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Effective ecosystem risk assessment relies on a conceptual understanding of

ecosystem dynamics and the synthesis of multiple lines of evidence. Risk

assessment protocols and ecosystem models integrate limited observational

data with threat scenarios, making them valuable tools for monitoring

ecosystem status and diagnosing key mechanisms of decline to be addressed

by management. We applied the IUCN Red List of Ecosystems criteria to

quantify the risk of collapse of the Meso-American Reef, a unique ecosystem

containing the second longest barrier reef in the world. We collated a wide

array of empirical data (field and remotely sensed), and used a stochastic

ecosystem model to backcast past ecosystem dynamics, as well as forecast

future ecosystem dynamics under 11 scenarios of threat. The ecosystem is

at high risk from mass bleaching in the coming decades, with compounding

effects of ocean acidification, hurricanes, pollution and fishing. The overall

status of the ecosystem is Critically Endangered (plausibly Vulnerable to

Critically Endangered), with notable differences among Red List criteria

and data types in detecting the most severe symptoms of risk. Our case

study provides a template for assessing risks to coral reefs and for further

application of ecosystem models in risk assessment.
1. Introduction
Ecosystems around the world face degradation and collapse as a result of environ-

mental and human-induced changes. Ecosystem collapse may involve large losses

of biodiversity, ecosystem functions and services, as well as societal structures [1].

Understanding the risk that ecosystem collapses will occur is a fundamental

requisite for conservation planning and adaptation to environmental change.

Two tools are commonly used in biodiversity risk assessment: generic risk

assessment protocols and stochastic simulation models. Risk assessment

protocols—such as the International Union for Conservation of Nature (IUCN)

Red List of Ecosystems [2]—assign ecosystems to ordinal categories of risk
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based on decision rules. Risk assessment protocols use mul-

tiple symptoms to assess risk, such as ecosystem distribution

size and rates of decline in distribution size and/or ecological

function [3]. Risk assessment protocols are widely applica-

ble, with hundreds of ecosystems assessed in countries as

diverse as Finland, South Africa and Australia [3], including

in data-poor circumstances [2]. However, most risk assess-

ment protocols take limited account of interactions among

threats, and are unable to fully integrate spatial and functional

trajectories of ecosystem decline [4].

Ecosystem simulation models are used to quantitati-

vely estimate risk based on a mechanistic understanding of

ecosystem dynamics, future threats and social–ecological

relationships [5]. Some ecosystem models can integrate func-

tional and spatial patterns of decline with information on

multiple threats, thereby providing a detailed understanding

of ecosystem responses to changing environments and human

pressures [5]. These models may be used to forecast ecosystem

dynamics under various scenarios [5] and backcast dynamics in

data-poor situations [6]. They can also be used to test the

reliability of indicators used in management and to diagnose

key mechanisms of ecological change [7]. However, ecosystem

models often demand large quantities of data and are

only accessible to a narrow community of scientists, constrain-

ing their use to few ecosystems [8]. Adapting existing

ecosystem models to new research questions or management

objectives—such as risk assessment—also poses challenges [8].

Risk assessment protocols and ecosystem models are

complementary rather than alternative approaches to risk

assessment. IUCN Red List of Ecosystems (RLE) assessments

rely on a mechanistic understanding of ecosystem dynamics,

usually depicted by a conceptual model that summarizes key

ecosystem processes to risk managers, conservation prac-

titioners, and the wider community [2]. The conceptual

model informs the selection of indicators to assess functional

declines and underpins the development of ecosystem

models [4]. The RLE protocol incorporates quantitative

estimates of risk based on stochastic ecosystem models (cri-

terion E), a process analogous to the use of population

viability analyses for species [2]. For instance, Burns et al. [9]

predicted a very high likelihood (�92%) of collapse for the

mountain ash forest in Australia under 39 harvesting and fire

regime scenarios. Their model formed part of a comprehensive

RLE assessment, in which modelled estimates of collapse com-

plemented assessments based on spatial distribution, declines

in distribution and declines in ecological function [9]. Ecosys-

tem models remain underused in ecosystem risk assessment,

with only two RLE assessments applying criterion E to date

[2,9]. There is therefore a clear need to adapt existing ecosystem

models for use in risk assessment, as well as provide guidance

on how to assess risks to ecosystems with models.

Coral reefs are ideal ecosystems to investigate the use of

ecosystem models in risk assessment, as they are biologically

and economically important [10], vulnerable to a range of

interacting threats [11], and extensively modelled [7]. We use

a ‘whole-of-ecosystem’ model, the Coral Reef Scenario Evalu-

ation Tool [12], to assess risks to the Meso-American Reef

(MAR). The MAR contains the second longest barrier reef in

the world, and extends more than 1000 km from Mexico to

Belize, Guatemala and northern Honduras (figure 1). The

MAR has been affected by multiple threats over the last 50

years, including hurricanes, lionfish invasion, overfishing, pol-

lution, ocean acidification, rising sea surface temperatures, and
disease outbreaks among urchins and corals [12,13]. As in

many coral reefs around the world, threats are predicted to

increase in the future [11], so there is an urgent need to under-

stand interactions among threats and evaluate potential levers

for management [14].

We collated and analysed a wide array of empirical data

(field and remotely sensed), and used a stochastic ecosystem

model to assess the MAR with the RLE criteria [2,4]. The

RLE lists ecosystems in eight categories of risk largely mirrored

on the IUCN Red List of Threatened Species, including

three threatened categories (Vulnerable, Endangered, and

Critically Endangered) defined by quantitative criteria. Two

criteria assess spatial symptoms of ecosystem collapse: declines

in spatial distribution (criterion A) and small distribution

size (criterion B). Two criteria assess functional symptoms,

namely environmental degradation (criterion C) and biotic dis-

ruption (criterion D). Declines in spatial distribution,

environmental degradation and biotic disruption (criteria A,

C and D) are measured over three time frames: the past 50

years (subcriterion 1), the next 50 years (subcriterion 2a) and

since the pre-industrial period (subcriterion 3). Finally, cri-

terion E evaluates quantitative estimates of the risk of

collapse over the next 50–100 years.

We use the relatively data-rich example of the MAR to

explore how synthesizing multiple lines of evidence with a

stochastic ecosystem model can inform ecosystem risk assess-

ment and threat diagnosis. In doing so, we provide practical

guidance for assessing risks to ecosystems around the world

with ecosystem models, with a focus on coral reefs.
2. Methods
(a) Ecosystem model
The Coral Reef Scenario Evaluation Tool is a stochastic ecosystem

model that focuses on five benthic groups (brooding corals, spawn-

ing corals, macroalgae, turf and epilithic algal communities) and

four consumer groups (herbivorous fish, small piscivorous fish,

large piscivorous fish and urchins) [12] (figure 2). Functional

groups interact through spatial patterns of recruitment, dispersal,

foraging and competition. The model is updated weekly and run

on 2 � 2 km grid cells. Model dynamics are well understood,

including model sensitivity and uncertainty [15], and behaviour

under future scenarios [14].

First, we recreated pre-human reef dynamics over a 100-year

period, only including disturbance from hurricanes based on his-

torical levels (electronic supplementary material, appendix S1).

This enabled us to produce stable model trajectories over long

time frames, and to investigate the effect of initial values on

model behaviour. The model was parameterized with data from

historical studies (1970s) and contemporary data from sites in

‘very good’ condition according to the Reef Health Index (elec-

tronic supplementary material, appendix S1) [16]. There was

little difference in community composition among parameteriza-

tions, so we used sites in very good condition to instantiate the

historical reconstruction.

Second, we assessed the ability of the model to recreate known

ecosystem dynamics based on disturbances occurring over the

period 1966–2015 (historical reconstruction; electronic supplemen-

tary material, appendix S1). We validated the ecosystem model by

collating empirical data (116 survey observations over the 50-year

period) on coral cover, herbivorous fish biomass, and piscivorous

fish biomass (electronic supplementary material, appendix S2).

We assessed model performance against empirical data with root

mean squared error, average absolute error, Spearman rank
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Figure 1. The mapped distribution of the Meso-American Reef and assessment under criterion B of the IUCN Red List of Ecosystems. Red squares indi-
cate cells occupied by reef at a 1 km2 resolution. The thick black line indicates the minimum convex polygon enclosing all reef occurrences. Black grid squares
indicate 10 � 10 km grid cells. (Online version in colour.)
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correlation and modelling efficiency (electronic supplementary

material, appendix S1) [6]. We used ten model runs with a 5-year

burn-in period for both the initial reef scenarios and the historical

reconstruction [12]. Because the model includes fast-growing Acro-
pora species, which have become uncommon in the MAR [17], we

repeated the initial reef scenarios and the historical reconstruction

with a lower estimate of coral growth rates excluding Acropora
species (electronic supplementary material, appendix S1). The his-

torical reconstruction exhibited worse performance metrics,

probably because growth rates were reduced for the whole simu-

lation period, when in reality Acropora species only declined in

abundance in the late 1980s. Because Acropora species are still pre-

sent in the MAR and the higher growth rate parametrization

showed better performance metrics, we projected future ecosystem

dynamics with the higher growth rate parametrization, noting that

this parametrization may over-estimate coral cover.
Third, we used the ecosystem model to project ecosystem

dynamics from 2016 to 2115 and assess interactions among

threats. We developed 11 scenarios based on low and high

levels of five threats: fishing, pollution (sedimentation and nutri-

fication), mass bleaching, ocean acidification and hurricanes

(table 1). We did not include coral diseases in our scenarios

due to a lack of adequate future projections. Increases in at

least one of mass bleaching, hurricanes and/or ocean acidifica-

tion are likely in the next 50 years [21,24,25], so scenarios 5–11

were considered most likely. We used the most likely scenarios

to derive risk categories and plausible bounds under criteria

A2a, D2a and E [2]. We instantiated the model with empirical

data on benthic cover and consumer biomass collected in 2013

(electronic supplementary material, appendix S2). For each scen-

ario, we conducted 500 Monte Carlo runs of 100 years each with

5 years burn-in, parallelized with NIMROD [26].
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(b) Ecosystem collapse
To estimate risk, it is necessary to define the endpoint of ecosystem

decline (i.e. the point at which an ecosystem is considered collapsed)

[4]. Within the RLE, ‘an ecosystem is Collapsed when it is virtually

certain that its defining biotic or abiotic features are lost from all

occurrences, and the characteristic native biota are no longer sus-

tained’ [4]. Coral cover is a commonly used indicator of coral reef

state [17] and is the most readily available indicator in the MAR

[13]. We considered the MAR to be collapsed when live coral

cover declined to less than 1% throughout the mapped ecosystem

distribution, and defined collapse thresholds for environmental

indicators based on required levels to reach a coral cover less than

1% (electronic supplementary material, appendix S1). Fish are key

components of the reef ecosystem [27], so we defined collapse

thresholds for herbivorous fish as 5 g m22, and for (small and

large) piscivorous fish biomass as 2 g m22, based on the Reef

Health Index (electronic supplementary material, appendix S1)

[16]. The outcome of ecosystem risk assessment can be sensitive to

the selection of collapse thresholds [2,9]. We present results for sen-

sitivity analyses in electronic supplementary material, appendix S1,

based on minimum collapse thresholds representing functional

extinction (0% coral cover; 0 g m22 herbivorous fish biomass;

and 0 g m22 piscivorous fish biomass), and high collapse thres-

holds based on the ‘critical’ category of the Reef Health Index (5%

coral cover; 9.6 g m22 herbivorous fish biomass; and 4.2 g m22

piscivorous fish biomass) [16].
(c) Spatial criteria: decline in distribution (criterion A)
and small distribution size (criterion B)

We applied the RLE criteria according to IUCN guidelines [4],

brieflysummarized in electronic supplementary material, appendix

S1. We outline our methods below and provide a comprehensive

account in electronic supplementary material, appendix S1. Cri-

terion A identifies ecosystems that are undergoing declines in

area, most commonly due to threats resulting in ecosystem loss

and fragmentation [4]. Measuring past changes in the spatial distri-

bution of the MAR is challenging, due to the paucity of processed

remote sensing data for the ecosystem. To assess future changes

in distribution (subcriterion A2a), we predicted the future ecosys-

tem distribution with the ecosystem model under 11 scenarios
(table 1). We excluded grid cells meeting the definition of collapse

(less than 1% coral cover) and assumed that future live coral cover

could not extend beyond currently mapped grid cells.

Criterion B assesses ecosystems against fixed thresholds of

distribution size to identify ecosystems at risk of spatially explicit

threats [4,28]. Criterion B requires information on (i) extent of

occurrence (EOO), (ii) area of occupancy (AOO) and (iii) the

number of threat-based locations. To quantify EOO we calculated

the area of a minimum convex polygon around all coral occur-

rences, based on mapped reef locations at 1 km2 grain size [12]

derived from the Millennium Coral Reef Mapping Project

(from 30 m Landsat imagery [29]; figure 1). We calculated

AOO using 10 � 10 km grid cells, including all grid cells that

contained occurrences of the ecosystem [4] (figure 1). A

threat-based location is defined as a geographically or ecologi-

cally distinct area in which a single threat can rapidly affect

occurrences of the ecosystem [4]. Numbers of locations were

estimated for each significant threat likely to cause collapse of

the MAR over a short time period (approx. 20 years; electronic

supplementary material, appendix S1).
(d) Functional criteria: environmental degradation
(criterion C) and biotic disruption (criterion D)

The application of criteria C and D requires the relative severity of

decline in key ecosystem indicators to be estimated. Relative sever-

ity describes the percentage change observed in an indicator scaled

between two values: one value describing the initial state of the

system (0% change) and one describing a collapsed state (100%

change). Information on relative severity is combined with infor-

mation on the proportion of the ecosystem affected to determine

the risk category [4]. We devised a five-step checklist for candidate

indicators: (i) assess relevance to ecosystem processes, (ii) assess

data availability and quality, (iii) identify a suitable threshold

representing ecosystem collapse, (iv) estimate initial, current or

future values, and (v) characterize the shape of decline (electronic

supplementary material, appendix S1).

Criterion C identifies ecosystems that are undergoing environ-

mental degradation [4]. We identified four environmental

processes influencing live coral cover: sea surface temperature,

ocean acidification, hurricane frequency and intensity, and
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Table 2. Application of the IUCN Red List of Ecosystems criteria for the Meso-American Reef. DD, Data Deficient; LC, Least Concern; NT, Near Threatened; VU,
Vulnerable; EN, Endangered; CR, Critically Endangered. Categories in brackets indicate plausible bounds of assessment for each subcriterion.

criterion
declining
distribution (A)

restricted
distribution (B)

environmental
degradation (C)

biotic
disruption (D)

quantitative
risk analysis (E)

subcriterion 1 DD LC EN EN EN (LC – EN)a

subcriterion 2a LC (LC – NT)a LC CR (VU – CR) CR (VU – CR)a

subcriterion 3 DD LC VU VU
aIndicates that the subcriterion was assessed with the ecosystem model.
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pollution (sedimentation and nutrification) (figure 2). We used

blended monthly sea surface temperature data available since

1871 and projected to 2099 [19] to derive degree heating months,

an indicator of mass bleaching [25]. Corals recover from mass

bleaching events if intervals between events are sufficiently long

(more than 5 years [30]), so we used the annual probability of

bleaching ( p ¼ 0.2) calculated over running 10-year intervals

as threshold for ecosystem collapse [30]. We used sea surface

aragonite saturation (Varag) as an indicator of ocean acidifica-

tion, projected in the Caribbean back to pre-industrial times

and forward to the year 2100 [21]. Surface water Varag values

of less than 3 have been described as ‘extremely marginal’ for

reef growth [31], so we used Varag ¼ 3 as the threshold for

ecosystem collapse.

We obtained International Best Track Archive for Climate

Stewardship records for hurricanes categories 1–5 on the

Saffir–Simpson scale between 1853 and 2015 [32]. There is no

evidence of recovery to a pre-disturbance state for at least 8

years post-hurricane in the Caribbean [33], so we defined the col-

lapse threshold as a hurricane frequency of one in 8 years for

hurricane categories 1–5, and one in 12 years for categories

4–5 only (electronic supplementary material, appendix S1). To

assess the effects of sedimentation and nutrification, we searched

for field data on sedimentation rate, nutrient concentration, sal-

inity and water transparency, and reviewed recent modelling

studies and geochemical studies. However, none of the data

sources were appropriate to assess the effects of sedimentation

and nutrification under criterion C (electronic supplementary

material, appendix S1).

Criterion D identifies ecosystems that are undergoing loss or

disruption of key biotic processes maintaining the characteris-

tic native biota [4]. We considered several indicators of biotic

disruption (figure 2; electronic supplementary material, appendix

S1); live coral cover was the only indicator with a suitable time

series of empirical observations for assessing changes over 1966–

2015 (D1). We used linear weighted regression to predict initial

and current live coral cover for the years 1970 and 2013, so as to

not extrapolate beyond the empirical time series, and selected

models based on changes in AIC. In addition to the empirical

time series for coral cover, we used backcast estimates of herbivor-

ous fish biomass and (large and small) piscivorous fish biomass

from the ecosystem model to assess changes over 1966–2015. We

assessed historical biotic disruption (D3) with the same data as

for D1, assuming that there was no change in biotic disruption

between the pre-industrial period and 1966. Future declines were

assessed for coral cover, herbivorous fish biomass and (large and

small) piscivorous fish biomass with model projections from

2016 to 2065 under 11 scenarios (D2a; table 1).

(e) Criterion E: quantitative risk analysis
Criterion E allows for an integrated assessment of multiple

threats and symptoms of collapse with the use of a stochastic eco-

system model [4]. We computed the probability of ecosystem

collapse over the next 50 and 100 years for each scenario by
counting the number of model runs meeting the collapse

threshold for each of the three biotic indicators (coral cover,

herbivorous fish biomass and piscivorous fish biomass).
3. Results
(a) Ecosystem model
The historical reconstruction indicated good fit with empiri-

cal coral cover data (electronic supplementary material,

table S9 and figure S16). The model successfully reproduced

patterns of decline in coral cover due to severe hurricanes in

1988, 2005 and 2007, and the large decline in cover in 1998

due to both hurricanes and disease.

(b) Spatial criteria: decline in distribution (criterion A)
and small distribution size (criterion B)

Due to the absence of remotely-sensed information on past

changes in distribution for the ecosystem, we assessed subcri-

teria A1 and A3 as Data Deficient (table 2). Based on the

ecosystem model and the seven most likely scenarios (scen-

arios 5–11), we estimated future declines in distribution of

4.2 to 26.1% of the current distribution, leading to an assess-

ment under A2a as Least Concern. The extent of occurrence

of the MAR is 106 629.5 km2 (B1: Least Concern) and the

area of occupancy is 231 10 � 10 km grid cells (B2: Least Con-

cern). According to our analysis of future environmental

degradation (C2a), pollution, fishing, hurricanes, bleaching

and acidification are unlikely to cause the ecosystem to col-

lapse or become Critically Endangered within 20 years (B3:

Least Concern).

(c) Functional criteria: environmental degradation
(criterion C) and biotic disruption (criterion D)

We estimated a relative severity of mass bleaching of 50% in

the past 50 years (C1), and 50% since pre-industrial times (C3)

(table 3; electronic supplementary material, appendix S1).

The relative severity of future mass bleaching over the

entire ecosystem was 44–100%, depending on the capacity

of corals to adapt to increasing sea surface temperatures.

We assessed the ecosystem as Critically Endangered as

coral adaptation is uncertain (C2a) [34]. Over the three time

frames of our analysis, aragonite saturation declined with

relative severities of 22% in the past 50 years (C1) and 30%

since pre-industrial times (C3), and was projected to decline

by 50% by 2065 (C2a). We estimated a 12% decrease in the

relative severity of hurricane frequency in the past 50 years

(C1) and a 33% increase in the relative severity of hurricanes
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Figure 3. Estimated relative severity of decline in ecological function in the Meso-American Reef over the next 50 years (2016 – 65), projected with the ecosystem
model under 11 scenarios of threat. The full lines indicate the relative severity of decline ( percentage change towards collapse) averaged over different extents of the
ecosystem (subcriterion D2a), for cells analysed in decreasing order of relative severity. Collapse thresholds are, for each indicator: (a) coral cover (1%), (b) herbi-
vorous fish biomass (5 g m22) and (c) piscivorous fish biomass (2 g m22). The hatched vertical lines in panel (a) indicate the decline in spatial extent of the
ecosystem under the different scenarios i.e. the per cent of cells in the ecosystem with 100% relative severity of coral cover decline (subcriterion A2a). The
shaded boxes indicate the thresholds for the IUCN Red List of Ecosystems categories (dark grey: Critically Endangered; grey: Endangered; light grey: Vulnerable).
(Online version in colour.)

Table 3. Application of the IUCN Red List of Ecosystems criteria for environmental degradation (C) and biotic disruption (D) for the Meso-American Reef.
For each criterion, the indicator with the highest most likely category is selected for use in the assessment table (table 2). DD, Data Deficient; LC, Least
Concern; NT, Near Threatened; VU, Vulnerable; EN: Endangered; CR, Critically Endangered.

environmental degradation (C) biotic disruption (D)

mass
bleaching

ocean
acidification hurricanes pollution coral cover

herbivorous
fish biomass

piscivorous
fish biomass

subcriterion 1 (1966 – 2015) EN LC LC DD EN LCa ENa

subcriterion 2a (2016 – 2065) CR (VU – CR) EN VU DD CR (NT – CR)a EN (EN – CR)a CR (VU – CR)a

subcriterion 3

( pre-industrial – 2015)

VU LC LC DD VU LCa VUa

aIndicates that the subcriterion was assessed with the ecosystem model.
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categories 4 and 5 in the next 50 years (C2a). There were no

significant trends in the North Atlantic hurricane frequency

since the late 1800s [24] and hurricane frequency remained

below the collapse threshold for that period (C3).

Over the last 50 years, the relative severity of decline in coral

cover in the MAR was 63.4% based on empirical data and 64.9%

based on the model backcast (D1; table 3). We backcast a 2.8%

decline in herbivorous fish biomass over the last 50 years (D1).

We backcast a 62.4% decline in piscivorous fish biomass over

the last 50 years (D1). We assessed biotic declines since the

pre-industrial period with the same data as for the last

50 years (D3). Based on the seven likely scenarios of threat

(scenarios 5–11), we projected future declines across �80% of

the extent of the ecosystem of 28.9–93.1% for coral cover,

50.2–82.7% for herbivorous fish biomass and 36.8–81.5% for

piscivorous fish biomass (D2a; table 3 and figure 3).

(d) Criterion E: quantitative risk analysis
Our implementation of scenarios of threats indicated a wide

range of collapse probabilities across time frames and indi-

cators (table 4; electronic supplementary material,

Figure S19). Four of the seven likely scenarios led to an assess-

ment as Endangered based on coral cover in the next 50 years,
leading to an overall assessment as Endangered (Least

Concern–Endangered) under criterion E (table 4).
4. Discussion
The weight of evidence from our analysis supports Critically

Endangered status (plausibly Vulnerable to Critically Endan-

gered) for the Meso-American Reef (MAR), primarily based

on modelled trends in coral cover and piscivorous fish biomass.

The status of the MAR is determined by both past and future

declines in ecological function, rather than by its spatial distri-

bution size or future declines in distribution. The expression of

distributional symptoms of risk in some types of ecosystems

and functional symptoms in others (as well as differences in

their measurability) highlights the importance of risk protocols

capable of assessing both [3]. The IUCN Red List of Ecosystems

(RLE) protocol achieves this through an ensemble of comp-

lementary criteria that are sensitive to different symptoms

and have different data requirements [2]. Assessment out-

comes based on most or all of the five criteria are therefore

expected to be more robust than those based on only one or

two criteria, particularly if only spatial criteria (A or B) or

only functional criteria (C, D or E) are evaluated [4]. Yet, to



Table 4. Probabilities of ecosystem collapse based on scenarios applied to the Meso-American Reef over the next 100 years (2016 – 2115). See table 1 for
scenario descriptions. LC, Least Concern; VU, Vulnerable; EN, Endangered.

coral cover herbivorous fish biomass piscivorous fish biomass

50 years 100 years 50 years 100 years 50 years 100 years

scenario 1 0 0 0 0 0 0

scenario 2 0 0 0 0 0 0

scenario 3 0 0 0 0 0 0

scenario 4 0 0 0 0 0 0

scenario 5 0.204 0.658 0 0 0.174 0.586

scenario 6 0.204 0.654 0 0 0.182 0.588

scenario 7 0.234 0.714 0 0 0.272 0.712

scenario 8 0.224 0.742 0 0 0.27 0.722

scenario 9 0.084 0.37 0 0 0.064 0.316

scenario 10 0 0 0 0 0 0

scenario 11 0 0 0 0 0 0

criterion E EN (LC – EN) LC VU (LC – EN)
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date, 50% of global RLE assessments lack assessments of func-

tional criteria [35], suggesting that risks of functional declines

could be under-estimated.

Our analysis reveals differences in assessment between

rule-based criteria and the quantitative analysis. Despite

being based on the same simulation outputs, we obtained

lower risk categories with the quantitative risk analysis (cri-

terion E) than with the corresponding rule-based criterion

(criterion D), implying that rule-based criteria are more precau-

tionary. While the two other existing applications of ecosystem

viability analysis found risk levels comparable with other cri-

teria (electronic supplementary material, appendix S2 in [2]

[9]), in species assessments, threat categories assigned based

on population viability analyses are typically lower than

those assigned based on rule-based criteria [36]. Mismatches

may be due to large effects of parameter uncertainty (com-

pounded in modelled estimates of the probability of collapse

compared to other measures of risk), or lower likelihood of com-

plete collapse compared to extensive functional degradation for

a large, interconnected reef. We found higher sensitivity to col-

lapse thresholds for projections of future spatial distribution

and probability of collapse than for functional degradation

(electronic supplementary material, figure S18), implying that

some RLE criteria are more prone to uncertainty than others.

The RLE requires assessors to define ecosystem-specific

indicators of functional declines, rather than prescribed or gen-

eric indicators (e.g. species richness [4]). Fruitful selection of

indicators demands a rigorous diagnostic process to identify

cause–effect chains that influence ecosystem dynamics. Dia-

grammatic conceptual models (figure 2) are a simple device

to support this diagnostic process, which is not only pivotal

in structuring a risk assessment, but also valuable in designing

management strategies to mitigate threats and monitor pro-

gress towards management goals [4]. We devised a checklist

to select indicators, but this process was lengthy due to the lim-

ited number of existing coral reef assessments and the number

of indicators produced by the ecosystem model. In practice,

indicators were selected where the information base was

sufficient to identify collapse thresholds and to support
inference about changes over the three assessment time

frames. In the MAR, collapse thresholds were more readily

identifiable for biotic indicators, whereas data were more

readily available for environmental indicators, reflecting

trade-offs in relevance and measurability between biotic and

environmental indicators [37]. In particular, biotic indicators

represented ecosystem trajectories towards collapse more

directly, whereas environmental indicators represented threats

and were therefore less direct indicators of risk.

Ecosystem models can aid in bridging data gaps, corrobor-

ating assessments of functional declines, and selecting

sensitive indicators. Our historical reconstruction over the

period 1966–2015 showed large declines in piscivorous fish

biomass mirroring declines in coral cover. Independently

derived estimates of the same indicators can help increase

confidence in the robustness of RLE assessment outcomes,

with the relative severity of past declines in coral cover

(approx. 64%) corroborated by both modelled and empirical

data. Our future projections of functional declines revealed

differential responses among trophic groups: coral cover

showed a binary response to mass bleaching levels, while

functional declines for herbivorous and piscivorous fish bio-

masses were less variable among threats (table 3 and

figure 3). Herbivorous fish biomass was an insensitive indi-

cator of the probability of ecosystem collapse (table 4),

suggesting dampening or compensatory effects of threats in

this middle trophic level. Coral cover and piscivorous fish bio-

mass revealed complementary information on the impacts of

multiple threats, and we recommend these two indicators for

future RLE assessments of coral reefs.

Independent assessments of multiple indicators through

rule-based criteria do not take into account interacting threats

[12], making the ecosystem model invaluable for identifying

interactions. Although the frequency of hurricanes in the

MAR decreased over the last 50 years, the historical reconstruc-

tion revealed that compounding effects of mass bleaching and

disease resulted in severely reduced coral cover during hurri-

cane years (electronic supplementary material, figure S17).

Mass bleaching was the primary driver of collapse in the
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MAR, with high levels of mass bleaching leading to assess-

ments of Critically Endangered based on future declines in

coral cover regardless of the levels of other threats (figure 3).

We found the highest probabilities of collapse when ocean

acidification and hurricane severity were also high, implying

that mitigation of climate change and ocean acidification is

key to securing the MAR in coming decades. The ecosystem

model suggested that, in the absence of concurrent stressors,

the effects of pollution on reef biota may be limited, but

improved understanding of the impacts of sedimentation and

nutrification under refined policy scenarios are needed to ade-

quately estimate risks from pollution. Similarly, future

incidence of coral disease was not included due to uncertainty,

although scenarios of mass bleaching based on sea surface

temperature account to some extent for coral susceptibility to

disease [38].

We used state-of-the-art model validation techniques,

by assessing steady-state model behaviour under various

initial conditions, as well as quantifying model performance

against empirical data with multiple performance metrics.

Yet models are necessarily simplifications of a system with a

number of assumptions that may affect the outcome of risk

assessments. For example, our regional ‘whole-of-ecosystem’

model omitted fine-scale patterns in fish diversity and fishing,

instead aggregating fish into functional groups and using fish

biomass as an indicator [8], thus possibly underestimating risks

posed by fishing. Parrotfish protection is predicted to have

modest effects on maintaining coral cover in the Belize Barrier

Reef by 2030 [39], supporting our main findings. Our model

was calibrated on high estimates of coral growth rates includ-

ing Acropora species, so our model may have over-estimated

coral cover. Given the assessment of the ecosystem as Critically

Endangered based on future declines in coral cover, a lower

growth rate parametrization would not affect assessment out-

comes. Our model did not incorporate three-dimensional reef

structure, which can drive changes in fish communities and

reef resilience to climate change [27]. Reef flattening is an on-

going process in the Caribbean, so declines in reef structural
complexity and fish diversity may have been under-estimated

by our model. Finally, we assumed that the distribution of

the MAR could not extend beyond mapped grid cells, despite

evidence that corals could extend to more polar latitudes

under climate change. Given that the ecosystem is listed as

Least Concern based on future changes in spatial distribution,

possible range extensions would not affect this result.

Our study of the MAR provides a clear example of how the

RLE protocol estimates overall risk levels by assessing multiple

threats and symptoms of decline. Risk assessment protocols

and ecosystem models are thus able to integrate limited obser-

vational data with threat scenarios, making them valuable tools

for monitoring ecosystem status and diagnosing key threats to

be addressed by management. Our case study provides a tem-

plate for assessing risks to coral reefs and for the further

application of ecosystem models in risk assessment. Increases

in availability of ecosystem models in terrestrial, marine and

freshwater systems worldwide [4,8] render models not only

useful, but increasingly accessible for supporting ecosystem

risk assessment and ecosystem management.
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