autoregressive model; ii) Product-5: this baseline forecast method inte-

grates as proxy data the time series of the most correlated products put together in a basket in

the same prediction model of our main approach.

From Table 1, it is evident the added value of using the sentinel baskets over a simple histor-

ical autoregressive approach and simple product purchases. Forecasts obtained with the

Fig 1. Predictions for 1–4 weeks ahead. The top plot of each panel shows the ground truth influenza activity time series along with the predictions

from our framework using the sentinel baskets. The time dependent percentage error is displayed in the bottom plot of each panel.

https://doi.org/10.1371/journal.pcbi.1009087.g001

Table 1. Performance indicators. Performance indicators with respect to the Influnet ground truth for the sentinel basket forecast approach and the baselines (autoreg,

Product-5) for the whole period 2011–2015.

Pearson correlation� MAPE RMSE

1 week

ahead

2 week

ahead

3 week

ahead

4 week

ahead

1 week

ahead

2 week

ahead

3 week

ahead

4 week

ahead

1 week

ahead

2 week

ahead

3 week

ahead

4 week

ahead

autoreg 0.95 0.82 0.76 0.77 9.79 19.65 24.15 27.79 0.79 1.53 1.81 1.77
Product-5 0.60 0.49 0.28 0.01 41.47 41.80 44.22 51.07 2.88 3.07 3.42 3.76
Basket-1 0.96 0.94 0.94 0.91 8.77 11.48 12.29 16.65 0.74 0.99 0.97 1.24

Basket-5 0.96 0.94 0.93 0.87 11.80 13.48 14.77 17.62 0.75 0.95 1.02 1.35

� for all coefficients p-value < 0.01.

https://doi.org/10.1371/journal.pcbi.1009087.t001
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sentinel basket approach are significantly more accurate compared to the baseline approaches,

especially in the 3 and 4 weeks ahead, time horizon. It is worth remarking that the autoreg
baseline has a better performance in comparison to the Product-5 baseline. As expected, we

also remark that the performance of forecasts deteriorates as the time horizon increases. We

report the results of individual influenza seasons 2011/12 to 2014/15 in S1 Table.

To assess the statistical significance of the improved prediction power of the sentinel basket

approach, we report its relative efficiency with respect to the baseline approaches in Table 2.

The relative efficiency between two approaches is defined here as the ratio of the mean-

squared error of Approach 2 to that of Approach 1 [64]:

eðxð1Þ; xð2ÞÞ ¼
MSEð2Þobs

MSEð1Þobs

ð1Þ

where

MSEðiÞobs ¼
1

n

Xn

t¼1

ðxðiÞt � ytÞ
2
: ð2Þ

We also report the 95% confidence interval for the relative efficiency. The relative efficiency

can be estimated by the time series stationary bootstrap method [65], where the replicated

time series of the error residual is generated using random blocks with mean length 14 (which

corresponds to the on-season weeks with an ILI rate value greater than the threshold of 0.02).

Table 2 shows that our approach is estimated to be almost twice as efficient as the autore-

gressive baseline, and the improvement in accuracy is highly statistically significant. We do

not include the second baseline of the single products’ time series, as its predictive power

proved to be rather low. Comparing our results with [59], the only influenza nowcasting and

forecasting approach in Italy, where the authors used data extracted from a Web-based partici-

patory surveillance system, we succeed in predicting influenza incidence with higher accuracy

reducing the error significantly.

Explainability—Content of sentinel baskets

An important advantage of our approach is the fact that we can explain the results. Looking

into the content of our top sentinel baskets we can provide explanations for the predictions

and comment about the nature of the products included in these baskets. Fig 2 displays the

products that are present at least in one of the top 5 sentinel baskets sorted vertically, accord-

ingly to the number of years that they are present.

We notice that the products vary in each season but there are several that appear in more

than one. The most frequent product is oranges that appear in the sentinel baskets for all the

seasons. Additionally, we have several fresh fruits and vegetables, such as cabbage, potatoes,

pears, fennel, and mandarins. We also have prepared vegetables as well as frozen vegetables.

Table 2. Relative efficiency. Estimate of relative efficiency of our approach compared with the autoreg baseline with 95% confidence interval (CI). Relative efficiency being

larger than 1 suggests increased predictive power compared with the alternative method.

Point Estimate 95% CI

1 week ahead 2 week ahead 3 week ahead 4 week ahead 1 week ahead 2 week ahead 3 week ahead 4 week ahead

Basket-1 vs autoreg 1.14 2.36 3.47 2.05 [0.48, 1.40] [1.22, 3.09] [1.15, 4.74] [0.97, 2.52]

Basket-5 vs autoreg 1.11 2.57 3.13 1.74 [0.71, 1.41] [2.00, 3.20] [1.98, 4.14] [0.92, 2.15]

https://doi.org/10.1371/journal.pcbi.1009087.t002
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Besides fruits and vegetables, we have beverages such as mineral water and tea, and several

other ingredients such as tomato paste, rice, red meat, pastry, and jam. Finally, among the

most common products to appear we have tissues, under the category of personal hygiene.

The majority of these products are rather common to prepare a healthy meal or snack that

could benefit a sick person. For example, one could not but expect oranges as it’s a common

belief that vitamin C can help strengthen the immune system. Additionally, we notice several

ingredients used to prepare a vegetable soup or a broth, which are nutritious and hydrating as

well as soothing when served hot.

Surprisingly, we also get dishwater detergent which is not intuitive as to its relation with

influenza. Nevertheless, it is a rather common product of a supermarket basket, so it’s possible

to appear among the most frequent products bought together with any other “influenza”

product.

Discussion

In this study we propose the use of a novel data source, namely retail market data, as a proxy

for predicting seasonal influenza. The rationale behind our choice is that customers’ behavioral

changes are reflected in the items purchased in a shopping basket, thus providing a valuable

proxy for the spread of seasonal influenza. We make use of a regression model (SVR) to pro-

duce our forecasts for 1 to 4 weeks ahead. We need to emphasize that the most important

Fig 2. Products. Products are sorted vertically accordingly to the number of years that they are present at least in one of the top 5 baskets.

https://doi.org/10.1371/journal.pcbi.1009087.g002
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component in our framework is the data proxy—sentinel baskets—and that any other forecast-

ing method can be used instead of the SVR model. We compare the results obtained with the

sentinel basket approach with a baseline autoregressive model (autoreg) that considers only

historical influenza data from the traditional surveillance Influnet.

The analysis of the results obtained for the Italian flu season from 2011 to 2015 shows the

superiority of the sentinel basket approach. The forecasts consistently outperform the baseline

autoregressive model, thus proving the added value of incorporating retail market data quanti-

tatively. The retail market data we use for our approach are in the form of sentinel baskets (Bas-
ket-1 and Basket-5) and not just a basket of simple time series of single products, such as in the

second baseline (Product-5), where we use the most correlated products with the influenza

adoption trend. We demonstrate that the use of single products’ time series does not produce

the same results as using our sentinel baskets. The predictions of our approach are significantly

more accurate than the predictions with the use of a basket of single products in all four-week

forecasts. We need to stress the fact that we obtain a noticeable increase in the predictive

power of our approach when we add the sentinel baskets.

Additionally, to interpret the results we examine the content of the top 5 sentinel baskets
that are used as data proxy to predict influenza occurrence. We notice that the majority of the

products make intuitive sense, as we have several fruits and vegetables, as well as ingredients

for soup, tissues, water, and tea. The fact that these products are what we would expect to find

among the most relevant products to influenza, demonstrates that our framework is capable to

provide meaningful explanations for the final predictions.

Our retail dataset also contains OTC (over-the-counter) drugs that are available without

a prescription. Unfortunately, in our study, these products rarely correlate with influenza so

they don’t occur among the sentinel products. A possible explanation is that when people

get sick, they tend to visit the pharmacy directly and not the supermarket. Additionally, the

OTC drugs are only available in the “IPERCOOP”, the largest stores of the supermarket

chain, and as a result, their purchase trends are not necessarily representative of the whole

dataset. Finally, very often, the drugs necessary to fight influenza symptoms are everyday

drugs that normally every household owns and buys independently of the influenza

occurrence.

The results we present here are for influenza-like illnesses at the national level within

Italy. Nevertheless, our approach shows promise to be easily extended to accurately track not

only influenza in other countries where similar data sources are available but also other

infectious diseases. Another important aspect is that we don’t have any regional or country

specific products which would make it difficult to translate to other regions or countries.

Although the predictive framework is outperforming the baseline approaches, it is possible

to envision the use of retail market data in the context of multi-data and ensemble

approaches, thus contributing to state of the art performing forecasting schemes. Further-

more, retail data are available at the very fine geographical resolution, thus opening to the

definition of proxy data for forecasting at a regional and urban level where ground truth for

Influenza Incidence data are available.

Materials and methods

In this section, we describe the data used in our study, highlighting their main characteristics.

Additionally, we describe our predictive framework and its main components. We provide

the data and the code of our study for reproducibility in https://github.com/jeannetm/predict_

influenza_with_retail_records.
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Data description

First, we describe the influenza activity data in Italy as captured by Influnet. In addition, we

describe the retail market data describing the purchases of the customers of COOP supermar-

kets all over Italy.

Influenza data. In developed and developing countries, there are national syndromic (i.e.,

based on observed symptoms) surveillance systems for influenza-like illness (ILI). These sys-

tems monitor levels of ILI cases among the general population by gathering information from

physicians, known as sentinel doctors, who record the number of people seeking medical atten-

tion and presenting ILI symptoms. Influenza activity in Italy is officially monitored by the Ital-

ian National Institute of Health, “Istituto Superiore di Sanità” (ISS) and the Interuniversity

Research Centre on Influenza (Ciri), through a system called Influnet. The Influnet system col-

lects data from a network of about 900 sentinel General Practitioners (GPs) and pediatricians.

It compiles a weekly report in which the national and regional incidence rates by age group are

published during the winter season, generally from week 42 to the last week of April of the fol-

lowing year (around week 17). The data cover about 2% of the Italian population. Doctors who

participate in the monitoring are required to identify and write down daily, on their register,

each new case of influenza. Each week, they transmit the aggregate number of cases seen by

any physician (divided by age groups and by risk category) to the relevant Reference Center.

The ISS processes the data at the national level and produces a weekly report. Data are pub-

lished with at least one-week lag, and typically new reports provide a first estimate of the weekly

ILI incidence, which is then updated in the following weeks as more data from sentinel GPs are

recorded. We collected the Influnet reports for five influenza seasons, from 2011/12 to 2014/15,

from week 42 to week 17. The reports are publicly available at the website of Influnet [66].

We have to mention that our analysis is performed on national influenza data because

regional influenza data are not reliable enough. This is equivalent to consider that influenza

spreads in a relatively homogeneous way all over the country, which for a small country as

Italy is a reasonable assumption.

Retail market data. We base our analysis on real-world data about customer behavior.

We use a retail market dataset describing the purchases of the customers of COOP, one of the

largest supermarket chains in Italy. An important dimension of the data regards the company’s

classification of products: there is a tree organization, and the hierarchy is built on the product

typologies. The top-level of this hierarchy is called “Area” that splits the products into three

fundamental categories: “Food”, “No Food”, and “Other” that refers to medical products. The

leaves of the tree are at the bottom level of the hierarchy, called “Item”. The marketing hierar-

chy goes like that: i) Area (3 values), ii) Macro sector (4 values), iii) Sector (13 values), iv)

Department (76 values), v) Category (529 values), vi) Subcategory (2665 values), vii) Segment

(7656 values), viii) Item (571092 values).

There are several conceptual issues in using the lower level of the hierarchies of the product

typologies. For instance, the distinction between different packages of the same product as

specified at the “Item” level, e.g., different sizes of bottles containing the same liquid, is not of

interest in our study. Equally, the distinction between products of different brands, e.g., milk

from company A or B, is not of interest in our study (“Segment” level). A way to solve this

issue is to use the marketing hierarchy, substituting the item with its marketing “Subcategory”

value. As a result, we reduce the cardinality of the dimension of the products (from 571,092 to

2,665), aggregating logically equivalent products. Throughout our study, we will refer to those

subcategories as products.
We analyzed a dataset of 30M shopping sessions that occurred in Livorno province, one of

the best-represented areas of Italy, with regards to the number of shops in the area, as well as
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the number of loyal users, over 2010–2015, corresponding to about 150,000 active and recog-

nizable customers. A customer is active if there is at least one purchase during the data time

window, and she is recognizable if the purchase has been made using a loyalty card. Customers

are provided with a loyalty card that allows linking different shopping sessions, and therefore

reconstruct their personal shopping history. The 138 stores of the company cover the whole

west coast of Italy, selling 571,092 different items. For each customer, we have N�150 baskets,

D�100 different items, and an average basket length T of�8 items.

Predictive framework

Two main algorithmic components compose the forecasting approach proposed here: i) the

sentinel baskets discovery from the previous influenza season s − 1; and ii) the use of the senti-
nel baskets for prediction in the current influenza season s.

The following steps summarize the definition of the sentinel baskets (see Algorithm 1):

• We construct the time series Sp of the volume of purchases at a weekly level for each product

p 2 P. We select the sentinel products P that are more correlated with the influenza adoption

trend I calculating the Pearson correlation measure between {Sp, I}8p 2 P (see Algorithm 1,

lines 2–4).

• For each of the sentinel products we identify the sentinel customers, customers CP that bought

them during the influenza peak [T − 2, T + 2] (see Algorithm 1, line 5–9).

• For all sentinel customers c 2 CP , we obtain all their purchases during the same period, and

we create a pool of all their baskets B. We apply the Apriori algorithm to identify the most

frequent baskets Bf. We select the baskets that are more correlated with the influenza adop-

tion trend I to be sentinel baskets, B (see Algorithm 1, lines 10–14).

Algorithm 1: Sentinel Baskets Discovery
Data: Sp-products’ time series, I-influenza time series, R-receipts
Result: B-sentinel baskets

1 P  ;; CP  ;; B ;; Bf  ;; B ;;
// initialize the sentinel products, sentinel customers, pool of bas-
kets, frequent baskets, and sentinel baskets
2 for p 2 P do // for each product
3 if Pearson(Sp, I) > 0.2 then
4 P  P [ p; // add sentinel product
5 T  peak(I); pi  [T − 2, T + 2]; // period of interest
6 for rec(t, c, b) 2 R do // for each receipt
7 for p 2 b do // for each product in basket
8 if t 2 pi ^ p 2 P then
9 CP  CP [ c; // add sentinel customer
10 for rec(t, c, b) 2 R do // for each receipt
11 if t 2 pi ^ c 2 CP then
12 B  B [ b; // add basket in pool of baskets
13 Bf  Apriori(B); // identify the most frequent baskets
14 B top5ðPearsonðSBf ; IÞÞ; // create sentinel baskets

Once the sentinel baskets have been identified, during each week of the current influenza

season, ts, we use their corresponding volume time series along with the past influenza inci-

dence data in order to train a regression model of the future incidence values of influenza for 1

to 4 weeks ahead. More precisely, we proceed according to the following steps:

• We construct the composite time series, S, for each of the sentinel baskets B, where we add

the volume of purchases at a weekly level for each product p 2 B up to week t.
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• We introduce the regression model whose coefficients are solved by Support Vector Regres-

sion (SVR). For each forecasting week ts and forecasting target of k week ahead, the SVR

model is trained by the data starting from the first week in the previous season s − 1 to the

last week ts − 1.

• For the prediction, the regression model makes use of the historical ILI reports available till

week t − 1 and sentinel baskets data available till week t.

Details on the various components of the proposed forecast framework are reported in the

following sections.

Sentinel products. The first necessary step to learn the sentinel baskets from the previous

influenza season s − 1 is the discovery of the sentinel products. We need to define the time

granularity of our observation period for the retail market data. We choose to use a weekly

aggregation mainly because influenza reports are on a weekly base. We prepare the retail mar-

ket data in order to correspond to the weekly reports of influenza, and we work on a “Subcate-

gory” level. We report the weekly sales for each of the products p 2 P for all the weeks of

interest (42nd week of the year until the last week of April of the following year), producing

the final retail time series Sp.
It is crucial to notice that even working at an aggregated level in the retail hierarchy, our

time series are still 2,665. So it is imperative to filter out the products that are not correlated

with the influenza adoption trend I, so we can work mainly with products that have a similar

adoption trend. We choose to use the Pearson Correlation, as it is one of the most commonly

used correlation measures. In statistics, the Pearson correlation coefficient [67], also referred to

as Pearson’s r, is a measure of the linear correlation between two variables x and y. It has a

value between +1 and -1, where 1 is total positive linear correlation, 0 is no linear correlation,

and -1 is total negative linear correlation. Using Pearson correlation coefficient we calculate

the correlation r between each product’s time series Sp with the influenza time series I and

we filter out the time series with a low correlation in order to identify the products that

have adoption trend similar to the influenza trend, the most correlated sentinel products
P ¼ fpjp 2 P; rðSp; IÞ > dg, where δ> 0.2 to exclude products with weak or no correlation.

Sentinel customers. We are interested in studying human behavior mainly during the

influenza peak of the previous influenza season s − 1. We identify the influenza peak week

at time T and we define the period of interest [T − δ, T + δ] where [δ] is the width of the time

window. We used [δ] = 2 in our experiments so we have a period of interest of 4 weeks (�1

month) which is the typical length of the period that the influenza is at its peak. Using the

sentinel products in P, we trace their sales during the period of interest, and we identify the

customers that bought them through the receipts matching each customer with her corre-

sponding purchases. These customers become our sentinel customers denoted with CP . We are

interested in the purchases of these specific customers since those individuals would have a

higher possibility to be either infected or close to an infected individual. We have to notice that

customers are using loyalty cards, linking them with their purchases throughout the whole

period of interest and that a loyalty card normally represents the whole household, with the

probability of more than a person per household.

It is important to highlight that to produce the final predictions, we did not use these identi-

fied sentinel customers, but actually the aggregated signals. The necessity to identify the senti-

nel customers surges from the use of the Apriori algorithm (see subsection Sentinel baskets)

that needs these detailed information to create less noisy and more robust proxy data, which

are later aggregated for our predictions.

Sentinel baskets. In the final step of discovering the sentinel baskets from the previous

influenza season s − 1 and preparing their time series for the current influenza season s, we are
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working backwards. Using the sentinel customers CP , we track all their purchases during the

period of interest, through their receipts, and we obtain their corresponding baskets, where

each basket b contains products bought together under the same receipt b = {p1, p2, . . ., pn|pi 2
P}. We obtain the baskets for each customer c 2 CP , and we create a pool of baskets B, discard-

ing the information of who bought what. It is worth stressing that since we are interested in

the information contained in the products bought together and in the patterns we can extract

through customers behaving similarly, a key component of our approach is the Apriori algo-
rithm [68].

The Apriori algorithm is an algorithm for frequent itemset mining and association rule

learning over transactional databases. The algorithm uses a bottom-up approach where it iden-

tifies the most frequent individual items in the database and extends them to larger and larger

itemsets as long as those itemsets satisfy a minimum threshold frequency. The algorithm ter-

minates at the moment that no further successful extensions are found. It uses a breadth-first

search and a Hash tree structure to count candidate itemsets efficiently. It generates candidate

itemsets of length k from itemsets of length k-1. Then it prunes the candidates who do not

have a frequent sub pattern. According to the downward closure lemma, the candidate set

contains all frequent k-length itemsets. After that, it scans the database to determine frequent

itemsets among the candidates.

Using the Apriori algorithm, we extract the most frequent baskets Bf in our pool. For every

product in each of the most frequent baskets, we obtain the corresponding time series. Then

for each basket, we create a cumulative value of all the products that belong to it, and we create

the corresponding composite time series SBf . We use the measure presented in Step 1, and we

calculate the Pearson correlation between the ILI time series I and the time series for each of

the baskets SBf , and we keep the 5-most correlated baskets, the sentinel baskets B 2 Bf .

In order to construct the sentinel basket time series for the current influenza season s, we

extract the time series for each of the products that belong to the sentinel baskets, p 2 B that

we had obtained from the previous season. We repeat the procedure mentioned before, as for

each sentinel basket, we create a cumulative value of all the products in it, thus creating its cor-

responding composite time series SB, S for simplicity. We will incorporate these time series

with the historical ILI reports in the prediction model described below.

We should also note that we learn the sentinel baskets only from one previous season and

not more to avoid introducing biases from changes that may occur in the retail market data-

base, as new products may appear and older disappear.

Forecast models. The baseline model is inspired by Autoregression (AR) which suggests

a linear relation between the current and previous values of a time series. Let Its be the logit

transformed ILI at week t in season s, k be the k week ahead (k = 1, 2, 3 or 4). The baseline

model could be written as

Itsþk ¼ ak þ
Xh� 1

i¼0

ak
i Its � i; ð3Þ

where h is the window size, α and ai are the regression coefficients.

We include the sentinel baskets’ time series S as an exogenous signal, where Sts be the value

of S at week t in season s, yielding:

Itsþk ¼ ak þ
Xh� 1

i¼0

ak
i Its � i þ

Xh� 1

j¼� 1

bk
j Sts � j: ð4Þ
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Note that j starts from −1 because the retail market data is up-to-date while ILI has one week

lag such that St has an extra week of data than It.
Further more, to test the sensitivity of the model on the number of sentinels, we expand the

model as

Itsþk ¼ ak þ
Xh� 1

i¼0

ak
i Its � i þ

XNS

n¼1

Xh� 1

j¼� 1

bkn
j S

n
ts � j; ð5Þ

where NS is the total number of sentinels, and Sn is the nth sentinel. It is essential to notice that

by extending the model to incorporate more sentinel baskets, we can capture more shopping

behaviors and with greater variance.

In the forecast model (5), Itsþk is the dependent variable and fIts � ig; fSnts � jg are the the

explanatory variables. The model makes use of the historical ILI reports available till week t − 1

and sentinel baskets data available till week t.
Table 3 displays an example settings for the 1-week-ahead prediction at forecasting

week 2015−15 with only one sentinel involved. To predict 1-week-ahead of influenza at

week Apr 13, 2015–Apr 19, 2015, we use influenza data for h weeks, where h is the window

size, until Apr 12, 2015 and sentinel data for h + 1 weeks until Apr 19, 2015. So for example,

for h = 5 we use influenza data from week 2015–10 to week 2015–14 (Mar 9, 2015–Apr 12,

2015) and sentinel data from week 2015–10 to week 2015–15 (Mar 9, 2015–Apr 19, 2015).

The training data starts from the start of previous season, since the sentinel baskets are gen-

erated from the previous season, so Oct 14, 2013 until the beginning of forecasting week

Apr 12, 2015.

We make use of the Support Vector Regression (SVR) model with radial basis function

(rbf) kernel in order to solve the coefficients of the above autoregression and regression

models. Since the sentinel baskets BS for ts are generated from season s − 1, the data earlier

than that is not included in the training data. For each forecasting week ts and forecasting

target k, the SVR model is trained by the data starting from the first week in the previous sea-

son s − 1 to the last week ts − 1. For SVR model with rbf kernel, there are two hyperpara-

meters which are regularization parameter C and kernel width γ that need to be defined [69].

Table 3. Example settings of forecast models. An example settings for 1-week-ahead prediction at forecasting week

2015−15 with only one sentinel involved, where h is the window size.

Prediction Data

Explanatory Variables Dependent Variable

1 × (2h + 1) 1 × 1

ILI 1 × h
(–Apr 12, 2015) ILI 1 × 1

(Apr 13, 2015–Apr 19, 2015)Sentinel 1 × (h + 1)

(–Apr 19, 2015)

Training Data

Explanatory Variables Dependent Variable

52 × (2h + 1) 52 × 1

ILI 52 × h
(Oct 14, 2013–Apr 05, 2015) ILI 52 × 1

(Oct 14, 2013–Apr 12, 2015)Sentinel 1 × (h + 1)

(Oct 14, 2013–Apr 12, 2015)

5-Fold Cross-validation

Hyperparameters: h; SVRðC; gÞ

https://doi.org/10.1371/journal.pcbi.1009087.t003
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We set the range of parameters as C 2 [1, 1e4], γ 2 [0.01, 2.0] and window size h 2 [2, 6]. We

select the window size h and SVR-related hyperparameters by Grid Search and 5-Fold Cross-

validation.

Performance indicators. We consider the following indicators to assess the performance

of the forecast approaches with respect to the ground truth influenza incidence. Our notation

is as follows: yt denotes the observed value of the influenza at time t, xt denotes the predicted

value by the model at time t, �y denotes the mean or average of the values yt and similarly �x
denotes the mean or average of the values xt.

Pearson Correlation, a measure of the linear dependence between two variables during a

time period [t1, tn], is defined as:

r ¼
Pn

t¼1
ðyt � �yÞðxt � �xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t¼1
ðyt � �yÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t¼1
ðxt � �xÞ2

q ð6Þ

Mean Absolute Percentage Error (MAPE), a measure of prediction accuracy between pre-

dicted and true values, is defined as:

MAPE ¼ ð
1

n

Xn

t¼1

j
yt � xt

yt
jÞ � 100 ð7Þ

Root Mean Square Error (RMSE), a measure of prediction accuracy that represents the

square root of the second sample moment of the differences between predicted values and true

values, is defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

ðxt � ytÞ
2

s

ð8Þ

In order to be similar to MAPE we multiply RMSE with 100 to make it percentage error as

well.
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S1 Table. Performance indicators for individual seasons. Performance indicators with
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