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Abstract

Estimation of natural selection on protein-coding sequences is a key comparative genomics approach for de novo prediction of

lineage-specific adaptations. Selective pressure is measured on a per-gene basis by comparing the rate of nonsynonymous substi-

tutions to the rate of synonymous substitutions. All published codon substitution models have been time-reversible and thus assume

that sequence composition does not change over time. We previously demonstrated that if time-reversible DNA substitution models

are applied in the presence of changing sequence composition, the number of substitutions is systematically biased towards over-

estimation. We extend these findings to the case of codon substitution models and further demonstrate that the ratio of nonsynon-

ymoustosynonymous ratesof substitution tends tobeunderestimatedover threedatasetsofmammals, vertebrates,and insects.Our

basis for comparison is a nonstationary codon substitution model that allows sequence composition to change. Goodness-of-fit

results demonstrate that our new model tends to fit the data better. Direct measurement of nonstationarity shows that bias in

estimates of natural selection and genetic distance increases with the degree of violation of the stationarity assumption. Additionally,

inferences drawn under time-reversible models are systematically affected by compositional divergence. As genomic sequences

accumulate at an accelerating rate, the importance of accuratede novo estimationofnatural selection increases. Our results establish

that our new model provides a more robust perspective on this fundamental quantity.
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Introduction

Understanding of the action of natural selection on protein-

coding sequences underpins fundamental questions regarding

evolution and has immediate practical ramifications. It has

been known at least because the seminal contribution of

King and Jukes (1969) that natural selection for molecular

function impacts genetic variation. Natural selection’s influ-

ence is now routinely estimated using probabilistic codon

models of sequence evolution and reported in genome portals

(Hubbard et al. 2009). These models are widely employed for

purposes as diverse as seeking to identify genes affecting the

natural history of species (Chimpanzee Sequencing and

Analysis Consortium 2005) to aiding in the design of new

materials (Maitip et al. 2015).

A reasonable model of codon evolution is critical to the

measurement of selective pressure. Since the earliest such

analysis that corrected for multiple substitutions at a single

site (Kimura 1977), it has been assumed that the process of

evolution is time-reversible. It is well established that this as-

sumption is incorrect (Karlin and Ladunga 1994). There is also

a body of literature where researchers have fitted models of

nucleotide evolution that are not time-reversible (Yang and

Roberts 1995; Galtier and Gouy 1998; Huelsenbeck et al.

2002; Yap and Speed 2005; Jayaswal et al. 2005, 2007;

Baele et al. 2010; Jayaswal et al. 2011, 2014). We recently

showed that models of nucleotide substitution that do not

assume time-reversibility are statistically feasible in some in-

stances where time-reversible models are not, and that assum-

ing time-reversibility affects inference relating to genetic

distance (Kaehler et al. 2015). Regardless, time-reversibility is

typically retained as a modeling decision for analysis of biolog-

ical sequences (nucleic or amino acid) for the sake of

convenience.

Differences in codon frequencies between species establish

that the process of sequence divergence is nonstationary. For

example, the codon AAA is approximately 250 times more
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abundant in the genome of Buchnera aphidicola than that of

Streptomyces venezuelae (Nakamura et al. 2000). More gen-

erally it has been established that codon usage is strongly

correlated with genomic GC content (Muto and Osawa

1987). The relationship between nucleotide composition

and codon frequency has also been demonstrated to be

highly predictive across bacteria, archaea, and eukaryotes

(Knight et al. 2001). As argued by Knight et al. (2001),

these observations convincingly establish changes to neutral

mutation processes as the primary driver for changes in codon

frequency. Accordingly, accurate modeling of protein coding

sequence evolution requires accommodating these properties

of the underlying nucleotide substitution process.

Lindsay et al. (2008) and Yap et al. (2010) showed that the

Y98 (Yang 1998) and MG94 (Goldman and Yang 1994; Muse

and Gaut 1994) models of codon evolution introduced sys-

tematic biases in estimates of natural selection resulting from

their construction. Yap et al. (2010) introduced the CNF model

to address these shortcomings. The innovation of CNF is in the

substitution rate for a single nucleotide substitution in a

codon. Instead of using the target codon frequency such as

in Y98, the CNF model uses the conditional frequency of the

target nucleotide given its unchanged neighboring nucleo-

tides. [The mathematical details are given fully in Yap et al.

(2010).] The resulting model produced considerably less-

biased estimates of natural selection, as shown in Yap et al.

(2010). It is also the best-performing time-reversible model in

this study.

Before continuing it is worth clarifying the relationship be-

tween nonstationarity and time-reversibility of Markov pro-

cesses and models. We call a substitution model

time-reversible if all of the Markov processes that comprise

the model are time-reversible. Similarly, nonstationary models

are made up of nonstationary processes. The set of

time-reversible models is nested in the set of stationary

models, which is in turn nested in the set of nonstationary

models. That is to say a time-reversible model cannot be

nonstationary, but a nonstationary model can be time-reversible

for certain choices of parameters. We define nonstationar-

ity properly in the “Materials and Methods” section.

Care is required when fitting nonstationary models to

ensure that they can be consistently estimated. In this context,

consistency means that if a multiple sequence alignment was

generated under a particular model and we fit the same class

of model to the alignment, then the estimates should tend

toward the generating parameters as the length of the align-

ment increases. We use the results of Chang (1996) to ensure

that our models can be consistently estimated, as this is a key

feature of probabilistic methods that distinguish them from

earlier methods in phylogenetics (Felsenstein 1978).

In this paper, we extend the techniques for calculating ge-

netic distance and establishing consistency for nonstationary

models developed in Kaehler et al. (2015) to the context of

codon substitution models, and reveal that the assumption of

time-reversibility in codon substitution models introduces sys-

tematic bias. Some authors have considered amino acid

models without the assumption of time-reversibility

(Groussin et al. 2013; Parks 2014), but to the best of our

knowledge, this is the first example of a codon model that

does not impose time-reversibility to allow direct estimation of

natural selection.

Natural selection is frequently estimated using the param-

eter !, which allows the rate of synonymous and nonsynon-

ymous codon substitutions to vary in a way that is not

consistent with neutral evolution. Under a given model of

neutral evolution, ! is defined so that != 1 represents neutral

evolution, ! > 1 positive Darwinian selection, and ! < 1 pu-

rifying selection. This quantity has a complicated history, with

! having also been called dN/dS (Nei and Gojobori 1986) and

Ka=Ks (Miyata and Yasunaga 1980). Prior to the dominance of

maximum-likelihood (subsequently Bayesian) methods, sev-

eral empirical methods were devised for its calculation. Early

contributors to the field identified the need for simpler

approaches (Kimura 1980; Nei and Gojobori 1986).

Equivalently, ! enters the parameterization of a continu-

ous-time Markov model of codon substitution as a multiplica-

tive constant for all nonsynonymous codon transitions

(Goldman and Yang 1994; Muse and Gaut 1994) which is

then fitted using maximum-likelihood or Bayesian techniques.

The specifications for these models have developed over time

but we focus on two choices. The first is that of Yang (1998),

which we shall call Y98. This model is described in detail below

but for the moment we will describe it as an extension of the

nucleotide model of Hasegawa et al. (1985). It is currently the

most widely used model of codon substitution. The second is

one of those developed in Yap et al. (2010), which we shall

denote CNFGTR, for conditional nucleotide frequency general

time reversible. Y98, CNFGTR, and all previously published

codon substitution models are time-reversible.

CNFGTR is the CNF extension of the general time reversible

(GTR) nucleotide substitution model (Lanave et al. 1984) that

addresses a bias present in Y98 when nucleotides are not

equiprobable. In Yap et al. (2010) it was shown that

CNFGTR most effectively reduced that bias in Y98 and other

biases shown to be present in MG94.

In Kaehler et al. (2015) it was observed using parametric

bootstraps (Goldman 1993) that for alignments of third codon

position nucleotides from nuclear encoded genes in a triad of

mammals, mitochondrial protein coding genes from the same

mammals, and ribosomal RNA from microbes that time-re-

versible models never feasibly described the process that gen-

erated the data. A more general, nonstationary model could

feasibly have generated the mammal nuclear encoded gene

data set, and succeeded more often as a reasonable model for

the mtDNA and rRNA data sets. It was also shown that the

time-reversible models systematically overestimated genetic

distance in a manner proportional to a nonparametric mea-

sure of nonstationarity. Further, departure from the molecular
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clock hypothesis was overstated by time-reversible models,

demonstrating that biological inferences based on estimates

of the number of substitutions were affected by use of the

time-reversible models. This work required new theoretical

insights into calculation of genetic distance in the nonstation-

ary setting.

As an alternative to time-reversible codon substitution

models we present the nonstationary GNC or general nucle-

otide codon model, which extends the nonstationary nucleo-

tide model presented in Kaehler et al. (2015). We extend the

theoretical insights in Kaehler et al. (2015) in this setting and

show that it can be used to estimate ! in a manner consistent

with its forebears. We test large sets of alignments of mam-

mals (human, mouse, and opossum), vertebrates (human,

xenopus, and fugu), and ants (Florida carpenter ant, Indian

jumping ant, and Argentine ant) to show that GNC tends to fit

the available data better than time-reversible models. We fur-

ther demonstrate that consistent with Kaehler et al. (2015),

Y98 and CNFGTR tend to overestimate genetic distance in

comparison with GNC in a manner proportional to a nonpara-

metric measure of nonstationarity and link overestimation of

genetic distance with underestimation of !. Similar to Yap

et al. (2010), we use intronic data to show that Y98 estimates

! with a bias that is a function of sequence GC content, but

that CNFGTR and GNC are not biased in this way. We also

demonstrate that inference regarding the molecular clock hy-

pothesis is affected by model time-reversibility.

The “Materials and Methods” section specifies GNC, the

time-reversible models against which we compare GNC,

model fitting techniques and theoretical considerations, and

the data sets on which we test our methods. The “Results”

section details our simulation and empirical findings, which

are interpreted in the “Discussion” section.

Materials and Methods

The General Nucleotide Codon Model

The general nucleotide codon (GNC) model is a nonstationary,

continuous-time Markov process. For time-reversible models,

the location of the root of the phylogenetic tree has no bear-

ing on the model’s predictions. For nonstationary models, the

location of the root matters as the process evolves forward in

time away from the root.

At the root node of the tree, each codon is assigned an

initial probability with no further assumptions, so forming a

61-element row vector �r. In this notation we have labeled the

root node r and specified �r at the root node because the

codon composition can change through time and between

nodes. The conditional nucleotide processes for each codon

position are identical except that any rate corresponding to a

nucleotide substitution that results in a nonsynonymous

codon substitution is multiplied by the parameter !, with no

further constraints. We show in the Appendix that ! is

equal to Ka=Ks as defined in, for example, Goldman and

Yang (1994).

Equivalently, we write that the codon process on an edge

joining nodes a and b, or {a, b}, is defined by the Markov

generator Qab with off-diagonal elements labeled by codons

i1i2i3 and j1j2j3:

qab
i1 i2 i3;j1 j2 j3

¼

0; more than one in 6¼ jn;

rab
injn
; in 6¼ jn; synonymous ;

!abrab
injn
; in 6¼ jn; nonsynonymous ;

8>><
>>: ð1Þ

where n 2 f1; 2; 3}, !ab is the selective pressure on the edge

{a, b}, and rab is in turn a matrix that defines the neutral nu-

cleotide process. It is important to note that the node b is

further from the root node than a, which is the concrete con-

sequence of each edge having a direction in time. Diagonal

elements of Qab are calculated to satisfy the constraint that

row sums must be zero. We introduce a scale parameter �ab

and scale Qab such that �pr � diagQab ¼ 1. The transition

probability matrix on {a, b} is then Pab ¼ exp fQabtabg.

Note that �r is absent from (1). This is in contrast to the

time-reversible models, (3) and (4), where the codon proba-

bilities are included in such a way as to force the process to be

time-reversible.

We digress briefly to outline the relationship between the

scale parameter �, time and genetic distance. Recall that ge-

netic distance is measured as the expected number of substi-

tutions between two nodes in the tree. Further, genetic

distance is typically employed as a measure of “evolutionary

time”. For time-reversible models, the expected number of

substitutions along one edge equals the scale parameter.

Accordingly, where we refer to a scale parameter in the con-

text of a time-reversible model, it can safely be interpreted as

the time parameter.

For nonstationary models, such as GNC, � does not neces-

sarily equal the expected number of substitutions (Kaehler

et al. 2015). Rather, the genetic distance can be calculated as

dab
GNC ¼ �p

a

Z tab

0

exp fQabsgds diag Qab: ð2Þ

for the edge {a, b} where �a is the row vector of codon prob-

abilities at node a. The derivation of this formula carries with-

out modification from Kaehler et al. (2015). Genetic distance

across multiple edges is the sum of the distances for those

edges. Numerical methods for calculation of the integral of

the matrix exponential are discussed in Kaehler et al. (2015).

Fitting Nonstationary Models

As stated in the “Introduction” section, almost all nucleotide

and all codon models in common use are time-reversible, so

stationary. We therefore use this section to review some fun-

damental results regarding nonstationary models and clarify

how they can be used in practice.
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Stationarity is a property of a Markov process. A Markov

process is defined by the probabilities of transitions between

states between points in time and an initial probability distri-

bution. In our current context, the states are the 61 sense

codons. Under very mild assumptions, a Markov process has

a unique stationary distribution that is determined by the tran-

sition probabilities. It is the distribution into which the process

will settle if allowed to run for enough time. If the initial dis-

tribution is equal to the stationary distribution, the distribution

does not change through time and we call the process sta-

tionary. If the initial distribution is any other probability distri-

bution, the process is nonstationary. For more detail in a

phylogenetic context see Liò and Goldman (1998). For more

depth, there are several good introductory texts on Markov

processes (Hoel et al. 1986).

A phylogenetic model is made up of a phylogenetic tree

and a Markov process associated with every edge in the tree. It

is common to assume that every edge has the same process

and that the initial distribution at the root of the tree is the

stationary distribution for that process, so that every process

on the tree is stationary. It is usually also assumed that the

processes are time-reversible, which would not be possible if

they were not stationary. It is possible to define a phylogenetic

model that has a different process on every edge that is still

stationary, because different Markov processes can share the

same stationary distribution. This is in fact common in the

application of codon models to estimate whether selective

pressure varies between edges of a phylogeny, and is true

of all of the time-reversible models that are tested in this

paper, where selective pressure is allowed to vary by edge.

GNC is nonstationary because the initial distribution is not

the stationary distribution of the process on each edge. That

means that codon composition is allowed to vary along edges

of the tree. It does not automatically mean that every edge on

the tree has a different process. We could assign the same pro-

cess to every edge of the tree and it would still be nonstationary.

This topic is treated in greater depth in Jermiin et al. (2008).

We now turn our attention to the concrete implications for

the statistics that we calculate in this work.

Recall that the degree of a node is the number of edges

that connect to that node. In this work, we will make the

distinction between trees that are node-rooted (fig. 1a),

where the root node has degree three, and edge-rooted

(fig. 1b), where the root node has degree two. If we

assume that the process on each edge of the tree is time-

reversible, then we would ordinarily call a node-rooted tree

unrooted, because the direction of time on each edge is irrel-

evant. In a nonstationary context, the direction of time matters

and is decided by the position of the root, so we prefer the

term node-rooted to the term unrooted. The direction of time

is illustrated in figure 1 for varying root positions.

We reiterate that it is not possible to consistently fit a gen-

eral Markov model on an edge-rooted topology to data from

a multiple sequence alignment. Further, it is only possible to fit

a general Markov model on a topology with three or more taxa.

These results are explored in depth in Chang (1996). They follow

from the fact that a general Markov model is not identifiable for

an edge-rooted topology with two taxa. That is, in many such

cases, there are multiple sets of parameters that give rise to

exactly the same observable alignment column frequencies.

For certain parameter choices, the same is true for GNC. It is

possible that sufficient additional assumptions could be placed

on GNC to make it identifiable for an edge-rooted tree. Proof

that GNC is identifiable on an edge-rooted tree would be a

ground-breaking contribution to the field of phylogenetics,

but such a proof does not exist. We must therefore assume

that GNC must be fitted to a node-rooted tree with at least

three taxa. We make an exception to this rule for the simulation

studies where we do not claim to fit an identifiable model.

Once we have dropped the assumptions of time-reversibil-

ity and stationarity, it is natural to ask whether every edge on

the tree should be associated with a different Markov process.

The answer is that it depends on the application. Allowing

every edge to have its own process quickly increases the

number of parameters in the model which reduces computa-

tional tractability and increases susceptibility to overfitting. In

the simplest case, we could associate a single model with

every edge of the tree, as in the work of Yap and Speed

(2005). If we suspect that different models should be associ-

ated with different parts of the tree, algorithms exist for au-

tomatically determining where to add this complexity

(Jayaswal et al. 2011, 2014). It is also possible to allow some

parameters to vary among edges (Galtier and Gouy 1998;

Groussin et al. 2013), which is a likely scenario where we

wish to test hypotheses about selective pressure.

It is possible to use GNC to discover a tree topology, and

under a Bayesian framework it would be natural to incorpo-

rate uncertainty about the topology. Ordinarily, however, it

would be unusual to use any codon model for this purpose, as

FIG. 1.—Tree topologies; (a) node-rooted, (b) edge-rooted. The stems

illustrate the placement of the roots, but do not form part of the model.

Arrows indicate the direction of time.
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they are generally slower to fit due to the computational de-

mands of exponentiating larger matrices.

For this work, we are concerned with discovering the prop-

erties of evolutionary processes, not the discovery of tree to-

pologies. We therefore choose the smallest number of taxa

that we can use for this purpose and exclusively fit our models

to sets of three taxa. Using a three-taxon node-rooted tree

also has the advantage of removing uncertainty regarding the

tree topology as there is exactly one such tree. Further, as the

number of taxa is small, we always allow the GNC process to

be different on each of the three edges. Again, we make an

exception to this rule for the simulation studies. In some in-

stances we will make some parameters common across some

edges while allowing others to vary. Unless we state otherwise

all models are fitted to node-rooted trees.

Checks for Consistency

Application of Chang (1996) to show that GNC can be con-

sistently estimated requires care due to two technicalities.

These issues were encountered in Kaehler et al. (2015), and

we overcome them in the same fashion here.

First, states at internal nodes can be relabeled without af-

fecting alignment column frequencies. This issue is explained

in detail in Zou et al. (2011) for the Barry and Hartigan (1987)

model, but is applicable here by Remark 2 in Chang (1996).

The issue can be resolved through imposing the constraint

suggested by Remark 9 in Chang (1996), which is that the

fitted transition probability matrices be Diagonal Largest in

Column (DLC).

Second, multiple continuous-time processes can have the

same alignment column frequencies as a single discrete-time

process (Higham 2008). That is, it is possible for valid transition

rate matrices Q1 and Q2, where Q1 6¼ Q2, to give rise to the

same transition probability matrix so that eQ1 ¼ eQ2 . In fact,

one transition probability matrix can correspond to zero, one,

several, or a continuum of transition rate matrices. It is possible

to conservatively identify cases where more than one valid

transition rate matrix exists using Theorem 1.27 in Higham

(2008). We call any such case a nonunique mapping. We

note that a stricter sufficient condition for uniqueness was

necessary for GNC than was employed in Kaehler et al.

(2015), as the problem is substantially harder for a 61�61

matrix than it is for a 4�4 matrix.

Model Implementation

All substitution models were fitted using PyCogent (Knight

et al. 2007). GNC has not yet been incorporated into the

PyCogent library, but is available with the code used to exe-

cute these analyses at https://bitbucket.org/nonstationary/

codon (last accessed January 9, 2017). All simulations were

also performed using PyCogent.

As stated above, Y98 is the codon model specified in Yang

(1998). In this model, a 61-element stationary distribution � is

defined on the sense codons. The Markov generator, labeled

by codons i and j, has off-diagonal elements

qij ¼

pj; one synonymous transversion ;

kpj; one synonymous transition ;

!pj; one nonsynonymous transversion ;

!kpj; one nonsynonymous transition ;

0; otherwise :

8>>>>>>>><
>>>>>>>>:

ð3Þ

Y98 is time-reversible.

The CNFGTR model is defined in Yap et al. (2010). It also

has a 61-element stationary distribution. Its Markov genera-

tor’s off-diagonal elements, labeled by codons i1i2i3 and j1j2j3,

is given by

qi1 i2 i3;j1 j2 j3 ¼
0; more than one in 6¼ jn;

rin;jnpjnjfjmgm6¼n ; in 6¼ jn; synonymous ;
!rin;jnpjnjfjmgm 6¼n ; in 6¼ jn; nonsynonymous ;

8>>>><
>>>>:

ð4Þ

where n;m 2 f1; 2; 3g; ri;j are the elements of a 4�4 sym-

metric matrix, and pjnjfjmgm 6¼n
is the probability of observing jn

given the other two codon positions jm. CNFGTR is time-

reversible.

The formulation of the above models and GNC with 61

states is, of course, dependent on the genetic code associated

with the alignments to which the models are fitted. The soft-

ware that we provide is agnostic to genetic code and is easily

configurable for alternatives, as we did for tests on intronic

data where we allowed stop codons.

In every case, ! represents the influence of natural selec-

tion, which is sometimes also referred to as dN/dS (Yap et al.

2010) or Ka=Ks (Goldman and Yang 1994).

For the time-reversible models, the scale parameter � and

selective pressure ! were allowed to vary by edge, except

where otherwise noted. For time-reversible and nonstationary

models, codon probabilities were fitted along with the other

parameters.

In this standard scenario, the initial distribution contributes

60 parameters to each model. For Y98, � contributes one

additional parameter and � and ! contribute two parameters

per edge, making a total of 67 parameters for a three-taxon

tree. For CNFGTR, the GTR parameters add five parameters to

the model and � and ! again add two parameters per edge,

summing to 71 parameters. GNC is most parameter-rich, with

12 rate parameters plus ! per edge for 99 parameters overall.

Genetic distances were calculated as the expected

number of substitutions per codon. The expected

number of substitutions for nonstationary models was cal-

culated following the method of Kaehler et al. (2015), as

noted above.
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Assessment of Model Goodness-of-Fit

For convenience, we here reproduce from Kaehler et al.

(2015) our description of how parametric bootstraps

(Goldman 1993) and the G-statistic (Sokal and Rohlf 1995,

pp. 686–697) were used to calculate P-values that objectively

reflect goodness of fit for a particular model. The null hypoth-

esis says that the alignment is generated by the fitted model

with parameter values set at our estimates. The expected site-

pattern counts under the model are thus the probability of the

pattern multiplied by the alignment length. The alternative is

the unrestricted multinomial model, as described in Goldman

(1993), taken as the observed site-pattern counts in the align-

ment. The G-statistic is computed from the expected and ob-

served counts using the conventional expression (Goldman

1993, pp. 686–697). The bootstrap procedure is to

1. simulate 49 alignments of the same length as the fitted
alignment under the null hypothesis;

2. perform the original fit on each simulated alignment; and
3. calculate the proportion of fitted G statistics that exceed or

equal that of the original statistic.

The result is the G-statistic parametric bootstrap P-value.

Data

We analyzed four sets of data. Each was made up of thou-

sands of multiple sequence alignments of orthologous se-

quences from three taxa. The taxa are common across every

alignment in a given data set. We label the data sets as

mammal, vertebrate, ant, and intronic. This section details

the contents of each data set, how they were obtained, and

any filtering that was applied.

We obtained the mammal and vertebrate data sets by

downloading protein coding sequences from Ensembl 68.

Each multiple sequence alignment in the mammal data set

was made up of three one-to-one orthologs from Homo sa-

piens, Mus musculus, and Monodelphis domestica and each

alignment in the vertebrate data set consisted of three one-to-

one orthologs from Homo sapiens, Takifugu rubripes, and

Xenopus tropicalis. PyCogent (Knight et al. 2007) was used

to download these sequences.

Alignments of intronic one-to-one orthologous sequences

for Homo sapiens, Macaca mulatta, and Callithrix jacchus were

downloaded from Ensembl 81. Regions annotated in Ensembl

as low complexity were masked and those columns removed

from the alignments in a manner that preserved naturally oc-

curring trinucleotides. Again, PyCogent was used to obtain

the data.

Another set of protein coding sequences were downloaded

from the Ant Genome Portal (Munoz-Torres et al. 2011) for

Camponotus floridanus, Harpegnathos saltator, and

Linepithema humile. One-to-one orthologous sequences

were selected using three-way reciprocal BLAST (Camacho

et al. 2009), meaning that for each alignment, every sequence

was the top BLAST hit for the other two sequences.

All protein coding sequences were aligned using PyCogent

assuming a CNFHKY model (Yap et al. 2010).

In every instance, any column in a multiple sequence align-

ment that contained a non-nucleotide character was excluded

and only alignments with at least 500 remaining codons were

analyzed. All data sets are available on Zenodo at http://doi.

org/10.5281/zenodo.192513 (last accessed January 9, 2017).

Any alignments that resulted in GNC fits that did not satisfy

consistency checks (DLC and unique mapping constraints)

were excluded. The mammal, vertebrate, and ant data sets

lost 17, 879, and 1 alignments to the DLC constraint respec-

tively and the mammal, vertebrate, ant, and intronic data sets

lost 94, 20, 10, and 2,139 alignments to the strict unique

mapping constraint, respectively. These numbers are interest-

ing in themselves as they relate to the limits of inference for

GNC, but we observed that removing these data points made

no material difference to our results.

The mammal, vertebrate, ant, and intronic data sets ulti-

mately contained 4,039, 2,008, 2,008, and 10,907 align-

ments, respectively. The median length of the alignments in

nucleotides was 2,256, 2,376, 2,257.5, and 10,113 for each

data set in the same order.

Results

Simulation Results

Our goal in this work is to assess how nonstationarity in the

observed data affects inference drawn using time-reversible

models, specifically regarding questions of selective pressure

and genetic distance. In particular, we will compare GNC with

Y98 from Yang (1998) and CNFGTR from Yap et al. (2010).

GNC is nonstationary, whereas CNFGTR and Y98 are time-

reversible.

It is necessary to fit GNC to a node-rooted tree, but in

reality we would expect a phylogenetic tree to be edge-

rooted. We therefore fitted GNC on an edge-rooted tree to

nine alignments from the mammal data set, in the knowledge

that the fitted model was not consistently estimable, then

simulated 100 alignments from each fitted model. We then

evaluated whether GNC on node-rooted trees could serve as a

reliable proxy for the true nonstationary process under which

the observed sequences were simulated, at least for the pur-

pose of comparison with results from CNFGTR and Y98, by

fitting all three models to each simulated alignment.

The chosen alignments were of one-to-one orthologs of the

Human genes ENSG00000005436, ENSG00000024526,

ENSG00000106443, ENSG00000125207, ENSG00000139517,

ENSG00000162614, ENSG00000176371, ENSG00000180488,

and ENSG00000239305. The alignments were selected to max-

imize the observed difference in codon composition between the

Human and Mouse sequences. Difference in composition was
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measured using Jensen–Shannon divergence (JSD) (Lin 1991). As

we were concerned about the identifiability of GNC on an edge-

rootedtree,wesetallparametersexcludingthescalingparameter

to be equal on the Opossum edge and the internal edge.

Otherwise all parameters were allowed to vary by edge. We

note that the goal here was not to fit a model for the purpose

of inference, but rather to create a known, biologically plausible,

edge-rooted model for the purpose of simulation.

We are interested in bias in estimated genetic distance and

selective pressure. True bias was directly estimated as the gen-

erating model was known, and proxy bias was calculated by

subtracting the GNC estimates of the parameters from the

estimates under the time-reversible models. The results are

shown in figure 2.

We see that the bias introduced by fitting time-reversible

models to data generated by a nonstationary model exceeds

the bias introduced by fitting a model on a node-rooted tree

as most points fall close to the diagonal. We also note that

these results show that our numerical model fitting procedure

is capable of reconstructing the parameters of the generating

models, at least for genetic distance and selective pressure.

There are two small artifacts in figure 2, where the genetic

distance bias is negative on the Human edge, and for selective

pressure on the Opossum edge. We shall see that we are

largely interested in overestimation, that is positive bias, of

time-reversible models for genetic distance, so the small dif-

ference between the proxy bias and the true bias on the

Human edge are not material to our results. For the

Opossum selective pressure results, we note that both proxy

and true bias are close to zero.

The simulation results show that for a small selection of

alignments that comparing CNFGTR and Y98 with GNC on

a node-rooted tree gives reasonable estimates of the bias in-

troduced by fitting CNFGTR and Y98 to data produced by

GNC on an edge-rooted tree. What those biases tend to be

in nature is addressed in the following sections.

The Nonstationary Model Fits Better than the Time-
Reversible Models

For GNC, CNFGTR, and Y98 and the mammal, vertebrate, and

ant data sets, we tested the null hypothesis that the data were

generated by the fitted model against the alternative hypoth-

esis that they were not. We used 49 bootstrap iterations for

every test. This number is low for this type of test, so it is worth

mentioning that these calculations were particularly

FIG. 2.—Effect of using GNC with a node-rooted tree to estimate bias in CNFGTR and Y98 for nine alignments generated using GNC with an edge-

rooted tree. Proxy bias is the average difference between the time-reversible model estimate and the node-rooted GNC estimate over up to 100 simulations.

True bias is the average difference between the time-reversible model estimates and the known parameters. Time-reversible model fits of simulated

alignments were excluded if ! > 10, so 46 out of 900 fits were excluded. The feint diagonal line shows the diagonal and cross-hairs show 95% CIs.
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computationally intensive, requiring the equivalent of well

over 100,000 h of computation on a single computing core.

Table 1 shows the proportion of alignments in each data set

that rejected the null hypothesis at nominal 5% significance.

While none of the models or data sets reproduced the results

in Kaehler et al. (2015), where rejection rates were as low as

6%, GNC consistently performed better than CNFGTR, which

in turn outperformed Y98. The full distributions of the

p-values for these tests are shown in figure 3.

Time-Reversible Models Overestimate Genetic Distance in
a Manner Proportional to Observed Nonstationarity

It was observed in Kaehler et al. (2015) that time-reversible

nucleotide substitution models tend to systematically overes-

timate genetic distance in comparison with a nonstationary

model, in a manner proportional to observed nonstationarity.

We report the same phenomenon for codon substitution

models. We fitted GNC, CNFGTR, and Y98 to the mammal,

vertebrate, and ant data sets.

Define dY98 and dCNFGTR as the expected number of sub-

stitutions over a path through a tree as inferred from the Y98

and CNFGTR models respectively. dGNC is defined above in (2).

As justified by our simulation and model fit results, we quan-

tified the genetic distance bias of time-reversible models using

dY98 � dGNC and dCNFGTR � dGNC. For a pair of sequences, we

take conservation of codon composition as a measure of sta-

tionarity. We use the Jensen-Shannon divergence (JSD) (Lin

1991) for this purpose. Figure 4 shows the relationship be-

tween JSD and genetic distance bias for three data sets. Each

point in those scatter plots represents a single alignment,

where the JSD and genetic distance are taken for the pair of

taxa with maximal JSD within the triad. Alignments were ex-

cluded from the analysis if their scale parameter on any edge

attained a preset maximum value (of 10). No alignment from

the ant dataset was eliminated in this fashion for any model.

For CNFGTR and Y98, one and nine alignments respectively

were eliminated from the mammal data set. For CNFGTR and

Y98, 668 and 1,109 alignments, respectively, were excluded

from the vertebrate data set. None were excluded from the

vertebrate data set for GNC, but the data had already been

filtered using the DLC criterion that removed any such exam-

ples. We performed quartile regressions of genetic distance

bias against JSD for each data set. For CNFGTR, the regression

slopes were 5.5, 16.6, and 4.5 to one decimal place for the

mammals, vertebrates, and ants, respectively. For Y98, the

slopes were 7.4, 16.6, and 6.1 to the same precision in the

same order. To one decimal place, the regression intercepts

were zero for both models for the ant and mammal datasets.

For the vertebrates, the intercepts were 1.0 and 3.5 to one

decimal place for CNFGTR and Y98, respectively.

The overwhelming observation is that genetic distance bias

tends to be positive, and increases with increasing nonstationar-

ity. For the mammal and ant data sets, Y98 yields genetic dis-

tance biases that grow more quickly with increasing JSD than

those for CNFGTR. For these data sets, the intercepts are close to

zero. For the vertebrate data set, the same trend is present but

less clear. We observe that for this data set the fitted scale pa-

rameters for the time-reversible models were often at the preset

bound of 10, indicating that to these models the number of

substitutions often looks saturated. We speculate that this is a

source of noise that obscures these results, even if the edge

lengths are not completely saturated.

Time-Reversible Models Underestimate ! in a Manner
Proportional to Their Overestimation of Genetic Distance

A key feature of a codon model is its ability to estimate natural

selection. We will show that the parameter representing natural

selection, !, as estimated using time-reversible models, is sys-

tematically biased in comparison to its measurement using the

nonstationary model. For this purpose, we fitted GNC, CNFGTR,

and Y98 to the mammal, vertebrate, and ant data sets.

We expect that if edge length is overestimated, then the

corresponding parameter ! should be underestimated to

compensate. We reason that to obtain an observed level of

amino acid conservation, if the genetic distance is greater,

then the damping effect of ! must also be greater. As we

have estimated edge length and ! separately for each edge

we can compare genetic distance bias and ! bias directly, as

we do in figure 5. Genetic distance bias is calculated as de-

scribed in the last section and ! bias is calculated analogously

as !GNC � !Y98 and !GNC � !CNFGTR. Again, where the edge

scale parameter attained its maximum allowed value for any

edge in an alignment, that alignment was excluded from the

analysis; see the previous section for details.

We observed a strong negative correlation between genetic

distance bias and ! bias. As lower ! means that nonsynony-

mous substitutions are more harshly penalized relative to syn-

onymous substitutions, thenunderestimating! corresponds to

overestimating purifying natural selection. While the relation-

ship between genetic distance bias and! bias is noisy, we note

that the majority of the mass for each scatter plot in figure 5

falls in the second and fourth quadrants. For this reason, we do

not speculate on the form of the functional relationship, but

draw regressions through the origin for each plot.

Biases That Affect Time-Reversible Models Do Not Affect
a Simple Non-stationary Model

Yap et al. (2010) used experiments on intronic regions as con-

trols to test for bias in estimates of ! in the time-reversible

Table 1

GNC Dominates Goodness-of-Fit Tests; CNFGTR Fairs Better than Y98

GNC CNFGTR Y98

Mammals 81.0% 83.4% 95.9%

Vertebrates 87.9% 89.0% 90.5%

Ants 74.5% 85.8% 95.6%
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codon models that they considered. This method has great

appeal because it allows us to test our models of natural se-

lection on naturally occurring sequences that we expect to

have evolved under the neutral process for protein coding

content, and as such constitute a negative control for which

we would expect != 1. The models used for these

experiments had to be modified slightly to allow stop

codons in a similar fashion to Yap et al. (2010).

As Yap et al. (2010) compared estimates of ! with the

measured GC content of the sequences, we do the same in

figure 6, with details in table 2. In each case, we fitted GNC,

CNFGTR, and Y98 to the intronic data set.

FIG. 3.—Empirical cumulative distribution functions of P-values for the null hypothesis that the alignment could have been generated by the fitted

model. Hypotheses were tested using the G-statistic and 49 parametric bootstrap iterations. Datasets consisted of (a) 4,039 alignments of mammal protein-

coding sequences, (b) 2,008 protein-coding ant alignments, and (c) 2,008 protein-coding alignments of vertebrates.
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We verify the finding in Yap et al. (2010) that !Y98 has a

strong bias that varies with GC content. Lower GC content

biases !Y98 toward underestimation and higher GC content

biases !Y98 toward overestimation. Overall, median !Y98 is

consistently less than one. It is interesting to note that of the

three edges, the median estimate of ! is close to one for all

FIG. 4.—The genetic distance bias increases with Jensen–Shannon Divergence (JSD). Genetic distance biases are dY98 � dGNC or dCNFGTR � dGNC, where

d is the genetic distance under the model indicated by the subscript. Genetic distance is the expected number of substitutions. Measurement was between

the pair of taxa with maximal JSD for a given alignment. In every case, the time-reversible models tend overwhelmingly towards overestimation. Solid lines

show quantile regressions for 25%, 50%, and 75% quantiles. (a) shows 4,030 (Y98) and 4,038 (CNFGTR) alignments of Human, Mouse, and Opossum

protein coding genes. (b) shows 2,008 alignments of Florida carpenter Ant, Argentine Ant, and Indian Jumping Ant. (c) shows 899 (Y98) and 1,340

(CNFGTR) alignments of Human, Xenopus, and Fugu. Plots have been cropped to remove outliers.
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three models for the marmoset edge. The true root of the

evolutionary tree for these species is expected to lie on this

edge, so we speculate that this is a manifestation of a different

underlying process operating on this edge.

The key finding for our tests on intronic data is that ! bias

does not appear to vary by GC content for GNC or CNFGTR,

with the slopes for the median regression lines for these

models being close to zero. By inspecting the median

FIG. 5.—! bias is negatively correlated with genetic distance bias. An empirical relationship exists between genetic distance bias and! bias. In every case,

the overestimation of genetic distance is linked to underestimation of !. Solid lines show linear regressions through the origin. (a) shows 4,030 (Y98) and

4,038 (CNFGTR) alignments of Human, Mouse, and Opossum protein coding genes. (b) shows 2,008 alignments of Florida carpenter Ant, Argentine Ant,

and Indian Jumping Ant. (c) shows 899 (Y98) and 1,340 (CNFGTR) alignments of Human, Xenopus, and Fugu. Plots have been cropped to remove outliers.
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!CNFGTR we see that it again slightly underestimates ! for the

ingroup edges. This effect is not pronounced for the GNC

results.

That Y98 produces ! estimates that are biased when the

nucleotides are not equiprobable is a consequence of the pres-

ence of codon probability parameters in the Markov genera-

tor, so that substitution rates are confounded with codon

probability parameters. A full description of this phenomenon

is given in Lindsay et al. (2008). Models such as that of Muse

and Gaut (1994), where the transition rates are multiplied by

nucleotide frequencies rather than codon frequencies are less

susceptible to this type of bias, and this property is extended

by design to conditional nucleotide frequency models such as

CNFGTR (Yap et al. 2010). The Muse and Gaut (1994) model

FIG. 6.—! is systematically biased when estimated using Y98 and CNFGTR, but not GNC. ! =1 is expected for these 10,907 intronic alignments of

human, macaque, and marmoset. Scatter plots relate GC content to estimates of!. Solid lines show quantile regressions for 25%, 50%, and 75% quantiles.
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has other biases that are introduced because codon probabil-

ities do not appear to be decomposable into nucleotide prob-

abilities, which are also addressed by CNFGTR. GNC is not

exposed to bias in the same way because the codon proba-

bility parameters do not enter the formulation of the Markov

generator.

Nonstationary and Time-Reversible Models Imply
Different Conclusions regarding whether ! Is Constant
between Lineages

As! can be used to examine the difference between selection

on different edges (Yang 1998; Huttley et al. 2000), we also

tested how inference regarding ! on the human and mouse

edges of the mammal data was affected by model choice.

The null hypothesis was that ! was equal between the

human and mouse edges, against the alternative that it was

not. We performed likelihood ratio tests (LRTs) on this basis. In

all instances, no genetic distances were constrained to be

equal. As for our other experiments, parameters other than

! and the scale parameter were equal across the tree for Y98

and CNFGTR and allowed to vary by edge for GNC. The results

for the 4,039 mammals alignments are shown in figure 7.

GNC indicated more violations of the null hypothesis, rejecting

the null hypothesis at nominal 5% significance in 26.5% of

cases. The two time-reversible models gave almost identical

results, both rejecting the null in 16.4%.

Discussion

We applied simulations, tests of model fit, and comparisons of

statistical inference to examine some ways the assumption of

time reversibility might mislead the scientist. Two representa-

tive time-reversible models were chosen for comparison (Y98

and CNFGTR), and a new, simple nonstationary model was

developed (GNC). We tested three large sets of protein-coding

sequences from mammals, vertebrates, and ants, and one

large control set of intronic primate data.

We included a goodness-of-fit test that is capable of reject-

ing model fits if the model could not feasibly have generated

the data. GNC performed the best of the three models. The

ordering was consistent for every test we performed: GNC

always tended to fit better than CNFGTR, which always out-

performed Y98. In Kaehler et al. (2015), the equivalent exper-

iment showed that a nonstationary nucleotide model was

rejected at close to the type I error rate for one data set.

Here the rejection rates were much higher (> 74% for GNC

in all cases). This shows that it is unlikely that any of the models

considered here could feasibly have generated any of our data

sets. We conclude that of the models considered, GNC tends

to fit the data best, but that it may be possible to improve on

GNC.

For every data set, genetic distances estimated under both

time-reversible models were overestimated in comparison to

those obtained from the nonstationary model. For the

mammal and ant data sets, it was clear that this overestima-

tion was proportional to a nonparametric measurement of

nonstationarity, meaning that if the data supported time-re-

versibility, GNC tended to recapitulate the results obtained

from CNFGTR or Y98. For the vertebrates, the signal was

less clear, although there are some indications that this data

set exists at the limits of our inference.

In conjunction with the results in Kaehler et al. (2015), we

observe that overestimation of genetic distance by time-re-

versible models as proportional to nonstationarity is a consis-

tent trend over data sets from vertebrates, invertebrates, and

microbes for four different time-reversible nucleotide and

codon models. Why fitting time-reversible models to data

generated by nonstationary processes should lead to this phe-

nomenon is an open question.

Next we addressed how inference about natural selection

might be affected by the assumption of time-reversibility. We

hypothesized that ! would be partially confounded with ge-

netic distance, and found strong evidence for both time-re-

versible models and all data sets that when genetic distance

was overestimated, ! tended to be underestimated. As over-

estimation of genetic distance is reduced when less nonsta-

tionarity is observed, so too is underestimation of !, so again

nothing is lost by using GNC rather than CNFGTR or Y98.

Again, we observe that the effect is more pronounced in

Y98 than CNFGTR, particularly for the ants.

In Yap et al. (2010), the conditional nucleotide frequency

models of which CNFGTR is an example were introduced to

combat bias that is observed in Y98 and other time-reversible

codon models. We confirmed that GNC is also immune to

such biases by conducting control experiments on intronic

data from three primates. We perceive this advantage is a

result of the simple form of the GNC parameterization. The

expected result of the experiment was that ! should be ap-

proximately equal to one. This is what we observed for GNC,

with Y98 again systematically underestimating ! in addition

Table 2

! Estimation Is Strongly Biased when using Y98, Weakly Biased when using CNFGTR, and Least Biased using GNC

Median x Median regression slope

GNC CNFGTR Y98 GNC CNFGTR Y98

Marmoset 1.005 1.006 0.998 �0.128 �0.060 0.465

Macaque 0.990 0.976 0.970 �0.064 �0.007 0.508

Human 0.986 0.973 0.965 �0.014 0.035 0.544
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to being biased where GC content was not equal to 0.5.

CNFGTR is interesting because it only slightly underestimates

!. This is in keeping with our other results if the amount of

nonstationarity is low, as in that case we would expect ! to be

only slightly underestimated.

To test the most important statistic that is estimated using

codon models, we tested the hypothesis that! is equal for the

human and mouse edges in the mammal data. GNC was

found to be more likely to reject the hypothesis that ! was

equal and Y98 and CNFGTR, regardless of their apparent dif-

ference in specification and other experimental results here

presented, gave almost indistinguishable results for this test.

Time-reversibility seems to be the key distinction between the

inference drawn from the models in this test. We also per-

formed molecular clock tests similar to those in Kaehler et al.

(2015) and showed that again time-reversibility caused more

difference between inference than any other quality (see

Supplementary Material online). We also confirmed trends

noted in Kaehler et al. (2015).

Our tests of equality across lineages of genetic distance and

natural selection show that these quantities clearly vary by

lineage. It is therefore natural to assume that nonstationarity

must vary from edge to edge as well. We have shown that the

bias introduced by fitting time-reversible models to nonsta-

tionary data varies with nonstationarity. These biases cannot

be a simple scaling of a phylogenetic tree, and so we speculate

that inferences based on time-reversible models outside those

analyzed in this work must also be susceptible to bias.

Understanding the extent to which the historical operation

of natural selection has shaped the distribution of genetic

variation has, to a very large extent, derived from application

of codon models of sequence evolution. In the simplest sense,

our ability to draw inference relies on how well these models

represent the process of neutral sequence evolution. As we

demonstrated previously (Kaehler et al. 2015), utilizing time-

reversible nucleotide substitution processes distorts our

estimation of the number of events in a manner that is pro-

portional to the extent of nonstationarity. Nonstationarity is

common across the tree of life (Karlin and Ladunga 1994). In

this work, we have shown that the biases that were evident in

time-reversible nucleotide models manifest in the codon case

in such a manner as to underestimate the ratio of nonsynon-

ymous to synonymous substitutions. As a consequence, the

application of the time-reversible models to sequences with

FIG. 7.—Empirical cumulative distribution functions of likelihood ratio test P-values between models with equal ! for mouse and human edges and

unconstrained models based on Y98, CNFGTR, and GNC models over 4,039 alignments of human, mouse, and opossum protein coding genes.
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deep evolutionary divergence seems likely to give rise to esti-

mates of natural selection that are artifactual, bringing into

question conclusions regarding historical shifts in the opera-

tion of selection as have been recently reported (Sunagar and

Moran 2015).

Supplementary Material

Supplementary materials are available at Genome Biology and

Evolution online.
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Appendix

Estimation of Selective Pressure under Nonstationary
Models

We show that the definition of Ka=Ks used in Goldman and

Yang (1994) transfers unscathed to the context of nonstation-

ary Markov models. Further, it is equivalent to the parameter

! in the following standard definition (Yang 2006, p. 59).

Define the instantaneous transition rates of a codon sub-

stitution process as

qij ¼

0; more than one difference ;

rij; one synonymous difference

!rij; one nonsynonymous difference

8>><
>>:

where rij is some representation of an evolutionarily neutral

process and ! summarizes the influence of natural selection.

Note that rij is allowed to vary by transition in this formulation

but has traditionally been further constrained to enforce, for

instance, time-reversibility of the process. We denote the

codon probability row vector pðtÞ for time t � 0.

Define two new transition matrices:

qS
ij ¼

( rij; one synonymous difference ;

0; otherwise ;

and

qN
ij ¼

( rij; one nonsynonymous difference ;

0; otherwise ;

so that Q ¼ !QN þ QS, where Q, QN, and QS are the matrices

comprised of qij, qN
ij , and qS

ij , respectively, for their off-diagonal

elements. Diagonal elements are calculated in the usual way

for Markov generators.

Following Goldman and Yang (1994), we define �s and �a

to be the rates of synonymous and nonsynonymous substitu-

tion per codon. They can be shown to be

�s ¼ �pðtÞdiagQS and �a ¼ �!pðtÞdiagQN:

Further, we define �1
s and �1

a as the potentials of synonymous

and nonsynonymous substitutions when no selective con-

straints exist at the amino acid level, that is �1
s ¼ �pðtÞdiag

QS and �1
a ¼ �pðtÞdiagQN. These parameters correspond to

�1s and �1a in Goldman and Yang (1994). Likewise, 3�1
s and

3�1
a represent the potentials per codon. As these have histor-

ically been termed the numbers of synonymous and nonsyn-

onymous nucleotide sites per codon, we continue that

terminology. The numbers of synonymous substitutions per

synonymous site and nonsynonymous substitutions per

nonsynonymous site are Ks ¼ �s=3�
1
s ¼ 1=3 and

Ka ¼ �a=3�
1
a ¼ !=3. It is therefore clear that

! ¼
Ka

Ks
;

which shows that the usual definition and understanding of !

is sufficient in the context of nonstationary Markov models.
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