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Abstract

The identification of drugs capable of reactivating y-globin to ameliorate p-thalassemia and
Sickle Cell anemia is still a challenge, as available y-globin inducers still have limited clinical
indications. High-throughput screenings (HTS) aimed to identify new potentially therapeutic
drugs require suitable first-step-screening methods combining the possibility to detect varia-
tion in the y/B globin ratio with the robustness of a cell line. We took advantage of a K562
cell line variant expressing B-globin (3-K562) to set up a new multiplexed high-content
immunofluorescence assay for the quantification of y- and 3-globin content at single-cell
level. The assay was validated by using the known globin inducers hemin, hydroxyurea and
butyric acid and further tested in a pilot screening that confirmed HDACs as targets for y-
globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with
HDAC:Ss inhibitors entinostat and dacinostat) and identified Heme-oxygenases as novel can-
didate targets for y-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well
as its inhibition by Tin protoporphyrin-IX (TinPPIX) greatly increased y-globin expression.
This result is particularly interesting as several metalloporphyrins have already been devel-
oped for clinical uses and could be tested (alone or in combination with other drugs) to
improve pharmacological y-globin reactivation for the treatment of 3-hemoglobinopathies.

Introduction

Sickle cell anemia (SCA) and B-thalassemia are among the commonest inherited diseases in
humans, with more than 300,000 affected children born every year and with an estimated
worldwide population of tens of millions patients suffering from these disorders [1]. The num-
ber of these patients is increasing because of the decreased mortality from nutrition problems

PLOS ONE | DOI:10.1371/journal.pone.0141083 October 28, 2015

1/14


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0141083&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

A Novel Assay to Identify y-Globin Inducing Compounds

Project (Marie Curie Actions of the European Union's
Seventh Framework Programme FP7/2007-2013/
under REA grant agreement n°28961). The present
research is the result of a collaborative project and
MD is the Marie Curie fellow appointed to Nerviano
Medical Sciences S.r.l. within this network. PC was a
NMS employee at the time the research was
performed (present address: FlowMetric Europe s,
Parco Tecnologico Padano, Via A. Einstein 26900,
Lodi, ltaly).

Competing Interests: The authors have no
competing interests related to this work. FG and IF
are employees in Nerviano Medical Sciences S.r.l.
This does not alter the authors' adherence to PLOS
ONE policies on sharing data and materials.

and infections in the developing countries [2-4]. SCA is caused by a missense mutation within
the adult B-globin chain. Hemoglobin tetramers bearing this altered p chain (HbS) tend to
polymerize within the Red Cell, under hypoxic conditions, conferring the typical sickle shape,
leading to cell lysis, small vessel occlusion, pain crises and organ damage. In -thalassemia, the
reduced synthesis of B chains causes unbalanced accumulation of a-globin that precipitates,
resulting in ineffective erythropoiesis and anemia [5]. Coinheritance of Hereditary Persistence
of Fetal Hemoglobin (HPFH), a condition where the expression of the fetal HBG1/2 is main-
tained postnatally, can ameliorate 3-globinopathies, by reducing sickle hemoglobin polymers
in SCA and the o/non-o chain imbalance in B-thalassemia[6]. This observation led to the
intensive search for fetal hemoglobin (HbF) inducers that could mimic the beneficial effects
observed in HPFH[7-9]. Genome-wide association studies identified three major gene loci
(Xmn1-HBG2, HBS1L-MYB and BCL11A) accounting for the majority of inherited HbF vari-
ance[10] but their exploitation as therapeutic targets is still distant. Another line of research
focused on the development of drugs acting on y-globin regulatory molecules: different classes
of drugs (cytotoxic agents, HDAC inhibitors, DNA methyl transferase inhibitors) have been
tested as HbF inducers but, despite the enormous effort in this direction and some encouraging
results on some patients, no universal effective drugs have been found so far. Among them,
hydroxyurea (HU) has been approved by the FDA for the treatment of SCA and has been
recently considered for B-thalassemia, but its efficacy varies among patients. Indeed, about half
of the patients do not reach therapeutic levels of HbF at HU doses of acceptable toxicity[11,12].
Other agents, such as short-chain fatty acids (Butyrate and its derivatives), 5-azacytabine, Deci-
tabine and Tranylcypromine act on the epigenetic regulation of HbF, by inhibiting histones
deacetylation or methylation of the HBG1/2, but their efficacy is still limited to a minority of
patients[13-16].

These observations point to the strong need to identify new compounds stimulating y-glo-
bin expression.

With this goal in mind, we set up a high-content screening platform based on multiplexed
imaging on a variant K562 cell line (8-K562) spontaneously expressing significant levels of -
globin. Simultaneous analysis of DNA content, adult hemoglobin HbA (0:232) and fetal hemo-
globin HbF (0:2y2) resulted in a robust and sensitive assay, capable of detecting changes at the
single cell level in hemoglobinization and in y/p ratio in response to drugs, as proved by the
response of f-K562 to the known y-globin inducers hemin, hydroxyurea and butyric acid and
to two additional HDAC inhibitors: entinostat and dacinostat.

The method was further validated by transfecting B-K562 with a panel of 70 siRNAs.
Among them, we identified HMOX2, coding for Heme-oxygenase2 (HO-2), as a gene whose
knockdown greatly increases v globin levels, both in terms of percentage of expressing cells and
of y-globin accumulation per cell. Tin Protoporphyrin IX, a prototypical compound inhibiting
HO-2, induced selective y-globin accumulation in p-K562, suggesting that Heme-oxygenases
could be a promising pharmacological target to ameliorate the a/f chains unbalance in B-
hemoglobinopathies.

Materials and Methods

Cell lines and chemical treatments

ECACC-K562 (European Collection of Cell Cultures) and B-K562 (a kind gift of Prof. G. Fer-
rari, HSR, Milano) were grown in standard conditions[17]. B-K562 were originally purchased
from ATCC (CCL-243™). Doubling times were calculated on cells growing in exponential
phase. B-K562 authentication was obtained by short tandem repeat fingerprinting (AmpFISTR
Identifiler Plus PCR Amplification kit - Applied Biosystems-), as described in [18]. For
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chemical treatments, 5 x 10* cells were exposed to increasing doses in 24-well plates. After four
days, cells were analyzed by RTqPCR or high-content analysis. All experiments were per-
formed in triplicate (at least two technical replicates per experiment). Chemicals and antibodies
are listed in S1 Table.

siRNA oligonucleotide transfections

B-K562 cells were transfected with siRNA oligonucleotides (H-Silencer Select Druggable
Genome siRNA Library V4, Ambion). A siRNA oligo targeting the proteasome subunit
PSMC3 and a non-targeting oligo (siNTO) were used as positive and negative controls for
transfection (siRNA sequences are listed in S2 Table). At least two siRNAs oligonucleotides
per gene were transfected by using lipofectamine® RNAIMAX (Invitrogen), as described in
S1 File.

Immunofluorescence and high-content analysis

Cells were collected and fixed in 3.7% paraformaldehyde for 20" at RT, washed and permeabi-
lized in staining buffer (PBS with 0.05% v/v Triton® X-100 and 1% w/v powdered milk) for
30’. After washing in PBS, cells were incubated overnight at 4°C in staining buffer containing
the appropriate antibodies and 1pug/ml Hoechst 33342. After washing, cells were resuspended
in PBS and transferred to 96-well CELLSTAR®), Black/uClear®) plates (Greiner Bio-One).
Plates were spun for 5 at 2g to facilitate cell attachment, sealed and analyzed with the ArrayS-
can VTT high-content screening reader (Thermo-Fisher Scientific). At least 600 cells were
acquired in each well with a 20x magnification in three fluorescence channels (blue, green and
red). The Molecular Translocation Bioapplication was used to determine the cell count per
field, the nuclear area and intensity (based on the Hoechst staining in the blue channel) and
the cytoplasmatic fluorescence intensity of B (green) and y (red) globins. For simultaneous glo-
bins/GlycophorinA staining, APC-anti-CD235 antibody was added for 2 hours to cells already
stained for globins.

Confocal microscopy

K562 and B-K562 cells, stained as above, were transferred to a microscope glass slide and
mounted with Mowiol (Sigma-Aldrich). Microphotographs were acquired with a confocal
Zeiss microscope LSM710.

Flow cytometry

10° cells were washed, fixed and permeabilized for 10 on ice, then washed and incubated in
PBS+1% milk for 20°. After washing, cells were stained overnight at 4°C in PBS+1% milk con-
taining the appropriate antibodies. After washing, cells were analyzed with FACSCalibur (Bec-
ton Dickinson).

RNA Isolation and RT-PCR

Total RNA from 10° cells was extracted with TRI Reagent (Applied Biosystems), treated with
RQ1 DNase (Promega) for 30" at 37°C and retrotranscribed (Applied Biosystems). Negative
control reactions (RT") gave no signal. Real time analysis was performed using ABI Prism
7500, (Applied Biosystems). Primers are listed in S3 Table.

Statistical analysis

Each experiment was statistically analyzed using a paired, two tailed Student-t-test.
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Results

Identification and characterization of a K562 variant subclone
expressing -globin

K562 are probably the most extensively used cellular model of a human “erythroid” cell. This
line was established in 1975[19] from a patient with chronic myelogenous leukemia (CML) in
blast crisis. K562 have been widely used to study the molecular regulation of embryonic and
fetal globin genes and to assess the therapeutic potential of differentiation-inducing drugs[20].
However, the major limitation for their use in the study of the differential y/B regulation is
their “fetal-like” pattern of globin genes expression, since they exclusively express embryonic
(HbGower-2, 02e2) and fetal (HbF, 02y2) hemoglobin[21,22].

While characterizing different K562 subclones, we came across a variant clone expressing
the adult HBB, that we named -K562. These cells are morphologically similar to ECACC
(European Collection of Cell Culture) K562 cells, here considered as “prototypical” K562 cells
(not shown). Moreover, K562 and B-K562 have a similar doubling time (S1A Fig) and are
equally sensitive to drugs known to inhibit K562 proliferation: imatinib mesylate and dasatinib,
two tyrosine kinase inhibitors targeting the bcr/abl fusion protein and doxorubicin, a DNA
intercalating agent (S1B Fig). In addition, B-K562 fingerprinting characterization by using the
STR AmpFISTR Identifiler Plus, gave a profile substantially corresponding to K562 (Identity
score[18] of 89.2%, not shown). Despite their bona fide “K562-like” profile, B-K562 do express
the adult B-globin chain, as assessed by flow cytometry (FCM) analysis (S1C Fig).

Based on this observation, we reasoned that the 3-K562 subclone could be used to set up an
immunofluorescence high-throughput, high-content screening platform to search for new
genes/drugs modulating hemoglobinization and, in particular, the y/p ratio.

Development of a multiplexed high-content assay for the quantification
of y- and 3-globin content in 3-K562 at the single-cell level

5x10* K562 or B-K562 were seeded in 24-well plates. Nuclei were stained with Hoechst-33342;
- and B-globins were immunostained by using specific PE-anti y and FITC-anti -globin anti-
bodies, respectively (S1D Fig). Cells were subsequently analyzed with an Array Scan VTI reader
(Thermo-Fisher Scientific) and data were acquired and processed as shown in Fig 1A and 1B
to obtain an automated and quantitative fluorescence imaging at a single cell level. The inten-
sity of the staining is automatically converted in the corresponding intensity of colors: blue for
Hoechst, green for B-globin and red for y-globin.

The detection threshold for the scoring of single y*-, B*- and double B*y"-cells was defined by
using cells stained with the respective isotype controls (PE-IgG; and FITC-IgG;, an example is
shown in S1E Fig). When signals from the three single channels are merged (Fig 1A), the double
expression of y plus B results in an orange/yellow color of different intensity, depending on the
amount of y and P chains (see cells 3 and 6 in Fig 1B). This analysis allows measuring of both the
percentage of single-positive (y" or B*) and of double positive (y*B") cells in each field. Moreover,
the signal intensity per cell uncovers the intrinsic heterogeneity within the cell population. In a
standard experiment, data are acquired from a minimum of 500 cells and plotted to give an
immediate visual image of cell distribution with respect to globin accumulation per cell, as in
Fig 1A, where a representative experiment is shown. The majority of K562 cells are y* (54.1%
Y'B +3.1% y"B"), the remaining being mostly y'B", with just a few marginally 8" cells (3.1%

Y BT +0.7% vy B"). In contrast, about 57% of B-K562 cells are y* (38.3% y'B + 18.7% y'B") and
about 22% of cells are positive for B staining (18.7% y*B" + 3.6% Y B"). Moreover, the Mean Fluo-
rescence Intensity (MFL Y axis) of y* cells is higher than in B-K562 (Fig 1A and S1C Fig). The
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Fig 1. Analysis of y/B globin levels by immunofluorescence and automated image capture. A) Image acquisition and analysis for B-K562 and K562.
Merged signals of DNA (Hoechst-33342), 3-globin and y-globin are read in channel 1 (Ch1), channel 2 (Ch2) and channel 3 (Ch3), respectively (see also
S1D Fig). Bar = 50pm. The intensity value of signals is automatically assigned by the instrument and converted into a corresponding intensity of color. The
relative scatter plots show the distribution of double y B~ negative, single y*B~ positive, single y B* positive and double y*B* positive cells (x axis: FITC-B-
globin; y axis: PE-y-globin). Numbers within plots refer to the averaged percentage of cells within each population from three independent experiments

(n =3). The relative st.errors are shown in panel C: ¥p<0,05; ** p<0,01; ***p<0,001. B) Quantitative fluorescence imaging of single cells: cells numbered
from 1 to 6 in panel A are taken as an example of y'3” double negative (1 and 2), single y*B” positive (5), single y'B* positive (4) and y*B* double positive (3
and 6). C) Statistical analysis (n = 3): y B~ cells; red: y*B cells; yellow: y*B* cells; green: yB* cells. D) RTgPCR on q, &, y- and B-globins. Histograms show the
relative levels of expression normalized on glyceraldehyde-3-phosphate dehydrogenase (GAPDH). n>3, statistical analysis: *p<0,05; **p<0,01;
**¥*p<0,001.

doi:10.1371/journal.pone.0141083.g001

expression of B-globin in B-K562 was further confirmed by RTqPCR (Fig 1D). Of interest, an
intrinsic heterogeneity of the culture is present also for f signal: the large majority of B § -K562
cells also co-express y-globin (18.7% of total cell population, corresponding to & 85% of B cells,
Fig 1C), whereas only few cells appear to be completely “switched” to 8 expression (3.6% of total
cell population, corresponding torz 15% of " cells, Fig 1C). Overall, these data confirm that f-
K562 express -globin and provide additional information on the population heterogeneity.

Validation of y/B globin high-content assay by using the known
hemoglobin inducers hydroxyurea and butyric acid

To test the sensitivity of the method in detecting changes of y- and B-globin levels, we treated
B-K562 cells with the known Hemoglobin inducers, hydroxyurea (HU) and butyric acid (BA).
We measured the response of B-K562 cells at different pharmacological concentrations of these
drugs (S2 Fig) and we analyzed the same cell samples by both RTqPCR and immunofluores-
cence. Fig 2 summarizes data relative to drug concentrations most commonly used in the litera-
ture to induce hemoglobinization in K562.

Both inducers, as expected, increase the hemoglobin content, reducing the number of dou-
ble negative cells (Fig 2A and 2B). hydroxyurea induces both y and B chains accumulation, as
demonstrated by the increased percentage of y*B* double positive cells. Instead, butyric acid
especially increases the percentage of y*f" cells, suggesting a different mechanism of action for
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these compounds (Fig 2B). In addition to increasing the number of globins-positive cells, these
drugs also strongly increase the proportion of highly fluorescent cells (S2B Fig) acting predom-
inantly on y-globin accumulation versus B-globin.

At the mRNA level, both HU and BA stimulate y expression by about 6-7 fold relative to
untreated cells, whereas B-globin expression is essentially unchanged (Fig 2C). Finally, a.-globin
is moderately induced by both drugs, with BA eliciting the strongest increase (about four
times). Overall, RTqPCR data confirm the effects observed at the protein levels, indicating the
reliability of the assay.

The visual microscopy analysis can provide further information on additional parameters at
the single cell level, such as nuclear morphology (Fig 2D) and/or the expression of specific
markers of interest. As an example, the quadruple staining of B-globin, y-globin, nuclei and
GlycophorinA shows increased levels of GlycophorinA in -K562 exposed to HU (Fig 2D).
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Fig 2. High-content analysis of compound-induced changes in globins accumulation. 3-K562 cells were treated with 800uM hydroxyurea and 900uM
butyric acid (n = 3, a representative experiment is shown here) and the same cells were analyzed in parallel by immunofluorescence and by RTqPCR 4 days
after the addition of the drugs. A) Immunofluorescence images (Bar = 50pum) and relative scatter plots. Data from three independent experiments are
presented and statistically analyzed (B) as in Fig 1. C) RTqQPCR on a-, y- and 3- globins. Histograms show the relative levels of expression relative to
GAPDH. D) Confocal analysis of f-K562 cells untreated or treated with HU as in panel A and subjected to a quadruple staining with Hoechst (blue), anti -
(green), anti y-globin (red) and anti-CD235a (white). Magnification: 20x. Right panel: 40x magnification of individual cells y*CD235a* or *CD235a* double
positive and y*B*CD235a" triple positive, respectively.

doi:10.1371/journal.pone.0141083.g002
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siHDAGS

The transfection of a panel of sSiRNAs confirms the effectiveness of the
immunomicroscopy platform to identify genes affecting hemoglobin
synthesis and to test the efficacy of their modulators

We then tested the efficacy of our method in identifying genes that could affect hemoglobiniza-
tion and/or y/p ratio by siRNA transfection. Firstly, we set up different types of controls: i) as a
negative control we transfected a non-targeting oligo (siNTO); ii) as a positive transfection
control we targeted the proteasome 26S subunit, ATPase3 (siPSMC3), the knockdown of
which should severely affect cell growth; iii) we knocked-down y-globin (siHBG1) and B-globin
(siHBB) obtaining almost complete ablation of the respective signals (S3A Fig).

To test the sensitivity in capturing changes in /B ratio, we knocked down HDACS3, repro-
ducing the y-globin promoter de-repression induced by treatment with butyric acid and its
derivatives [23]. In HDAC3Kkd cells, we observed a marked increase in both y- and B-globins,
suggesting a broad mechanism of transcriptional de-repression (Fig 3A and 3B). In line with
this, the cells treatment with HDAC inhibitors entinostat (MS-275) -an inhibitor of HDAC1
and HDACS3- and dacinostat (LAQ-824) induced y-globin accumulation in a dose response
manner (Fig 3C and 3D and S3B and S3C Fig). These results further confirm HDAC as targets
for y-globin reactivation and identify two additional inhibitors-in addition to BA (Fig 2)-, as
potential therapeutic agents activating y-globin.
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Fig 3. High-content y/$ globin analysis as readout of siRNA screening in -K562 confirms HDAC as targets for y-globin activation. A) Cells were
transfected with a non-targeting oligo (siNTO) as negative control and with a siRNA directed to HDAC3. Two siRNAs were tested, with two technical
replicates. C) B-K562 treated with two different HDAC inhibitors: entinostat and dacinostat (see also S3 Fig). A and C) Immunofluorescence images

(Bar = 50pm) and relative scatter plots. Data from three independent experiments are presented and statistically analyzed (B and D) as in Fig 1.

doi:10.1371/journal.pone.0141083.9003
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Fig 4. HMOX2 siRNA-mediated knockdown and hemin or Tin-PPIX treatment have similar effects on B-K562 hemoglobinization levels. A) Cells were
transfected with a non-targeting oligo (siNTO) as negative control and with a siRNA directed to HMOX2. Two siRNAs (see also S4A Fig) were tested, with
two technical replicates. C) Cells were treated with 50uM of either hemin or Tin-PPIX. A, C) Immunofluorescence images (Bar = 50um) and relative scatter
plots. Data from three independent experiments are presented and statistically analyzed (B and D) as in Fig 1. E) RTqPCR on a-, y- and -globins from cells
treated with hemin or Tin-PPIX. Histograms show levels of globins expression relative to GAPDH (n = 3).

doi:10.1371/journal.pone.0141083.9004

Is Heme-oxygenase a potential target for y-globin induction?

Given the above results, we undertook a pilot transfection screening on B-K562 with a panel of
70 siRNAs from the Ambion V4 library (54 Table). Amongst them, siRNAs targeting the
Heme-oxygenase (HO) coding gene HMOX2 (S4A Fig) gave a striking increase in globins with
a prevalent accumulation of highly y-globin expressing cells (Fig 4A and 4B). Heme-oxygenase
catalyzes the conversion of heme to biliverdin (that, in turn, is immediately converted into bili-
rubin), iron and carbon monoxide. Both hemin, and Heme-oxygenase work on heme pool
homeostasis, albeit in an opposite way, the first by replenishing the heme pool and the latter by
promoting its degradation[24]. We then reasoned that the effect of the pharmacological inhibi-
tion of HO could result in globins stimulation similar to that known to be elicited by hemin
(and possibly by the HMOX-2 knockdown shown in Fig 4). To test this hypothesis, we per-
formed a dose/response treatment for hemin and Tin protoporphyrin IX (Tin-PPIX), here con-
sidered as prototypical HO inhibitor (S4B Fig). Fig 4C and 4D shows a striking increase in the
percentage of y-globin expressing cells and in y-globin accumulation obtained upon Tin-PPIX
treatment. Interestingly, whereas hemin treatment significantly increases the percentage of
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double y*B* positive cells, Tin-PPIX seems to have a more selective activity on v, as confirmed
by the MFI values (S4C Fig). Instead, at the mRNA level, the effect of hemin and Tin-PPIX are
very similar (at equal concentrations), suggesting that post-transcriptional effects may play
additional roles in balancing the o/non-o ratio.

Discussion

We present a reliable and sensitive assay based on the unique property of B-K562 that express both
v and B genes to perform a first step high-throughput screening (HTS) to identify genes/drugs
influencing the y/B globin ratio. This overcomes the major limitation of the available human ery-
throid cell lines to study hemoglobin switching, i.e. their exclusive expression of embryonic/fetal
genes. Indeed, HT'S approaches published so far are almost exclusively based on cell lines trans-
fected with a variety of reporters, under the control of y and B globins promoters in the context of
artificial genes/genomic arrangements[25],[26]. Recently established IPs-derived immortalized cell
lines [27] represent a very promising tool for similar studies, but we feel that the easiness of growth
and manipulation of B-K562 still represent a valuable advantage. Moreover, the growth factors
independence of B-K562 prevents the possibility that globins expression could be influenced by
subtle changes in growth conditions, and/or by other manipulations required to establish hES/hIPs.

More physiological models for these studies are also available: mice carrying artificial chro-
mosome constructs encompassing the entire human B-locus, some of them containing knock-
in fluorescent reporters under the control of globins promoters[28-30]. The advantage of such
models with respect to cell lines is counterbalanced by their reduced manageability making
them unsuitable for first-step HTS.

B-K562 cells are a valid tool for first-step screening because of their spontaneous expression
of both y- and B-globins from the intact B-locus (Fig 1). The presence of y*B" double positive
cells and the plasticity in modulating y and B expression suggest that in f-K562 the chromatin
environment at the § locus is overall relatively accessible, making these cells particularly sensi-
tive in detecting possible drugs/siRNA effects on v activation. Regarding this issue, it is impor-
tant to note that also in normal adult individuals there is a low proportion of HbF-positive
cells—a few percent-, and immature cells in adults are known to transiently express y-globin
[31,32]. This suggests that a permissive environment for y-globin expression may be present,
although transiently, also in adult human cells, and could be modulated by drug treatment.

Specific antibodies allow a reliable picture of the final readout of interest, i.e. the amount of
B- and y-globin protein upon different drugs treatments/genes manipulations at the single cell
level, providing hints about the heterogeneity of the response. In parallel, RTqPCR provides
information on the differential regulation (transcription/RNA processing and stability versus
translation) of globin expression (as well as on any other gene of interest) elicited by drugs/treat-
ments (Figs 2-4) and modulators (siRNA targeting of HDAC3 and HMOX2, Figs 3 and 4).

The microscopy analysis can be further implemented to simultaneously analyze changes in
multiple cellular parameters, such as morphology and/or expression of specific markers (Fig
3E), thus allowing the detection of possible effects of the tested drugs/treatments on different
cellular processes. Importantly, the globin expression analysis is performed at the single cell
level. This latter aspect is of particular relevance since the response to pharmacological agents
that increase HbF is expected to involve either the accumulation of y-globin in each single cell
(due to transcriptional and/or translational effects) or the selection of subsets of erythroid dif-
ferentiating “responder” cells, on the basis of a pre-existing heterogeneity.

B-K562 cells, allowed an efficient automated transfection-based screening, that led to the
confirmation of HDACs as “druggable” targets for v reactivation[16] (Fig 3) and to the identifi-
cation of Heme-oxygenases (Fig 4) as possible novel target.
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Regarding HDACs, we tested the effect on B-K562 of three different inhibitors: butyric acid
(BA), a well known y-inducing agent, entinostat (MS-275) and dacinostat (LAQ-824). Dacino-
stat has been considered for myeloid leukemia treatment because it promotes apoptosis in
CML and AML cells [33]. Entinostat, an inhibitor of HDAC1 and HDACS3, is an inducer of cell
differentiation in AML cells, not associated with apoptosis induction[34-36]. Whereas BA
appears to specifically lead to y-globin expression, entinostat and dacinostat lead to an increase
in both y- and B-globins, suggesting a different selectivity profile of these three compounds.

Concerning Heme-oxygenases, our study identified them as a novel class of potential drug-
gable targets to reactivate y-globin. Our results show that drug competitive inhibition of Heme-
oxygenases by protoporphyrins (and thus presumably by other derivatives) is able to induce a
substantial increase in y-globin accumulation. In erythroid cells, the main function of heme is to
serve as the oxygen-carrying moiety in hemoglobin (Hb), and heme biosynthesis is thus strictly
coordinated with globin accumulation along with erythroid differentiation and maturation[37].
Heme, when present at high concentrations in the globin-unbound state (as in B-thalassemia),
inactivates the heme-regulated eukaryotic initiation factor eIF20.-kinase (Heme Responsive
Inhibitor, HRI), converting it into an inactive form. As active HRI inhibits the eIF2o. translation
initiation factor, excess heme increases globin synthesis, allowing a better balance between heme
and globin chains[38]. Therefore, Heme-oxygenase inhibition, by increasing heme levels, is
expected to favor globin synthesis. In addition, heme catabolism by oxidation is linked to genera-
tion of biologically active molecules, such as iron, biliverdin, CO and NO[24,37]. The observation
that both heme addition and inhibition of HO increase globin expression in 3-K562 is consistent
with the expected role of heme in relieving translational inhibition by HRI; however, the increase
of globin mRNA levels, particularly of y-globin (mRNA and protein) is not easily explained only
by a simple effect on globin mRNA translation. It is possible that the translational effect of HRI
also operates on other factors, for example transcription or chromatin factors regulating the
HBG1/2. Previously, studies of HMOXI1 deficiency demonstrated a clear effect on both stress and
steady state erythropoiesis[39-42], but less is known about the possible specific role of the consti-
tutive HMOX2 (the most abundant isoform expressed by K562[43]) in erythroid cells[37,44]. Of
interest, a polymorphism in the HMOXI1 gene was associated with high levels of fetal hemoglobin
in Brazilian patients with sickle cell anemia[45].

Both HO-1 and HO-2 are sensitive (albeit to a different extent) to the competitive inhibition
elicited by different Metalloporphyrins and the availability of different drugs with different
selectivity make HOs an attractive target for pharmacological inhibition. This result is of par-
ticular interest because different Metalloporphyrins have been developed and tested in clinics
[46]. Our results suggest that their use, as single agent or in association with other known and
FDA-approved HbF inducers, such as HU, should be explored as a promising tool to improve
the o/non o globin chain imbalance in B-hemoglobinopathies. To address this question we are
currently studying the effect of different Metalloporphyrins in mice carrying a complete
human HBB locus transgene e and in ex-vivo cultures from thalassemic patients.

Supporting Information

S1 Fig. Characterization of the p-K562 subclone by comparison with ECAAC-K562. A)
Growth curves (n = 2). B) Response (ICsg) to imatinib mesylate, dasatinib and doxorubicin
(n>3). C) FCM analysis: cells were stained with anti y- and anti B-globin antibodies and with
the corresponding isotype controls and read in FL-1 (FITC, green channel) or in FL-2 (PE, red
channel). A representative experiment is shown. Immunofluorescence setup. D) In the immu-
nofluorescence analysis, nuclei were stained with Hoechst-33342; HbF and HbA were immu-
nostained by using specific anti y- and anti 3-globin antibodies and signals were acquired in
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three single channels: blue for Hoechst (Ch1), green for 3-globin (Ch2) and red for y-globin
(Ch3), respectively, and then merged for analysis (Merge). E) Images acquired in the single
channels for representative isotype controls and relative scatter plots. Bar = 50pum.

(TTF)

S2 Fig. Dose/response of B-K562 to Hydroxyurea and Butyric Acid. A) Representative
ArrayScan pictures of B-K562 cells treated with increasing doses of HU and BA (n>3).

Bar = 50um. B) Fluorescence intensity plots to better visualize the changes in mean fluores-
cence intensity (MFI) of stained cells upon drugs treatment. Y axis: number of events (cells); X
axis: fluorescence intensity for B-globin signal (upper panels) or y-globin signal (lower panels),
respectively. Green/Red curves: treated cells. Black curve: untreated cells. The vertical dotted
line within each panel corresponds to the threshold set in Fig 2A. The MFI and the percentage
of positive cells (%) are indicated within each panel.

(TIF)

$3 Fig. HDAC3 siRNA-mediated knockdown and HDAC inhibitors treatment in B-K562
confirm HDAGC: as targets for y-globin activation. A) Cells were transfected with a non-tar-
geting oligo (siNTO) as negative control and with a siRNA directed to PSMC3 as positive
transfection control. As further control, siRNAs targeting v- and -globins greatly reduced the
corresponding globins chains. For each gene, two siRNAs were tested, with two technical repli-
cates (immunofluorescence images of representative experiments are shown). Bar = 50pm.
Scatter plots are provided for each immunofluorescence image (n = 2). B) Representative
ArrayScan pictures of B-K562 cells treated with increasing doses of entinostat and dacinostat.
C) MFI plots as in S2 Fig.

(TIF)

S4 Fig. Hemin and Tin-PPIX have similar effects on B-K562 hemoglobinization levels. A)
HMOX2 knockdown: RTqPCR on cells transfected with a non targeting oligo (siNTO) and
with two independent siRNA directed to HMOX2. B) Representative ArrayScan pictures of -
K562 cells treated with increasing doses of Hemin and or Tin-PPIX. Bar = 50um. C) MFI plots
as in S2 Fig.

(TIF)

S1 File. siRNAs oligonucleotide detailed transfection method.
(PDF)

S1 Table. Chemicals and antibodies.
(PDF)

$2 Table. List of siRNA oligos.
(PDF)

$3 Table. List of primers used for RTqPCR.
(PDF)

$4 Table. List of genes tested by siRNA-mediated knockdown and selected from the
Ambion-library.
(PDF)
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