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Abstract: Multibeam echosounders are widely used for 3D bathymetric mapping, and increasingly for
water column studies. However, they rapidly collect huge volumes of data, which poses a challenge
for water column data processing that is often still manual and time-consuming, or affected by low
efficiency and high false detection rates if automated. This research describes a comprehensive and
reproducible workflow that improves efficiency and reliability of target detection and classification,
by calculating metrics for target cross-sections using a commercial software before feeding into a
feature-based semi-supervised machine learning framework. The method is tested with data collected
from an uncalibrated multibeam echosounder around an offshore gas platform in the Adriatic Sea.
It resulted in more-efficient target detection, and, although uncertainties regarding user labelled
training data need to be underlined, an accuracy of 98% in target classification was reached by using
a final pre-trained stacking ensemble model.

Keywords: multibeam echosounder; water column imaging; machine learning; fish schools; gas
plumes; target detection and classification

1. Introduction

Multibeam echosounders (MBESs) are active sonars and have been historically de-
signed for hydrographic purposes, such as submerged obstacle detection, bathymetry and
seabed characterization [1–6]. Over the last decade or so, technological advancements in
MBES hardware and software have facilitated the use of MBES data for water-column imag-
ing (WCI), which has emerged as viable means of hydrographic data quality control [7,8]
and found increasing use in oceanographic studies [9].

Single and split-beam echosounder (SBES) technology existed since at least the 1940s
and has been traditionally used for the purpose of the evaluation of fish populations [10].
Nowadays MBES WCI provides numerous opportunities for fisheries and eco-biological
research, especially when combined with the ability to acoustically cover a larger volume
of the water column. Indeed, the wide area insonified with a single swath (typically
covering about 120◦) differentiates MBESs from SBES whose main beam widens less than
20◦ and therefore requires far more survey time to achieve equivalent coverage. Novel
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and compelling applications of WCI from MBES range from qualitative descriptions
of fish school behavior and morphological characteristics [11–14], oil and gas leakage
detection [15–18], kelp ecosystem mapping [19,20] and aquaculture monitoring [21],
to assessing the mean abundance of marine macro-litter [22,23] and providing other
valuable insights to marine systems [24–27].

The interest in WCI measurements is reflected by ongoing implementation of WCI
functionality into modern MBES and development of respective powerful online and
post processing software packages for hydrographic and fishery applications. Quality
Positioning Services Inc. (QPS, Zeist, The Netherlands) progressed with the threshold
detection in the FMMidwater module, CARIS allowed the user to utilize WCI to supplement
bottom detection results with the release of HIPS 8.0, while Echoview Software Software
Pty Ltd. (Hobart, Australia) has continuously added to and improved its suite of tools for
MBES data processing since 2001.

Target detection—where a target is considered an object that demonstrates an
acoustic impedance discontinuity across its boundary [28]—for MBES WCI data has to
date heavily relied on nearly fully supervised and thus time-consuming data processing
procedures [9,29,30]. In addition to being mostly manual, WCI data processing strongly
depends on the subjective expertise of the operator that has to select thresholds, extract
and then classify targets [15,31].

Many experts have worked to improve efficiency and reliability in target detection
from MBES WCI [15,32], and recently a few studies on target detection in multibeam
WCI used features and classifiers to reduce human interaction requirements and improve
efficiency. Feature-based Machine Learning (ML) is indeed able to detect targets in con-
secutive WCI quickly, in real-time and automatically, and may have a key role especially
when we consider that reviewed data sets could act as training for future ML models.
Urban et al. [33] advanced automated detection of bubble streams working with their spa-
tiotemporal behavior and a thresholded median signal-based mask applied on Kongsberg
EM302 WCI. Zhao et al. [34] used the AdaBoost cascade classifier, combining the Haar-like
feature and Local Binary Patterns feature to automate gas plume detection and segmenta-
tion by conducting shallow and deep-water experiments using data collected by Kongsberg
EM710 and EM122 MBES. In Williamson et al. [35] filtering, detection and tracking using a
modified nearest-neighbor algorithm provided robust tracking of diving seabirds, fish and
fish schools using an EK60 SBES (Simrad, Kongsberg, Norway) in the vicinity of marine
renewable energy installations. Similarly, Cotter and Polagye evaluated the performance
of three ML supervised algorithms for automatically classifying marine fauna in MBES
data collected from an uncalibrated BlueView M900–2250 (Teledyne, Fredericton, NB,
Canada) [31]. For each algorithm, they first used a hill-climbing search to optimize the
set of hand-engineered features describing each tracked target (e.g., descriptions of target
shape, motion, intensity and additional covariates such as the time of the day).

In this experimental context a comprehensive and reproducible WCI data processing
workflow has been developed from what was presented in Minelli et al. [36], improving
the efficiency of target detection and classification in huge volumes of WC data whilst
reducing the amount of human interaction required for the above-mentioned operations.
Assuming that targets such as fish schools, gas seeps and noise differ in morphological
metrics, scattering degree and behaviour in time, the proposed workflow (Figure 1) makes
use of Echoview and ML techniques to: (i) speed-up the target extraction procedure by
drafting a generalized workflow that can be run automatically in Echoview; and (ii) classify
extracted targets using a pre-trained stacking ensemble ML framework.
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Figure 1. Overview diagram of the full workflow.

The method is described and tested on WC data collected from a hydrographic
multibeam echosounder. Acquired WCI covers a small area surrounding a gas platform
in the central Adriatic Sea, where the presence of gas seeps is well known. Similarly,
schools of fish are expected to be frequently detected as targets given the function of the
platform as artificial habitat. Results and performance of the approach are discussed, while
capabilities and limitations of the uncalibrated MBES in fish school characterization and
gas detection are addressed considering the quality of the raw data and their reliability.
From this, insights for improving classification of water-column targets in MBES data are
given, as well as for the transferability of trained models.

2. Materials and Methods
2.1. Study Sites

The two study sites in the Adriatic Sea (Figure 2) each consisted of a 1.5 km-square
area centred around a four-legged gas platform. The water depth was ~85 m at site A and
~77 m at site B, with the seafloor consisting of muddy sand.

In the south-eastern corner of site A were numerous depressions (pockmarks) in the
sediment caused by methane seeps. These seeps are of particular interest because they
work counter to ocean carbon capture and sequestration (CCS) schemes by releasing carbon
back to the ocean [16]. There were no such depressions at site B.
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Figure 2. Site A (1.5 km × 1.5 km area surrounding the gas platform A) and related DTM (1 m
resolution and 4× vertical exaggeration). The red cross symbols in the locator map highlight the
location of two study sites in the Adriatic Sea.

2.2. Multibeam Data Acquisition

Measurements were made with a EM2040CD MBES (Kongsberg, Kongsberg, Norway)
from CNR-IRBIM’s 14 m-long research vessel, Tecnopesca II. The EM2040CD is a com-
pact, dual-transducer version of the EM2040 MBES designed primarily for seafloor-echo
detection at ranges <600 m. Each transducer yields a 2D fan (“swath”) of backscatter
samples within an array of 400 beams. A number of parameters are configurable by the
user within the Kongsberg Seafloor Information System (SIS) software, from which the
system determines the number, steering angle, spacing and opening angle of the beams in
the swath.

The transducers were hull mounted at ~0.8 m depth and the system configured to
transmit 600 µs narrowband acoustic pulses centred at ~300 kHz. To avoid interference
between transducers, the frequencies were slightly separated, with the difference auto-
matically determined as a function of the pulse duration (shorter pulses have a larger
bandwidth, necessitating a greater difference). Following each transmission, the system
calculated 256 equiangular receive beams per transducer (nominally 1◦ along-track by
0.29◦ across-track per beam), resulting in a 1◦ along-track by 75.1◦ across-track swath for
each transducer. The transducers were spaced ~0.4 m apart in the across-track plane and
oriented to ensure coverage directly below the vessel, yielding a combined across-track
swath of 130.1◦ over 512 beams (Figure 3). Both transducers were synchronised and set to
transmit at a rate of 2.6 Hz.
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and examples of beamforming and sidelobe artefacts, the gas platform, fish schools and the seafloor.

Water sound speed was measured with a miniSVS Sound Velocity Sensor (Valeport,
Devon, UK) mounted close to the transducers to enable real-time beamforming and sample-
range calculation by the SIS software. The range extent of each sample was 64 cm. The
beam steering angles and sample depths were corrected for vessel pitch, roll, heave and
yaw in real time using measurements from a Kongsberg Seatex Motion Reference Unit
MRU 5 and an Anschütz Gyro Compass Equipment Standard 20 Compact Type 110–222
NG001 (0.02◦ roll and pitch accuracy, and 0.1◦ heading accuracy; Raytheon Anschütz, Kiel,
Germany).

The seafloor (Figures 3 and 4) was detected in real time from the MBES measurements
by the SIS software using the recommended “basic filters” settings, since no significant
peaks or pits were expected on the seafloor. MBES samples > 10 m in depth beyond the
detected seafloor in each beam were set to “no data”. The vessel location was measured
with an SPS855 GNSS Modular Receiver (sampling rate 2 Hz, Trimble, Sunnyvale, CA,
USA) and all sensors synchronised to the GPS-measured UTC time. The time-referenced
vessel position and attitude, and MBES beam-steering angle, sample range and sample
backscattering magnitude for each ping were saved to a series of proprietary-format binary
data files with .wcd filename extensions.

Three surveys were conducted at site A and one survey at site B (Table 1), consisting of
10 evenly spaced, parallel transects ~ 1.5 km in length. The transects were run in alternating
north-south or east-west directions at ~2 to 2.6 m/s−1 (~4 to 5 knots), with the spacing
between transects (~100 m) chosen based on the water depth to ensure a minimum of
50% across-swath overlap between adjacent lines (Figure 4). Due to the time that elapsed
between subsequent surveys, the state of the transducers was thoroughly checked and
maintained for biofouling and deterioration of its components (during regular dry-dock
operations), and calibration cycles for MRU and SVS probes were scheduled to meet
required specifications.
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Table 1. The MBES datasets used in this paper.

Site Survey Date Dataset Role Number of
Slices Detected

A 1 12-11-2018 Training +
unseen 2418

A 2 24-07-2019 Unseen 1663
A 3 23-10-2020 Unseen 2554
B 4 03-06-2020 Unseen 2389

The MBES data from surveys 1 and 2 are publicly available at https://doi.org/10.1
7882/79142 (access date 23 April 2021) [37]. These surveys were carried out as part of an
ongoing monitoring program by CNR-IRBIM of gas platforms in the central Adriatic Sea
since the late 1990s [11,24,38].

2.3. Multibeam Data Processing

The SIS-detected seafloor depth and backscatter measurements were processed with
CARIS HIPS & SIPS software (version 11.0, Teledyne, Fredericton, NB, Canada), taking into
account tide corrections, manual editor and quality control tools. A Digital Terrain Model
(DTM) of the seafloor was created as a Combined Uncertainty and Bathymetry Estimator
(CUBE) surface with a resolution of 1 m (Figure 2).

The water-column backscatter measurements were processed with Echoview software
(version 11.1.34, Echoview Software Pty Ltd.). Key data-processing decisions are described
in Table A1 (Appendix A) and the Echoview “Dataflow” window shown in Figure 5.
Echograms and ancillary measurements were visualized and queried to establish general
data characteristics.
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MBES pings from both transducers were merged into a single variable, from which
the bottom depth was automatically estimated for all beams in all pings using Echoview’s
surface detection algorithm. This generates a 3D triangulated irregular network (TIN)
object that represents the seafloor. The TIN was resampled (2 m North-South and East-West
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resolution with a maximum triangulation distance of 20 m) to reduce geometric complexity
and smooth out any irregularities resulting from noise or other artefacts.

MBES pings were converted to a summarized 2D view of time by range using the
Maximum Intensity operator, where each sample (at range R) contains the maximum
value of all of the corresponding multibeam samples that are also at range R (sometimes
referred to as “stacked beams”). The stacked beam pings were examined, and pings
containing unusually high backscatter through the full extent of the data collection range
were removed from further analysis. Statistical algorithms of convolution “median” and
“erosion” were applied to the remaining pings to remove stochastic noise and reverberation
(unwanted backscatter). These two algorithms replace the value of each cell of the echogram
with respectively the median and minimum values found in a 3 × 3 sliding window
centered on the sample [39].

Other algorithms were applied to automatically identify samples that were:

• Below the minimum range of the seafloor, using the Best Bottom Candidate line pick
algorithm which examines windows of pings to identify corresponding backscat-
ter peaks [40];

• above the maximum range of any near-surface entrained air bubbles, using the Thresh-
old Offset algorithm which defines a virtual line representing the nearest occurrence of
a specified threshold value with respect to a nominated line in an acoustic variable [41].
Samples above this line were excluded from further analysis.

The remaining samples were then further manipulated using a 3 × 3 dilation filter
(where a sample is replaced by the maximum of the eight surrounding samples, [39])
and bitmap operators to highlight and then discard all pings that did not contain any
backscatter of interest in the water column.

The original multibeam pings were filtered to only keep the pings that contained
backscatter of interest as identified through the 2D echogram process. Successively the
samples within those pings were smoothed using, ahead of further processing, a XxYyZ
convolution kernel operator (where a sample is replaced by the mean of the surrounding
45 samples, [39]).

Samples within 4 m of the transducer face or beyond a vertical offset from the resam-
pled TIN were excluded from further processing. An image analysis algorithm referred
to as “school detection” in Echoview was applied to identify and delineate contiguous
clusters of above-threshold samples that met specified size conditions on a ping by ping
basis, which generates a polygon “region” that represents a cross-section through an object
(hereafter referred to as a “slice”, Figure 6). Slices may have represented cross-sections
through fish schools, gas seeps, the gas platform, or other features that still remained after
the data cleaning process (Figures 3 and 4) and may have been partially or completely
insonified within the swath. The slices were given an arbitrary along-track thickness of
0.8 m to generate a 3D object (polyhedron) for each slice (Figure 6B) and grouped using
Echoview’s “region tracking” algorithm into larger multi-ping objects on the basis of
proximity (Figure 6A).

Although region tracking is typically used to characterize the movement of a target
through space and time, in this case we used it in a novel way to determine which slices in
adjacent pings were part of a larger object. At a ping rate of 2.6 Hz and a vessel speed of
<2.6 m s−1, we expected the targets of interest (fish schools and gas seeps) to be observed
across multiple pings. The grouping of slices into multi-ping objects is a preliminary level
of classification.

The slices created during Survey 1 are shown in Figure 7. A subset of individual
slices was manually reviewed to be used in the machine-learning stage of the analysis,
and classified as one of fish school (FISH), gas seep (GAS), platform leg (PLATFORM) or
NOISE (e.g., sidelobe artefacts or entrained air bubbles from the vessel) on the basis of
their shape, evolution in time and known target occurrence at the site. Labelled slices,
consisting of about 8% of the slices in Survey 1, were extracted, stratified by depth and
equally portioned among the four classes.
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Figure 6. The geometry of slices and multi-ping objects. (A) A 3D object such as a fish school or a cluster of bubbles from a
gas seep was conceived as a sequence of backscattering cross-sections (“slices”) delineated across multiple pings. A slice
detected in one ping was associated with a slice in the next ping (black spheres joined by arrows) based on spatial proximity
by applying a tracking algorithm more commonly used for following the movement of an object through space and time.
(B) 3D view of slice #3334 in (A). (C) 2D echogram view of slice #3334 in (A).
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Figure 7. 3D visualisation of the slices (red) created from Survey 1. (A) Overview of the entire survey.
(B) Clusters of gas bubbles rising from the seafloor in the SE corner of the survey area. (C) Fish
schools in the NW corner of the survey area. Sidelobe artefacts are caused by the unwanted detection
of strong targets in neighbouring beams, causing the target to appear wider than it really is.
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Metrics for all slices, including location, shape, position within the MBES ping,
and backscatter properties were characterized and exported to comma-separated value
(CSV) files.

2.4. Machine Learning Classification

The CSV file with the labelled slices (and their calculated metrics) for Survey 1 was
first prepared (Figure 8), by: (i) manually retaining only the features (out of the 68 total
metrics available) whose relevance was evaluated by common knowledge; (ii) normalizing
features to a comparable scale (Yeo-Johnson transformation, [42]), with the exception of
coordinates; and (iii) extending labelling within multi-ping objects (see Figure 6a). This
last step was due to the assumption that contiguous slices lying on the same track (with
the same multi-ping object number) likely belong to the same object and thus to the same
target class. An example is reported in Figure 6a where unlabeled pink slices inherited the
label (e.g., FISH) that was manually assigned to the yellow slice as belonging to the same
multi-ping object. It allowed us to increase the labelled dataset, while reducing operator
intervention and saving valuable time.
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seen data.

A feature engineering was then needed to generate new and sensible features, before
performing the feature selection on the whole set of features by using Mutual Information
(MI) scores [43]. Feature engineering improved the predictive modelling performance
on the dataset by transforming its feature space to better differentiate target classes. In
particular, coordinates of the geometric centers were flattened into x and y, while four new
features were generated as combination between some of the existing metrics:

• Base, given from the ratio between surface area and height of the slice;
• Length ratio, derived from the ratio between the two longest dimensions of the slice;
• Depth ratio, given from the ratio between geometric and mass center depths;
• SvUNCAL diff, given from the difference in logarithmic scale of maximum and mean

values recorded for the same slice.

A last additional feature (Cluster) was identified based on the results of a K-means
algorithm that hierarchically clustered data into four groups using Vertices (number of
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vertices in the polyhedral object that represents the slice), Mass center latitude and Mass
center longitude.

The labeled data were then passed to help train the ML procedure with a k-nearest
neighbor (kNN) semi-supervised learning called pseudo-labelling [44], that combined
both labeled and unlabeled (or better, pseudo-labeled data) to train the following gradient
boosting classifier (GBC [45]), resorting to a brute-force grid search to get the optimal
hyperparameter setting. The GBC is an ensemble (stack) of weak learners that are combined
to minimize the loss, or the difference, between the actual class value (label) of the training
data and the predicted class value.

Before training the ensemble model, labeled data were randomly stratified while
splitting up into training and testing sets (70:30, respectively) [46] in order to have approxi-
mately the same percentage of samples of each target class as the complete set. The feature
space was lightened of the raw coordinates that could bias the model when transferred to
sites other than Survey 1.

Once evaluated on the testing dataset, the trained model was saved and used to
classify the remaining targets of Survey 1 and perform predictions on 3 different unseen
datasets (Survey 2, Survey 3, Survey 4). With this last aim, unseen data needed to be
preprocessed to fit the feature space the model was trained on.

For more detailed information on the ML pipeline the code is available at: http:
//doi.org/10.5281/zenodo.4621173 (accessed on 23 April 2021) [47]. It was developed in
Python with the support of its Scikit-learn machine learning library [48].

3. Results

Twenty-three out of the 68 metrics extracted by Echoview were predicted to be relevant
(by domain knowledge) to distinguish between target classes, and so manually retained for
the ML classification. Afterwards, by feature engineering, the feature space was increased
to 27 features, and then reduced to 24 (Table 2) by removing highly correlated features and
replacing them with their combinations. Selected features were mutually (Figure 9) and
separately (Figure 10) explored to verify their performance in differentiating target classes,
before being passed to the kNN for label propagation (Pseudo-Labelling).

Table 2. Descriptions and units of the 24 metrics used for target classification.

Metric Description Unit of Measure

x Flattened latitude of the center of mass of the slice n.a.

y Flattened longitude of the center of mass of the slice n.a.

Geometric center latitude Latitude of the geometric center of the slice Decimal degrees

Geometric center longitude Longitude of the geometric center of the slice Decimal degrees

Mass center latitude Latitude of the mass center of the slice Decimal degrees

Mass center longitude Longitude of the mass center of the slice Decimal degrees

Geometric center depth Depth of the geometric center of the slice m

Mass center depth Depth of the mass center of the slice m

Depth ratio Ratio between geometric and mass center of the slice n.a.

Vertices Number of vertices in the polyhedral object that represents the slice n.a.

Triangles Number of faces in the polyhedral object that represents the slice n.a.

Height Height of the slice (difference between maximum and minimum depth) m

Surface area Surface area of the polyhedral object that represents the slice sqm

Base Ratio between surface area and height of the slice m

Cluster Cluster associated to the slice from the k means algorithm n.a.

Length 1 Longest dimension of the object-aligned bounding box (the bounding
box is oriented with respect to the transect direction)

m

http://doi.org/10.5281/zenodo.4621173
http://doi.org/10.5281/zenodo.4621173
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Table 2. Cont.

Metric Description Unit of Measure

Length 2 Second longest dimension of the object-aligned bounding box m

Length ratio Ratio between the two longest dimensions of the bounding box
containing the slice

n.a.

Relative depth in time Component of the velocity vector referred to depth direction for one
slice respect to the successive in the same multiping object

m/s

SvUNCAL diff Difference between maximum and mean values of Sv uncalibrated for
the slice

dB

Sample mean Mean backscatter of the samples in the slice dB

Beams Number of beams that intersect with the slice n.a.

Intersection area first beam Intersection area between the slice and first beam in the variable used
to create it in detection phase. This variable and the following provide
an indication of whether the object was fully or partially insonifed by

the swath

sqm

Intersection area last beam Intersection area between the slice and last beam in the variable used to
create it

sqm
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Figure 10. Feature space exploration by kNN Cluster and Vertices (A); by Base, describing the shape with low values for
oblong targets (B); by Depth ratio (C); by Relative depth in time (D).

The wide distribution of K-means clusters in Figure 10A shows that the derived
feature Cluster was relevant in improving target class separability. Base and Depth ratio
show their potential to separate, respectively, FISH and PLATFORM targets (Figure 10B,C).
Relative depth in time assumes positive values for the rising GAS targets but tends to zero
for slices that are attributed to the platform (Figure 10D).

The ratio between the area of a slice and its height (Base) seems to be highly variable
only for fish schools, while it tends to zero for oblong targets—labelled as GAS and/or
PLATFORM—whose vertical dimension is far greater than the surface area (see also Figure 6
for more information on slice appearance). Moreover, while FISH and GAS targets have their
geometric and center of mass depths more or less coincident, the same cannot be said for the
platform (and, to a lesser degree, NOISE) whose center of mass is generally at lower depths
both for the shape assumed by slices and for the backscatter strength which is generally
higher at deeper ranges. This relative shift in mass is probably due to the angle of incidence
of the beams relative to the platform, and further exaggerated by an increased side lobe effect
on backscatter with range.

To train the model, a dataset composed by 2418 targets was extracted during the WC
data processing of Survey 1, taking 5 h to export results from approximately 2 GB of WCI
data on a moderately-specified computer (Dell XPS 9570 with Intel i7-8750H @ 2.2 GHz,
16 GB RAM, Samsung PM981 NVMe SSD). 218 slices (8%) were manually reviewed and
directly labeled by the operator in Echoview, which then grew to 529 (30%) by automatically
labeling slices belonging to the same track.

These 592 labelled slices were used to feed the kNN semi-supervised learning, result-
ing in high-quality pseudo-labels with an overall accuracy of 96% between target classes,
while the proportion of correctly identified targets ranged from 56% for the NOISE class to
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99% (maximum) for the FISH class (Figure 11). Additional classification statistics are listed
in Table 3.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 23 
 

 

 

Figure 11. Confusion matrix of the pseudo-labelling. 

The overall accuracy of the ensemble prediction method for fish, gas, noise and plat-
form was about 98% (Table 4), while the confusion matrix in Figure 12 provides a more 
detailed breakdown of correct and incorrect final classifications for each of the four target 
classes. 

Table 4. Classification report for the ensemble model. 

Class Precision Recall F1-Score Support 
FISH 0.98 0.99 0.99 1075 
GAS 0.98 0.97 0.98 265 

NOISE 0.95 0.87 0.91 70 
PLATFORM 0.99 0.99 0.99 283 

accuracy - - 0.98 1693 
macro avg 0.98 0.96 0.97 1693 

weighted avg 0.98 0.98 0.98 1693 

 

Figure 12. Confusion matrix of the ensemble model. 

Figure 11. Confusion matrix of the pseudo-labelling.

Table 3. Classification report for the pseudo-labelling.

Class Precision Recall F1-Score Support

FISH 0.95 0.99 0.97 325
GAS 0.95 0.98 0.97 145

NOISE 1.00 0.56 0.71 36
PLATFORM 0.99 0.98 0.98 86

accuracy - - 0.96 592
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The overall accuracy of the ensemble prediction method for fish, gas, noise and
platform was about 98% (Table 4), while the confusion matrix in Figure 12 provides a
more detailed breakdown of correct and incorrect final classifications for each of the four
target classes.

Table 4. Classification report for the ensemble model.

Class Precision Recall F1-Score Support

FISH 0.98 0.99 0.99 1075
GAS 0.98 0.97 0.98 265

NOISE 0.95 0.87 0.91 70
PLATFORM 0.99 0.99 0.99 283

accuracy - - 0.98 1693
macro avg 0.98 0.96 0.97 1693

weighted avg 0.98 0.98 0.98 1693
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Results of the classification are reported in Figures 13–16, using latitude-depth views
(panels A) and Kernel Density Estimation (KDE) top views (panels B).

Depth profiles (A panels) in Figures 13–16 show that the platform was always correctly
identified as expected at the center of the unseen scenes, especially in the upper depth layers.
The bottom part of the structure was, on the contrary, often masked by the presence of fish
aggregations, gas and/or noise. Gas plumes were correctly detected in the southeastern
portion of the survey area surrounding Platform A, and this phenomenon was always
registered with different intensities over the three related surveys (Figures 13–15, Platform
A). By contrast, no gas was detected in the 1500 m × 1500 m area surrounding Platform B
in Survey 4 (Figure 16).
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Fish aggregations were scattered throughout the entire water column in Survey 4, and
mostly in the lower depths in Surveys 1–3. By contrast, the southwestern portion of the
area surrounding Platform A was generally less populated by fishes, while the footprint of
this class was more homogeneously distributed around Platform B.

Gas seeps were consistent in Surveys 2 and 3 in the southeastern part, while they were
less pronounced in Survey 1 and not seen, as expected, in Survey 4.

For Surveys 3 and 4 in particular, the ML algorithm erroneously predicted PLATFORM
for a few points scattered over the sounded area (Figures 15B and 16B), while noise was
always mainly located close to the platform.

4. Discussion and Conclusions

This work identifies a method to speed up the processing of MBES data, which
often still requires a huge amount of time and the constant supervision of the operator to
manually clean data and identify features to be extracted from the WCIs.

The extraction phase was performed in Echoview by way of a reproducible work-
flow, embedded in a template that can be efficiently applied to new surveys. After some
tests, targets were extracted by opting for the “by-ping” algorithm (cutting the sounded
object in slices) rather than sounding the entire object by the “cruise scanning” algorithm
that can miss parts or entire objects when pings overlap in space. Nevertheless, delin-
eation/detection of the entire target as an individual 3D object (rather than a group of
slices) may further improve data processing efficiency and ML success. This possibility
can be explored when software improvements are implemented to better handle this type
of data.

The developed procedure saved a considerable amount of time compared to the
previous manual and time-consuming approach [36] where ping subsetting and dataflow
adjustments were used to extract schools and limit target loss. The next release of Echoview
will include additional optimizations that were identified during this analysis, enabling
even greater efficiency in future studies.

Different templates were also put in place for different water depths. Starting from the
ideal assumption that the arbitrary thickness of the target slice (Figure 6B) should remain
the same in order to obtain comparable results in terms of metrics, a second template
was prepared for shallow waters (~10 m depth) fixing the dimension of the minimum
detectable target relative to the beamwidth. This effort made the Echoview dataflow
effectively exportable and applicable also to different conditions.
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The intuition that the identified target classes could be characterized by well-defined
features draw the design of the ML pipeline. Fish schools are often spatially confined
and compact, and their N-S and E-W—as well as their Top-Bottom dimensions—are often
comparable. On the other hand, gas seeps are scattered and extend from the seabed to the
surface, with their Top-Bottom dimension bigger than the others (N-S or E-W). Fish schools
and gas seeps also differ in terms of velocity: the first class is characterized by a low 3D
velocity (lesser than 5 m/s [49]) with the bigger component of this vector parallel to the
seabed, whereas the second can also reach speeds over 10 m/s [17] with the orthogonal
component overwhelmingly bigger. Moreover, as the spatial distribution of gas plumes is
scattered, the volume of slices is larger for fish schools than gas seeps.

ML techniques were used in a first instance to verify, from metrics data extracted,
if assumptions made above on shape and behavior of fish schools and gas seeps were
confirmed. With an unsupervised usage of the stacked methods it was found that depth
and height played a key role in discriminating gas from fish. Surface area and bounding
box dimensions of the target were also relevant in discrimination.

Where the goal of feature engineering was to transform existing features and construct
new features to improve the performance of a model, feature selection was about reducing
the dimensionality of the data set by removing unnecessary features. In this context, the
use of features related to SvUNCAL were considered and it was opted for the creation,
and following adoption, of the only derived difference between SvUNCAL maximum and
mean values (SvUNCAL diff). This was also due to the consideration that sidelobe interfer-
ence noise can hinder the detection of targets and affect the measure of their minimum
SvUNCAL values.

After having set the feature space, training with labeled data coming from Survey 1
was necessary to implement a first semi-supervised learning. This operation allowed to
utilize unlabeled data while training the ML model, give a slight performance boost and
improve the accuracy of further predictors [44]. These pseudo-labels were key, given the
small amount of labeled data that was available for training. It should not be underesti-
mated in fact that training ML models for classification requires a large number of labeled
samples that are usually expensive to collect in WC applications, although we still have
abundant unlabeled data.

The final ensemble stack model reached an accuracy of ∼98% while making predic-
tions on Survey 1, and gave consistent classification results for Survey 2 and Survey 3
where it was used to rapidly evaluate temporal/spatial trends over the same sounded area
(Figures 13–15).

Predictions on Survey 4 were performed to investigate the transferability of trained
models. Results seemed to be consistent, correctly identifying the presence of the unseen
platform and the absence of gas seeps that were never manually observed in this relatively
small 1500 × 1500 m area surrounding Platform B (Figure 16). It leads us to believe that
the adoption of the classification model at the new test site could be easily improved by
including relatively small site-specific training data [31].

The lowest recall value (87%) was attributed to the NOISE class, for which the model
gave the highest number of false positives (incorrectly classified as FISH).

Even if the PLATFORM class had a very high proportion of correctly identified targets
(99%), such predictions did not seem to be reasonable because sometimes they were
far from the real position of the structure. This could be discussed in terms of the ML
performance as well as in terms of the reliability of the manual labelling itself. Noise
from the extraction activities could hinder labelling in the proximity of the platform where
NOISE and PLATFORM targets coexist, as well as high noise levels near the structure
and systematic sidelobe artefacts in general could hamper the classification process by
degrading MBES WCI and related target features.

Lastly, when speaking about model accuracy, it is important to stress that results
should be interpreted by keeping in consideration three different levels of uncertainty we
introduced in: (i) target extraction, due to the software that processed WCI; (ii) manual
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labelling, due to the operator that visually classified targets; (iii) target prediction, due to
the designed ML approach.

In light of the above, ongoing research aims to enrich the feature space with bathymetry-
derived features (e.g., slope, curvature, bathymetric position index [50]). These may give
more or better information on hydrocarbons whose efflux through the seafloor causes
positive or negative seafloor geomorphological features, such as pockmarks [16].

The reliability of the obtained results together with the efficiency of the whole data
processing gain additional importance in the framework of multiannual integrated moni-
toring programs, such as those conducted by CNR-IRBIM that acquires, on a monthly basis,
MBES data around a few offshore gas platforms to understand the role of these offshore
artificial habitats and their impact on the ecology of fish populations. This always resulted
in a large volume of WCI data whose processing demanded time and effort.

MBES calibration [51] could improve the ML performance by providing additional
information for human labelling or machine target classification [52]. However, it must
be said that the use of uncalibrated MBES for feature classification did not penalise the
ML approach that mostly used features (e.g., height, dimensions, volume, speed) that
connected to the recorded SvUNCAL values. Also, the use of object detection algorithms
in Echoview is reasonable since the SvUNCAL mean values are not taken “as a whole” but
compared in the frame of the same survey data (same instrument set-up, and same sea
conditions). It is worth mentioning that besides systematic calibration of the MBES, the
measurements can be disturbed by several environmental and physical factors (e.g., sea
conditions, current and mud suspension dynamics, water turbidity) that can cause fluc-
tuations of absolute high-frequency backscatter values from time to time [53,54]. This
encourages the routine acquisition of different and concurrent environmental data together
with such tightly spaced MBES survey data and their use to support the interpretation of
trends in backscatter levels.

This study demonstrates a comprehensive and reliable approach for the detection and
classification of targets in Kongsberg EM2040CD data, providing valuable insights into
ecosystem and seafloor processes. The approach is transferable to data recorded by other
hydrographic MBES systems that record WCI and provides an opportunity to extract more
value from the investment required to perform MBES surveys.
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Appendix A

Table A1. Key decision table for the MBES target extraction procedure.

Processing Stage Purpose Description Key Settings

Explore Establishing general data characteristics to
inform the optimal processing approach

Querying the data via echograms, graphs,
tables, maps and 4D views.
Maximum Intensity operator used to provide
data overview

None

Calibrate

Establishing correct location of data in terms
of latitude, longitude, range from transducer,
and time.
Backscattering strength was not calibrated in
this study

GPS fixes recorded to .wcd file used as
position source
Heading data recorded to .wcd file used as
heading source
Ping Time Shift used to offset time of pings
from the second head in dual beam system

Platform type: position determined by GPS
Position source: “position GPS fixes”
Heading source: “heading data”
Pings shifted by time: 1 ms

Clean
Removal of unwanted targets, acoustical or
electrical noise, and statistical variation in the
measurements

Bad data regions created on Maximum
Intensity variable to exclude pings with
excessive noise.
3 × 3 Convolution, Erosion Filter 3 × 3,
Dilation Filter 7 × 7 (×2) used to reduce
stochastic variance in 2D echogram.
Best Bottom Candidate Line Pick and Span
Gaps used to detect seafloor in 2D echogram.
Threshold Offset used to detect surface noise
in 2D echogram.
Data Range Bitmap, Mask, Reduce Pings,
Match Ping Times, and Processed Data used to
remove 3D pings and/or samples that contain
no backscatter of interest in 2D echogram.
XxYxZ Convolution used to reduce stochastic
variance in 3D echogram.
Fixed Range surface used to exclude noise at
transducer face.
Multibeam bottom surface used to delineate
seafloor backscatter.
Surface resampling used to smooth delineated
seafloor

Minimum data threshold (dB): −36.0
Minimum Sv for good pick (dB): −20
Use backstep: true
Discrimination level (dB): −10
Backstep range (m): −0.5
Peak threshold (dB): −40
Maximum dropouts (samples): 5
Window radius (samples): 8
Minimum peak asymmetry: −1
Threshold offset threshold (dB): −70
Apply line-relative smoothing: true
Data range bitmap min. in-range value (dB): −998
Data range bitmap max. in-range value (dB): 999
XxYxZ Convolution algorithm: Top hat
Rows (samples): 3
Columns (beams): 5
Layers (pings): 3
Fixed Range (m): 4–10 (data dependent)
Multibeam surface triangulation distance (m): 20
Start depth for seafloor detection (m): 4–10 (data dependent)
Min. threshold factor (%): 50
Min. sample gap between candidates: 15
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Table A1. Cont.

Processing Stage Purpose Description Key Settings

Max. candidates per beam: 5
No. beams used for seeding: 3
No. samples to join: 20
Max. difference in range between neighbours (%): 5
Max. number of samples rejected before stopping: 8
Max. range of edge samples (%): 5
Resample north-south resolution (m): 2
Resample east-west resolution (m): 2

Detect and track
Delineation of backscattering targets in the
water column and tracking of targets over
multiple pings (region tracking)

3D school detection algorithm used to
delineate contiguous clusters of above
threshold backscatter on the Processed Data
echograms
Region tracking used to identify detections of
the same target across multiple pings.

Detection algorithm: By ping
Region width (m): 0.8
Minimum longest dimension (m): 2.0
Minimum middle dimension (m): 1.5
Minimum shortest dimension (m): 0.8
Save vacuoles: false
Region tracking analysis variable: none (geometric center used)
Alpha: 0.7
Beta: 0.7
Exclusion distance (m): 1.5
Weighting: distance in space, distance in time, volume all equal
Minimum number of regions in a track: 1
Maximum distance gap between regions (m): 1
Maximum time gap between regions (s): 10

Characterise Calculate metrics from the detected and
filtered components of the signal

Scene > Export > Analysis by Regions by
Region Track

Scene analysis variable: Merge Pings
Integration algorithm: Multibeam cruise scanning—equal ping weight
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