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Abstract

Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the
plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-
inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus
spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-
plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-
mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural
compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste
product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs),
we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This
design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified
MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte
MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by
the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We
used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-
choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG
mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role
in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological
methanol in human gene regulation.
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Introduction

Plants are exposed to a different abiotic and biotic stress

conditions [1–3]. Physical damage to a plant is a potential threat

because it allows pathogen entry. The mechanical wounding of

plant leaves after wind, rain, hail, or herbivore feeding is one of the

first steps in pathogen infection and herbivore attack and activates

signal transduction pathways and airborne signals to fend off

harmful organisms. The mechanism by which these signals

promote plant immunity remains elusive. In response to an attack

by a pathogen and plant damage, several plant species emit

volatile organic compounds (VOCs), including ethylene [4],

methyl salicylate [5], methyl jasmonate [6,7], nitric oxide [8,9],

and cis-3-Hexen-1-ol [10], which upregulate pathogen-related (PR)

genes [10–12]. Pectin methylesterase (PME, EC: 3.1.1.11) [13] is

a PR protein [14] and the first barrier of defense against invading

pathogens [14–20] and herbivores [21,22]. In higher plants, PME

is a ubiquitous multifunctional enzymatic component of the plant

cell wall. The PME genes encode a proPME precursor with an N-

terminal extension of variable length [23–25]. The tobacco

proPME protein contains a long N-terminal leader sequence with

a transmembrane domain, which is important for PME delivery

into the cell wall [25,26]. PME participates in cell wall biogenesis

during general plant growth [27–30], nematode infection [31],

and pollen tube growth [32–35].

PME may be involved in the cell-to-cell movement of plant

viruses [36] because it interacts with the movement protein of the

Tobacco mosaic virus (TMV) [37,38]. PME also efficiently enhances

virus- and transgene-induced gene silencing (VIGS and TIGS) via

the activation of siRNA and miRNA production [39,40]. In the

case of bacterial and fungal phytopathogens, PMEs function as

virulence factors that are necessary for pathogen invasion and

spreading through plant tissues [41,42].

Pectin demethylation directed by cell wall PME is likely to be

the main source of methanol on Earth [43–46]. Although

wounding and herbivore attack increase methanol emissions

[22,47–49], methanol has long been assumed to be a metabolic

waste product [43–45]. This point of view was supported by the

observations that, in natural conditions, PME-generated methanol

can accumulate in the intercellular air space of intact leaves at

night [45] and, when the stomata open in the morning, methanol

emission peaks are observed [46]. However, a study of the effects
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of the PME-generated methanol released from wounded plants

(‘‘emitters’’) on the defensive reactions of neighboring ‘‘receiver’’

plants indicated that the methanol emitted by a wounded plant

may function as a specific signal to enhance antibacterial

resistance and to facilitate viral spread in neighboring plants

[50]. To reveal plant methanol gene targets, methanol-inducible

genes in methanol-treated Nicotiana benthamiana plants were

identified. A model explaining the role of methanol in within-

plant and plant-to-plant communication was suggested by these

studies [50]. It has been hypothesized that methanol-inducible

genes upregulation and enhanced virus reproduction is an

unintended consequence of the plant’s response against bacterial

pathogens.

Methanol is widely available in human life. It is used in

industrial production and is also present in windshield wiper fluid,

antifreeze, and model airplane fuel. Methanol is colorless and has

a taste and odor only subtly different from that of ethanol. In

addition to alcoholic drinks and accidental poisoning, another

source of methanol is aspartame, which is used as a synthetic

nonnutritive sweetener [51–54]. In humans, the total methanol

consumption from natural sources is estimated to average

10.7 mg/day [55].

Methanol itself has a low toxicity [56]. For example, animal cell

cultures can tolerate high concentrations of methanol [57–60].

However, in mammalian organisms, methanol is metabolized by

alcohol dehydrogenases (ADHs) to produce formaldehyde and

formic acid and, further, to carbon dioxide and water [61,62].

Ethanol, which is a substrate of ADHs, has a role as an antidote, so

the inevitable methanol content in commercially available

alcoholic drinks is not harmful for human health [63,64]. In cases

of accidental methanol poisoning, the current primary treatment is

the inhibition of ADHs, preferably by ethanol and fomepizole (4-

methyl-1H-pyrazole) [65–69].

More than 60 years ago, a small amount of methanol was

detected unexpectedly in the breath of several normal, healthy

humans using gas-liquid chromatography [70–72]. Subsequently,

methanol was also identified in the exhaled breath of healthy

volunteers using mass spectrometry [73–76]. The level of breath

methanol was equivalent to the 0.038 mmol/L (1.22 mg/L) found

in blood, which is more than 400 times lower than harmful

concentrations [56]. In methanol poisonings, the usual criteria for

hemodialysis and antidote therapy include a plasma methanol

concentration .15.6 mmol/L (500 mg/L) [77]. The methanol

content in the exhaled breath of volunteers was increased after

fruit and fruit juice consumption [70,75], suggesting the

participation of pectin/PME in methanol generation [78]. The

origin of endogenous methanol in humans is not yet clear, but two

sources were suggested [70]. The first is human gut microbiota.

Anaerobic fermentation by gut bacteria is known to produce

a variety of VOCs, including all alcohols in the series from

methanol to heptanol [79]. Although methanol-generating

microbes have not yet been isolated from intestinal bacteria, this

hypothesis should be investigated further. The second suggestion

considers methanol to be a ‘‘product of some metabolic process’’

[70]. This hypothesis was supported by evidence that S-adenosyl

methionine (SAM) may be transformed to methanol and S-

adenosyl homocysteine in the bovine pituitary gland and other

animal brain tissue [80,81]. SAM is a universal endogenous

methyl donor and is a limiting factor in various methylation

reactions, including the methylation of proteins, phospholipids,

DNA, RNA and other molecules, which are the basic mechanisms

of epigenetic phenomena [82–84]. Protein carboxymethylase is

highly localized in the brain and the pituitary gland of several

mammalian species [85–87] Carboxylmethylation involves the

methylation of the –COOH group of the amino acids in proteins,

and the reaction is catalyzed by methyltransferases [88], resulting

in the production of carboxyl methyl esters. Carboxyl methyl

esters are unstable and are readily hydrolyzed in neutral and basic

pH conditions or by methylesterase to produce methanol

[86,89,90]. Interestingly, aspartame, which is a widely used

synthetic non-nutritive sweetener, is a methyl ester of a dipeptide

(N-L-a-aspartyl-L-phenylalanine) that is likely to convert to

methanol with the participation of protein methylesterases [55].

Based on the data above, methanol is a natural compound in

normal, healthy humans and mammalians. Here, we identified

MRGs as methanol gene targets using forward and reverse

suppression subtractive hybridization (SSH) cDNA libraries of

HeLa cells that had been exposed to methanol. We showed that

vegetable intake increases the methanol content in human plasma

and MRG mRNA accumulation in human leukocytes. To

approach the question of whether animal methanol is a metabolic

waste product or whether methanol has specific function similar to

the signaling function of methanol in plant life, we studied animal

responses to digested and inhaled methanol. We showed that plant

leaf wounding resulted in the emission of gaseous methanol, which

increased methanol content in plasma of mice. Moreover, we

identified MRGs as methanol gene targets and detected the up- or

downregulation of MRGs in the brains of mice after breathing

methanol and leaf vapors. We revealed a preference of the mice

for the odor of methanol over other plant volatiles in a Y-maze

setup and suggested that methanol may function as a cross-

kingdom signal.

Results

Identification of MRGs
The experimental identification of animal MRGs includes

serious challenges because of animal alcohol dehydrogenase,

which is present mainly in hepatic cells and initiates methanol

conversion into toxic formaldehyde and formic acid. Therefore,

cell cultures lacking alcohol dehydrogenase activity had to be used

to exclude genes involved in formaldehyde and formic acid

detoxification from our analysis. To that end, we selected HeLa

cells, which have been shown to have no ADH activity [91–93].

To identify MRGs, forward and reverse SSH cDNA libraries of

HeLa cells exposed to methanol (75 mmol/L for 6 h) were

constructed. Of the 27 differentially expressed transcripts, 5

appeared to be more affected in intact cells, and 22 transcripts

appeared to be upregulated following methanol treatment. The

cloned expressed sequence tags (ESTs) of only the genes that were

upregulated in response to methanol treatment were chosen for

sequencing. The methanol-specific upregulation of the SSH-

identified genes was validated by virtual northern blot analysis

hybridized with [32P]-labeled probes prepared from randomly

selected differential clones, which were identified by differential

screening. We identified and selected four of the most abundant

SSH-identified genes for further analysis (Table 1). The first gene

was glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which

has a role in glycolysis and nuclear functions, including

transcription, RNA transport, DNA replication, and apoptosis

[94]. The second gene, hTax1 (human T-cell leukemia virus type I)

binding protein 1 (hTax1BP1), encodes a cytoplasmic protein that

inhibits TNF-induced apoptosis by mediating the anti-apoptotic

activity of TNFAIP3 and that may also have a role in the pro-

inflammatory cytokine IL-1 signaling cascade [95]. The third

gene, human sorting nexin family member 27 (hSNX27), encodes

a cytoplasmic protein that is involved in cellular endocytic

trafficking and the T lymphocyte endocytic recycling pathway
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[96]. The last gene, human cyclin A2 (hCycA2), encodes a protein

belonging to the highly conserved cyclin family, which is a key

component of the cell cycle machinery, and functions as a regulator

of cyclin-dependent kinases [97]. The human orthologs, hGAPDH,

hTax1BP1, hSNX27 and hCycA2, have highly conserved mouse

counterparts: mGAPDH (Fig. S1), mTax1BP1 (Fig. S2), mSNX27

(Fig. S3), and mCycA2 (Fig. S4). The known properties and

functions of the genes identified by SSH are not related to

formaldehyde and formic acid detoxification. We concluded that

hGAPDH, hTax1BP1, hSNX27 and hCycA2 are genes that are

sensitive to methanol, which we called MRGs.

Food intake influences methanol content in human
plasma and MRG expression in leukocytes in healthy
humans

To validate MRG identification and to evaluate the biological

function of MRGs identified in HeLa cancer cells, we exposed cells

from healthy humans to different concentrations of physiological

methanol in their blood. We wanted to determine whether fresh

vegetable intake serves as an additional source of human

methanol. To that end, we compared the methanol content in

the plasma of healthy volunteers after vegetable (Chinese cabbage,

Brassica rapa pekinensis) and meat (turkey) intake. Tests on 15

individuals showed that fasting blood samples contained approx-

imately 168 mmol/L methanol (Fig. 1). However, 3 h after fresh

salad consumption, the methanol content increased statistically

significantly up to 225 mmol/L. However, the content was at least

100 times lower than harmful methanol concentrations [56]. An

analysis using an unpaired, two-tailed Student’s t-test confirmed

a statistically significant difference in methanol content between

the control and fresh salad intake groups. Turkey meat intake had

no effect on the methanol content in human plasma. We

concluded that fresh vegetable intake increases the physiological

methanol content in human blood.

Subsequently, we compared the gene expression profile of the

peripheral leukocytes of healthy volunteers after vegetable and

meat (turkey) intake. Biologically, the increased methanol content

in the blood plasma after fresh vegetable intake should lead to the

up- or downregulation of human MRGs in these cells. To confirm

this prediction, we studied changes in the expression patterns of

the MRGs by performing quantitive real-time PCR (qRT-PCR) to

determine the mRNA levels in isolated human leukocytes. Fresh

salad intake resulted in a suppression of hGAPDH and hSNX27

mRNA, whereas the hTax1BP1 and hCycA2 mRNA levels had not

changed (Fig. 2A). A different MRG mRNA profile was observed

after the meat diet (Fig. 2B). Turkey meat intake stimulated the

accumulation of all of the MRGs. The biological meaning of this

phenomenon is unclear, but gene expression in peripheral

leukocytes could potentially be used as a marker of MRG

expression in response to diet. We concluded that MRG mRNA

accumulation in human leukocytes is sensitive to changes in the

physiological methanol content in human blood plasma.

Methanol generated in the gastrointestinal tract of mice
induces the up- and downregulation of MRG mRNA in
the mouse brain

To support our data regarding MRG responsiveness to

increases in physiological methanol, we used an experimental

mouse model. In natural conditions, the pectin/PME complex is

a source of methanol. To approach the question of whether

ingesting pectin/PME complex-containing food generates meth-

anol in the mouse gastrointestinal tract, we first tested PME

activity in different plant preparations. To that end, we used a gel

diffusion assay based on the increased binding of ruthenium red to

pectin as the number of methyl esters attached to the pectin

decreases [36,98]. The diameters of the stained zones decreased

with an increasing percentage of pectin esterification, which

allowed for the quantification of PME activity. Figure 3A shows

that extracts of citrus pectin (Nittary Pharmaceuticals, VitaLine,

Table 1. Methanol-induced ESTs from HeLa cells.

Functional annotation Matching with
EST clones
(n) E-value

Gene bank accession
number

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)

Homo sapiens Glyceraldehyde 3-phosphate
dehydrogenase

2 3.6e-165 AY340484

Tax1(human T-cell leukemia
virus type I) binding
protein 1 (TaxIBP-1)

Homo sapiens cDNA FLJ95049 encoding Tax1 (human
T-cell leukemia virus type I) binding protein 1

1 1e-180 AK314292

Human sorting nexin family
member 27 (hSNX27)

Homo sapiens protein associated with schizophrenia
and a gene encoding the same (DD149415)

1 1.4e-142 DD149415

Human cyclin A2 Homo sapiens cyclin A2, mRNA 1 1.7e-61 X51688

doi:10.1371/journal.pone.0036122.t001

Figure 1. Methanol content in the plasma of volunteers 3 h
after fresh salad or turkey meat intake. The data obtained in May
2011 are presented as the means 6 SE. Student’s t-test P-values to
determine the statistical significance of the differences in methanol
content before and after food intake are indicated.
doi:10.1371/journal.pone.0036122.g001
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Inc.) contained high PME activity (,13 nkatals/mg protein) (wells

#1–3), and this activity was significantly lower after heating (70uC,

10 min) (wells #4–6). Significant PME activity (,20 nkatals/mg

protein) was revealed in the cell wall fractions of fresh cabbage

heads (Brassica oleracea) (wells #10–12). Sauerkraut (wells #13–15),

the cell wall supernatant fraction of sauerkraut (well #17), and

even sauerkraut brine (#16) retained PME activity. On the other

hand, the extracts of carrot (wells #7–9), dried plum (prune) (wells

#18–20), and red beet (wells #21–23) did not have PME activity.

Because the B. oleracea PME activity varied from sample to sample,

we used the VitaLine citrus pectin preparation (lot Z1437) for

additional studies. Next, gas chromatography was used to analyze

the capacity of citrus pectin(PME+) for generating methanol.

Figure 3B shows that the incubation of a water suspension of

pectin(PME+) at 28uC resulted in methanol production, while

pectin (cat. # P9135, Sigma), which is designated as pec-

tin(PME2), demonstrated negligible methanol generation activity.

An analysis using an unpaired, two-tailed Student’s t-test

confirmed a statistically significant difference in methanol pro-

duction between the control and the pectin(PME+) sample. We

concluded that pectin(PME+) was active in methanol production in

vitro.

To approach the question of whether the consumed vegetable

(pectin/PME complex) is a source of methanol in mouse blood, we

administered pectin(PME+) via a feeding tube into the stomach of

mice and monitored the appearance of methanol in the blood

stream by gas chromatography. The control group received a 0.5%

glucose solution, pectin(PME2) or water. The methanol content

in the mouse plasma increased drastically 10 min after pec-

tin(PME+) administration then dropped slowly (Fig. 4). Methanol

ingestion increased its content in plasma for 1 h and decreased to

background level 2 h after injection into the stomach (Fig. S5).

Pectin(PME2) resulted in a small increase in methanol content

only 10 min after administration, while the water control had no

Figure 2. Plant-generated methanol influences gene expression in human leukocytes. (A, B) Influence of fresh salad (A) and turkey meat
(B) intake on human blood leukocyte gene transcription as determined by qRT-PCR. The relative quantities of mRNA 3 h after food intake was
normalized to the mRNA levels before food intake. Student’s t-test P-values are indicated.
doi:10.1371/journal.pone.0036122.g002
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influence during the course of observation. We concluded that the

pectin/PME complex generated methanol in the gastrointestinal

tract of mice.

We validated the changes in expression of the mouse

counterpart SSH-selected genes by performing qRT-PCR de-

termination of mRNA levels in different organs in mice after the

ingestion of methanol-producing pectin containing PME [pec-

tin(PME+)]. The expression patterns of the four selected genes

were studied in the organs of the mice 2 h after methanol and

pectin(PME+) ingestion. mGAPDH gene expression drastically

increased in the brains (Fig. 5D) of methanol- and pectin(PME+)-

fed mice, whereas no increases in gene expression levels were

observed in the livers (Fig. 5A), hearts (Fig. 5B) and spleens

(Fig. 5C) of these mice compared to those treated with water.

Similar to mGAPDH, an analysis of the mTax1BP1 (Fig. 6A) and

mSNX27 (Fig. 6B) genes showed that expression was increased in

mouse brains after methanol and pectin(PME+) ingestion. mCycA2

expression was dependent on methanol and pectin(PME+)

ingestion but had a more complicated profile (Fig. 6C). The

accumulation of this mRNA in the livers, hearts, and spleens

increased, while in the brain it was drastically suppressed. We

concluded that methanol generated in the mouse gastrointestinal

tract can regulate MRG mRNA accumulation in the brain.

Methanol emitted by wounded plants directs mouse
locomotor behavior during exploration

Earlier, we showed that gaseous methanol emitted by wounded

plants can serve as a signal to induce defense reactions in

neighbors [50]. To address the question of whether methanol

functions as a signaling molecule in plant-animal communication,

we studied the behavior of mice following the inhalation of vapors

from wounded leaves. To that end, we used B. rapa pekinensis leaves

rubbed with an aqueous suspension of Celite as an abrasive and

loaded these leaves into a container with a flow-through setup in

which the mice breathed the vapors from the damaged leaves

(Fig. 7A). Leaf wounding resulted in a 10-fold increase in methanol

emission (Fig. 7B) and increased the methanol content in the blood

plasma samples from the mice (Fig. 7C). Subsequently, we used an

adapted Y-maze (Fig. 8A) and measured the locomotor behavior

of the mice during exploration in two-choice assays. We recorded

the number of visits and total time a mouse spent on each side of

the Y-maze as commonly assessed in preference tests. Motions that

resulted in visiting one of the odor sources in the sides (L or R) of

the Y-maze and stalling there for 20–25 s were recorded as

choices. Motion cessation in other parts (L, R and S) of the Y-

Figure 3. Citrus pectin preparation contains methanol-generating PME. (A) Detection of PME activity in plant material. Visual detection of
PME activity in agarose gels containing 90% methylesterified pectin and stained by ruthenium red. The wells were loaded with citrus pectin (Nittary
Pharmaceuticals, VitaLine Inc.) extract before (1–3) and after (4–6) heating (70uC, 10 min), the cell wall extract of carrot (7–9), cabbage head (Brassica
oleracea) (10–12), sauerkraut (13–15), sauerkraut brine (16), the cell wall supernatant fraction of sauerkraut (17), the cell wall extract of dried plum
(prune) (18–20) and red beet (21–23). Well #24 was loaded with pectinesterase from orange peel containing 20 nkatals PME. Plant material was
extracted with Na-citrate buffer, pH 7.0, without NaCl (1, 4, 7, 10, 13, 18, 21) or with 0.15 M (2, 5, 8, 11, 14, 19, 22) or 1 M (3, 6, 9, 12, 15, 16, 17, 20, 23,
24,) NaCl. (B) citrus pectin(PME+) generates methanol. The methanol content in the pectin suspension in water after a 2-h and an 18-h incubation at
28uC. The data represent five independent experiments, and the standard error bars are indicated. Student’s t-test P-values are indicated.
doi:10.1371/journal.pone.0036122.g003

Figure 4. Methanol content in mouse serum 2 h after direct
administration of pectin into the stomach. The mice were
randomly divided into groups of ten. Each mouse in the treatment
groups received 20 mg of pectin(PME+) or pectin(PME2) directly into
the stomach by gavage. After 10, 30, 60 and 120 min, a blood sample
was obtained and analyzed for methanol content by gas chromatog-
raphy. The control groups received water or 0.5% glucose solution. The
data represent five independent experiments, and standard error bars
are indicated. ***, P,0.001 (Student’s t-test).
doi:10.1371/journal.pone.0036122.g004
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maze in which there were no odor sources was recorded as no

choice. The results demonstrated that mice preferred the odors

from wounded leaves (70%, P,0.01, x22test) to those of intact

ones (Fig. 8B, bar #1) and preferred cotton wool wetted with

methanol (73%, P,0.01, x22test) to water (Fig. 8B, bar #3).

Previously [50], our gas chromatography analysis revealed the

emission of cis-3-Hexen-1-ol, which is a representative of green leaf

volatiles (GLVs), in the headspace of wounded leaves. We tested

cis-3-Hexen-1-ol and showed that mice did not prefer this GLV to

water vapors (Fig. 8B, bar #5). Moreover, a direct comparison of

methanol and cis-3-Hexen-1-ol revealed a mouse preference for

methanol (Fig. 8B, bar #9). An analysis using the x22test

confirmed a statistically significant difference in the preference of

mice to methanol over cis-3-Hexen-1-ol. We did not detect methyl

jasmonate in the headspace of wounded leaves [50]. Ethylene

emission was detected, but there was no statistically significant

difference in ethylene emission between the control and wounded

leaves [50]. Nevertheless, we tested methyl jasmonate (Fig. 8B, bar

#4) and ethylene (Fig. 8B, bar #6), and the mice did not reveal

any preference for these compounds over water vapors. The mice

chose equally between water vapors (Fig. 8B, bar #2). Further-

more, the mice did not prefer wounded (Fig. 8B bar #7) or intact

(Fig. 8B, bar #8) B. rapa leaves to methanol vapors.

We concluded that the methanol emitted by plants may

function as an attractant for mice.

We then assessed the gene expression profile in the mouse brain

after methanol inhalation. We studied the changes in the MRG

expression patterns by determining mRNA levels in isolated

mouse brain tissues by qRT-PCR. After the inhalation of

methanol or wounded leaf vapors, the mRNA levels of mGAPDH,

mTax1BP1 and mSNX27 increased in mouse brains, whereas

mCycA2 mRNA was suppressed drastically (Fig. 9). It is worth

emphasizing that the changes in MRG mRNA levels after the

inhalation of methanol or wounded leaf vapors were similar to

those in the brain tissue of mice after pectin(PME+) complex

ingestion (Figs. 5 and 6). We concluded that the methanol emitted

by plants can be an attractant to mice and may induce the up- and

downregulation of MRGs in mouse brain tissue.

Discussion

Many plants respond to wounding from pathogen and

herbivore attacks by releasing airborne volatile compounds that

serve as plant defenses involved in within-plant and plant-to-plant

signaling, attracting natural enemies of the herbivores and

repelling other herbivores [99]. The reality of ‘‘talking trees,’’

which describes plants’ expression of resistance mediated by

VOCs from neighboring plants, is now well described [100]. The

idea of ‘‘eavesdropping’’ has recently explained the evolutionary

benefits and disadvantages for plant emitters, which mainly use

VOCs for within-plant purposes [101]. Chemical signals, such as

ethylene, methyl salicylate, and methyl jasmonate, induce re-

sistance to many pathogens. Pectin and PME form a ubiquitous

multifunctional enzymatic complex in the plant cell wall and

generate methanol by pectin demethylation. Since 1661, when

Robert Boyle [102] described methanol as a ‘‘sowrish spirit’’

(wood spirit) using the pyrolysis of boxwood and distillation, the

function of methanol in plant and animal life has been unclear.

Although emissions from volcanoes, generation from H2 and CO2

in seafloor hydrothermal systems [103–105] and the combustion

of biomass all contribute to terrestrial atmospheric methanol,

PME-mediated emissions from plants are likely the largest source

of methanol in the atmosphere [43–46]. For a long time, gaseous

Figure 5. Relative quantity of mGAPDH mRNA in mouse organs after methanol and pectin(PME+) ingestion as determined by qRT-
PCR: A – liver, B – heart, C – spleen and D – brain.
doi:10.1371/journal.pone.0036122.g005
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methanol was considered a biochemical ‘‘waste product’’ [45–46].

Recently [50], we have studied the effects of PME-generated

methanol from plants (‘‘emitters’’) on the defensive reactions of

plants (‘‘receivers’’). It was shown that increased methanol

emission from PME-transgenic or mechanically wounded non-

transgenic plants retards the growth of the bacterial pathogen

Ralstonia solanacearum in neighboring ‘‘receiver’’ plants. Antibacte-

rial resistance was accompanied by the upregulation of genes

Figure 6. Relative quantity of (A) mTax1BP1, (B) mSNX27 and (C) mCycA2 mRNA in mouse organs as determined by qRT-PCR after
methanol and pectin(PME+) ingestion. The mCycA2 data (C) are plotted on a semi-logarithmic scale. The standard errors and Student’s t-test P-
values are indicated.
doi:10.1371/journal.pone.0036122.g006
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Figure 7. Inhalation of vapors from wounded leaves or methanol increases methanol content in mouse blood. (A) Experimental set-up
for the inhalation of vapors from intact and wounded leaves by mice. A 5-l hermetically sealed vessel with five female mice was attached to a 150-ml
flow-through jar supplied with filtered air (at a rate of 83.3 ml/min) and containing intact or wounded leaves from the B. rapa pekinensis
(approximately 1 g). (B) Methanol emission by wounded leaves. B. rapa leaves were rubbed with Celite, and leaf samples (approximately 1 g) were
loaded into hermetically sealed plastic jars with a drop of water (300 ml). After incubation for 180 min, the leaves were removed, and the methanol in
the water drop was measured by gas chromatography. The standard errors and Student’s t-test P-value are indicated. (C) Methanol content in the
blood of female mice after a 90-min exposure to air with vapors from intact and wounded leaves. The standard errors and Student’s t-test P-value are
indicated.
doi:10.1371/journal.pone.0036122.g007

Figure 8. Mice prefer the odor of methanol and volatiles from damaged B. rapa leaves to odors from undamaged leaves. (A)
Experimental set-up for the two-choice test based on a Y-maze. Air drawn by a fan through a tube is conducted through the left and right odor
compartments. The air currents then pass to the left (L) and right (R) arms of the maze, which was fitted with a starting compartment (S). (B)
Response of mice to different VOCs, vapors from wounded leaves and methanol compared to intact leaves and water-soaked cotton wool in the two-
choice set-up. In total, 150 mice were tested per combination. The figure shows the percentages of mice selecting the odor source. Asterisks indicate
a statistically significant difference within a choice. Arabic figures (on the left) designate the bar orders. x22test: *** P,0.01, n.s., not significantly
different.
doi:10.1371/journal.pone.0036122.g008
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controlling stress and cell-to-cell communication in the ‘‘receiver’’.

We concluded that methanol is one of the VOCs involved in

within-plant and plant-to-plant signaling.

Here, we used HeLa cancer cells, which have been shown to

have no ADH activity [91–93] and, therefore, cannot ferment

methanol to produce formaldehyde. We constructed SSH cDNA

libraries from HeLa cells exposed to methanol and isolated MRGs

(Table 1). Moreover, we validated the MRG identification using

leukocytes from healthy volunteers and showed differences in

MRG expression in leukocytes following vegetable intake, which

resulted in increases in methanol content (Figs. 1 and 2).

To understand the physiological role of methanol in animals, we

showed that methanol generated by the pectin/PME complex

(Fig. 3) may be involved in mammalian gene regulation. Methanol

and pectin(PME+) ingestion resulted in the rapid appearance of

methanol in mouse plasma (Fig. 4) and was accompanied by the

accumulation of mGAPDH (Fig. 5), mTax1BP1, and mSNX27 (Fig. 6)

mRNA in the brain. GAPDH has often been referred to as

a ‘‘housekeeping’’ gene and is used to standardize northern blots.

Over the last two decades, however, a number of novel functions

for GAPDH beyond glycolysis have been described, including its

participation in nuclear trafficking and apoptosis [106]. Methanol-

mediated GAPDH mRNA accumulation in the brain suggests

a signaling function for methanol. This idea was supported by the

simultaneous increase in the accumulation of mTax1BP1 and

mSNX27 mRNA (Fig. 6) because recent data showed the

involvement of Tax1BP1 in transcription regulation [95] and the

involvement of SNX27, which is a member of the human sorting

nexin family, in signal transmission [107,108]. The effects of

methanol in mouse are likely to involve many different aspects or

features, including cell cycle regulation [109] as suggested by the

accumulation of mCycA2 mRNA (Fig. 6).

Here, we also showed that leaf wounding caused enhanced

production of gaseous methanol and that inhaling these vapors

resulted in increased methanol content in the mouse plasma (Fig. 7)

and the modification of brain MRG mRNA levels (Fig. 9). We

suggest that methanol can function as an attractant for mammals.

In the wild, mice are primarily herbivores and eat whatever

vegetation is available, including fallen seeds and fruits accumu-

lating ethanol and methanol [110]. We propose that the methanol

content in the mouse bloodstream would increase very slightly

during the search for wounded plants as food but that the increase

would be enough to induce the correct choice. It is worth

emphasizing that short-chain alcohols, including methanol, were

greatly preferred by insects and bark beetles (Hylurgops palliatus,

Tomicus piniperda, and Trypodendron domesticum), while longer-chain

alcohols were not attractive [111]. We suggest that mice, similar to

insects, can detect this signal. In line with the hypothesis that

mammals may ‘‘eavesdrop’’ on plant-to-plant communication

signals, we showed that mice prefer the odor of methanol to other

plant volatiles in a Y-maze setup (Fig. 8).

The increase in the methanol concentration following fruit and

juice consumption suggests the participation of pectin/PME in

methanol generation in humans. However, the high methanol

content in the plasma of fasted volunteers (Fig. 1) could be

explained by the participation of microbial inhabitants in

endogenous methanol generation. In our experiments, glucose

increased the methanol content by 5-fold compared to the water

control (Fig. 4), which suggests that glucose may stimulate

methanol production by the microbial inhabitants of the mouse

gastrointestinal tract. The gut microbiota is likely to be an

underestimated source of endogenous methanol. The second

source of methanol in mammalian organism is the brain, in which

intracellular metabolic processes involving SAM and protein

methylesterases occur [70,80,81,85,89,90]. Glucose-mediated in-

creases in methanol (Fig. 4) could be explained by increased SAM

production and the subsequent methanol generation. However, in

our experiments, SAM ingestion did not increase the methanol

content in the mouse bloodstream (data not shown), which is in

accordance with the data from the experiments on volunteers

[112].

We suggest that the pectin/PME complex in the diet and the

generation of physiological methanol may have a positive role in

human health. This hypothesis is based on indirect evidence.

Studies have suggested a beneficial effect of plant food intake on

human health [113,114], the prevention of cancer [115] and

cardiovascular diseases [115,116], and the data are consistent with

the proverb ‘‘an apple a day keeps the doctor away.’’ In addition

to a substantial amount of phytochemicals, salts, minerals, and

vitamins, fruits and vegetables contain a significant amounts of

pectin, which might be a substrate for gastrointestinal microbial

inhabitants and methanol production. Pectin has been shown to

have a role in the prevention of heart disease and to exert

a protective effect in hypertension and diabetes [117–120]. Pectin-

Figure 9. Plant-generated methanol influences gene expression in the mouse brain. Influence of vapors from wounded leaves and
methanol on brain. MRG transcriptional activity as determined by qRT-PCR. The data are plotted on a semi-logarithmic scale. Relative quantities of
mouse brain and leukocyte mRNA were normalized to the corresponding mRNA from control mice.
doi:10.1371/journal.pone.0036122.g009
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rich foods and isolated viscous dietary fibers have demonstrated

a cholesterol-lowering effect in humans [121,122] and the

reduction of atherosclerosis lesions in an animal model [123]. In

addition, a substantial amount of research has suggested that fruit

pectin has a role in the prevention of cancer progression and

metastasis [124–129]. SAM is used as a dietary supplement for the

treatment of many medical disorders, including depression.

Interestingly, recent findings indicate a critical role for SAM in

the maintenance of neuronal health, suggesting a possible role for

SAM as a neuroprotective dietary supplement for Alzheimer’s

disease patients [130]. Although SAM intake did not result in

methanol formation [112], we hypothesize a role for methanol in

the maintenance of neuronal health.

Considering the proposed signaling function for methanol, we

should estimate the toxic consequences of exogenous methanol

intake and the production of endogenous methanol in humans.

Methanol itself is harmless, but it is a ‘‘Trojan horse’’ for toxic

formaldehyde [131,132], the formation of which is catalyzed by

ADH. Formaldehyde is further oxidized to formic acid by

formaldehyde dehydrogenase. This conversion is very rapid, and

formaldehyde has a half-life of only 1–2 min with subsequent

formic acid formation [55]. Human ADH exists in multiple forms

as a dimer and is encoded by at least seven different genes [133].

There are five classes (I–V) of alcohol dehydrogenase, but the

primary hepatic form in humans is class 1 (ADH 1) [134]. Because

ADH 1 evolved to utilized ethanol, ethanol functions as a powerful

competitive inhibitor at low concentrations [135], and the enzyme

has a strong preference for converting ethanol to acetaldehyde

over the conversion of methanol to formaldehyde [136]. It appears

that the average person may typically have endogenous ethanol in

their breath [75,76] and blood [137] that is likely produced by gut

fermentation [138]. Another SIFT-MS study of breath ethanol for

the same cohort of volunteers suggested that methanol and ethanol

are formed in the body from different substances and/or different

processes [75]. Very low levels of ethanol in the bloodstream

would substantively prevent all formaldehyde production from

endogenous and dietary methanol in humans. It was hypothesized

[53] that the formaldehyde produced by the metabolism of dietary

and endogenous methanol by ADH I would have a role in many

diseases if ethanol does not act as a competitive inhibitor. Ethanol

protection from formaldehyde production may explain the U-

shaped curve describing the dependence on alcohol consumption

and cardiovascular diseases [53,138,139]. Figure 10 summarizes

the data on methanol and endogenous ethanol biogenesis,

illustrating the putative positive role of physiological methanol

and ethanol in human health. The methyl group donor, SAM, is

synthesized via the catalytic activity of methionine adenosyltrans-

ferase, which transfers the adenosyl group of ATP to methionine

(step 1). S-adenosylhomocysteine is formed after SAM transfers

a methyl group to a methyl acceptor (step 2), such as proteins,

phospholipids, DNA, RNA and other molecules, including

dopamine [140]. The beneficial effects of SAM on health and its

ability to reduce the progress of Alzheimer’s syndrome [141–144]

suggest its participation in gene regulation (step 11). Methyl esters,

such as carboxyl methyl esters, are unstable and are readily

hydrolyzed in neutral and basic pH conditions or by methylester-

ase to produce methanol [89,90] (step 3). Other sources of

methanol are the human diet supplying the methanol-generating

pectin/PME complex from fruits and vegetables (steps 4,5),

aspartame as a synthetic nonnutritive sweetener (step 6) and

alcoholic beverages (step 7). The human gut microbiota is

a putative source of methanol (step 8) and takes part in the

generation of human endogenous ethanol (step 9). We suggest that

endogenous and dietary methanol may be involved in gene

regulation (step 10) and may have beneficial effects on human

health (step 12). Although ADH may convert methanol into toxic

products (step 13), we suggest that physiological ethanol in the

bloodstream would substantively prevent all formaldehyde pro-

duction from endogenous and dietary methanol in humans (step

14).

Figure 10. Biogenesis of physiological methanol and its relationship with ethanol. See the text for explanation.
doi:10.1371/journal.pone.0036122.g010

Methanol as a Cross-Kingdom Signal

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e36122



Collectively, our results indicate a cross-kingdom signaling

function for methanol generated by wounded plants and in the

gastrointestinal tract of mice and humans. The mechanisms

through which methanol at physiologically relevant concentrations

has beneficial or detrimental effects in humans remain largely

undefined but include the modulation of signaling and gene

regulation. Advances in the modeling and analysis of food

methanol intake will extend our knowledge of methanol’s role in

health and disease, allowing the customization of existing and

future therapeutic and prophylactic modalities.

Materials and Methods

Gel diffusion assay for the quantification of PME activity
PME activity in plant samples was quantified by a gel diffusion

assay as described by Chen and Citovsky [36] and Downie et al.

[98] Briefly, the tissue samples were flash-frozen in liquid nitrogen

and homogenized in 1 ml of extraction buffer (0.15 M, 1 M or

without NaCl, 2.5 mM phenylmethylsulfonyl fluoride, 0.1 M

citrate, 0.2 M sodium phosphate, dibasic, pH 7.0). The homog-

enate was centrifuged at 16 000 g at 4uC, and the protein

concentration of the recovered supernatant was determined by the

Bradford method [145] and adjusted to the same value for all

samples. These cell extracts (10 ml) were then loaded into 2-mm

round wells in a 2% (w/v) agarose gel containing 0.1% of 90%

esterified pectin (Sigma-Aldrich) in a Petri dish. The gels were

incubated for 16 h at 28uC, rinsed with water, and stained for

45 min at room temperature with 0.05% (w/v) ruthenium red dye

(Sigma-Aldrich), which stains de-esterified pectin [98]. The

diameter of each stained zone was measured to the nearest

0.1 mm with calipers. The amount of PME activity in nkatals was

calculated based on the standard curve of the log-transformed

enzyme activity versus the stained zone diameter generated using

a commercial-grade orange peel PME (Sigma-Aldrich, USA).

Pectin administration into mice
The structure of this study and the animal experimental

procedures were approved by the ethical committee of the N. N.

Blokhin National Cancer Research Center, Moscow, Russia. The

mice were fed a cereal-based diet, which consisted of 12.7%

protein, 5.6% fat and 54.1% carbohydrate with a total fiber

content of 3.7%. The diet was supplemented with a vitamin-

mineral premix according to the recommendation of the

American Institute of Nutrition (AIN-93M diet). The mice were

randomly divided into five groups of ten mice. Each mouse in the

treatment groups directly received 20 mg pectin(PME+) (Nittary

Pharmaceuticals, VitaLine, Inc., USA), pectin(PME2), 200 ml

0.5% glucose solution or 200 methanol (0.375 mol/L) into the

stomach by gavage. After 10, 30, 60 or 120 min, blood samples

(50 ml) were isolated from the tail vein of the mice. Samples were

incubated at 4uC for 2 h for cell sedimentation then an equal

volume of 10% trichloroacetic acid (TCA) was added to plasma.

The mixture was incubated for 20 min on ice and then centrifuged

for 10 min at 16 000 g. Finally, the supernatant was analyzed for

methanol content by gas chromatography.

Two-choice experiments in mice using a Y-maze
The experimental set-up for the two-choice test was based on

a Y-maze [146] with two arms, each containing Petri dishes with

cotton wool soaked with 200 ml methanol, 1 ml cis-3-Hexen-1-ol

and methyl jasmonate (odorized compartment) or 200 ml of

distilled water (control compartment). Ethylene was obtained by

reacting 10 M KOH with ethephon (Sigma-Aldrich, USA). Air

drawn by a fan is conducted through the left and right odor

compartments via a tube of which the inlet is near the input vent

supplying the laboratory. The air currents then pass to the left (L)

and right (R) arms of the maze, which was also fitted with a starting

compartment (S). All behavioral testing took place during the light

phase. The locomotor behavior of the mice during exploration in

the two-choice assays was measured. We recorded the following

behaviors: the number of visits and the total time a mouse spent on

each side of the Y-maze. Motions that resulted in visiting one of

the odor sources in the one of sides (L or R) of the Y-maze and

stalling there for 20–25 s were recorded as choices. Motion

cessation in parts (L, R and S) of the Y-maze other than the odor

sources was recorded as no choice. The odorant was randomly

distributed in the right or left arm in each test. In total, 150 mice

were tested per combination. The maze was carefully washed after

each test. Mice were placed separately in the starting arm at the

end of the stem and then allowed to move freely for 3 min. The

movements of the mice were video recorded and analyzed with

a video tracking system.

Volunteer experiments and mRNA isolation from human
leukocyte

This research received approval of the Human Subjects

Committee at the N. N. Blokhin National Cancer Research

Center, Moscow, Russia. All participants signed Institutional

Review Board-approved consent forms. The study included 15

unrelated healthy volunteers (male and female) aged 20–60 yr. A

5-ml blood sample was taken before and after the consumption of

Chinese cabbage (200 g) or turkey meat (200 g). Volunteers fasted

before sampling. Blood was collected in evacuated tubes contain-

ing K3EDTA as an anticoagulant. Four volumes of RBC lysis-

buffer (0.8% NH4Cl, 0.2% NaHCO3, 0.1 mM EDTA) were

added to one volume of the whole blood. The solution was

incubated 10 min, and leukocytes were sedimented by centrifu-

gation (10 min, 1000 g). Subsequently, the pellet was washed two

times with 2 ml 16PBS and resuspended in 100 ml 16PBS. Total

RNA was isolated from leukocytes using TriReagent (MRC, USA)

according to the manufacturer’s protocol. For the methanol

measurements, blood samples without anticoagulant were in-

cubated at 4uC for 2 h for cell sedimentation, and an equal volume

of 10% TCA was then added to the plasma. The mixture was

incubated for 20 min on ice and then centrifuged for 10 min at

16 000 g. Finally, the supernatant was analyzed for methanol

content by gas chromatography.

Methanol measurements by gas chromatography
Methanol was measured in the headspace of intact or wounded

leaves in hermetically sealed jars (water-drop set-up) or in glass

flow chambers using a water sample as a trap as described earlier

[50]. The water-drop set-up was achieved using hermetically

sealed plastic jars (150 ml) with a drop of water (300 ml). Methanol

content was determined by gas chromatography on a capillary

FFAP column (50 m60.32 mm; Varian Inc., Lake Forest, CA,

USA) in a Kristall 2000 gas chromatograph (Eridan, Russia).

Liquid samples were measured under the following operating

conditions: carrier gas, nitrogen; nitrogen flow, 30 ml/min; air

flow, 400 ml/min; hydrogen flow, 40 ml/min; injected volume,

1 ml; injector temperature, 160uC; column temperature, 75uC
increased at 15uC/min to 150uC; retention time, 6.5 min; and

flame ionization detector temperature, 240uC.

Construction of SSH cDNA libraries
RNA isolation and cDNA preparation. Total RNA was

isolated from control and methanol-treated (75 mmol/L for 6 h)
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HeLa cells following the LiCl method. mRNA was purified from

the total RNA isolated using the PolyATtract mRNA Isolation

System I (Promega, USA) following the protocol supplied along

with the kit. Amplified ds cDNA was prepared from methanol-

treated and control RNA using a SMART approach as previously

described [147]. SMART Oligo II oligonucleotide and CDS

primers (Table S1) were used for first-strand cDNA synthesis. In

both cases, first-strand cDNA synthesis was performed using

0.3 mg RNA in a total reaction volume of 10 ml. 1 ml of 56diluted

first-strand cDNA was then used for PCR amplification with

SMART PCR primers. 18 PCR cycles (each cycle included 95uC
for 7 s, 65uC for 20 s, and 72uC for 3 min) for methanol-treated

and control samples were performed. SMART-amplified cDNA

samples were further digested by the Rsa I endonuclease.

Subtraction procedure. Subtractive hybridization was

performed using the SSH method in both directions (methanol

vs. control and control vs. methanol) as described [148]. Briefly,

the following procedures were performed. For each direction, two

tester populations were created by ligating different suppression

adapters (Adapters 1 and 2R). These tester populations were

mixed with 306 driver excess (driver cDNA had no adaptors) in

two separate tubes and were denatured and allowed to re-nature.

After the first hybridization, the two samples were mixed and

hybridized together. The subtracted cDNA was then amplified by

primary and secondary PCR. For the primary PCR, 25 PCR

cycles with PCR primer 1 were performed for the subtracted

methanol cDNA, and 25 cycles were performed for the subtracted

control cDNA. For the secondary (nested) PCR, 10 PCR cycles

with Nested primers 1 and 2R were performed for both of the

subtracted cDNA samples. To eliminate type II background from

the SSH-generated libraries, the mirror orientation selection

(MOS) method was used for both of the SSH subtracted

libraries as described previously [149]. For the MOS PCR, 22

PCR cycles with the MOS PCR primer were performed for the

subtracted methanol and control cDNA samples.

Construction of the subtracted library. The two

subtracted cDNA samples enriched with differentially expressed

sequences (methanol-specific and control-specific) that were

obtained from the MOS PCR were used to construct the

library. In each case, approximately 40 ng of the purified cDNA

was cloned into the pAl16/17 vector (pUC base vector), which was

then used for E. coli transformation. For both libraries, the white to

blue colony ratio was 65:35.

Differential screening of subtracted libraries. 96 (one

96-well plate) randomly picked white clones from the tester

methanol-specific library and 96 (one 96-well plate) randomly

picked white clones from the driver control-specific library were

used for differential screening. All plates were grown in 100 ml LB-

Amp (75 mg/ml) media for 6 h at 37uC. One-microliter aliquots of

each of the media were used for PCR amplification with pAl16/17

dir and pAl16/17 rev plasmid primers. The plates were

subsequently diluted with 20% glycerol and stored at 270uC.

2 ml of each of the PCR-amplified inserts (approximately 100 mg

DNA) was arrayed in a 96-well format onto duplicated nylon

membranes and hybridized with P32-labelled methanol- and

control-subtracted cDNA probes.

Virtual northern blot analysis. Virtual northern blot

analysis was performed to confirm the differential screening

results. For the virtual northern blot analysis, SMART-amplified

‘‘driver’’ (methanol) and ‘‘tester’’ (control) unsubtracted cDNAs

were resolved on agarose gels and transferred to Hybond-N

membranes. Membranes were hybridized with P32-labeled probes

prepared from randomly selected differential clones that were

identified by differential screening. The clones from the methanol-

subtracted library and the control-subtracted library were used for

virtual northern blotting. Selected plasmids were purified and

sequenced using pAl16/17 dir and pAl16/17 rev plasmid primers

(Table S1).

qRT-PCR Analysis of Transcript Concentrations
RNA concentrations were determined using a Nanodrop ND-

1000 spectrophotometer (Isogen Life Sciences). All RNA samples

had a 260:280 absorbance ratio between 1.9 and 2.1.

cDNA was obtained by annealing 2 mg of denatured total RNA

with 0.1 mg of random hexamers and 0.1 mg of Oligo-dT. The

mixture was then incubated with 200 units of Superscript II reverse

transcriptase (Invitrogen, USA) for 50 min at 43uC. The qRT-PCR

was performed using the iCycler iQ real-time PCR detection system

(Bio-Rad, Hercules, CA, USA). For the detection of target genes, the

Eva Green master mix (Syntol, Russia) was used according to the

manufacturer’s instructions. The thermal profile for EVA Green

qRT-PCR included an initial heat-denaturing step at 95uC for

3 min and 45 cycles at 95uC for 15 s, an annealing step (Table S2) for

30 sec and 72uC for 30 sec coupled with fluorescence measure-

ments. Following amplification, the melting curves of the PCR

products were monitored from 55–95uC to determine the specificity

of amplification. Each sample was run in triplicate, and a non-

template control was added to each run. Target gene mRNA levels

were calculated according to the equation proposed by Pfaffl [150]:

EtargetDCt target (sample-reference). PCR efficiency (E) was

calculated according to the equation E = 10(21/slope) based on

the standard curves. Target gene mRNA levels were corrected using

corresponding reference genes.

Supporting Information

Figure S1 Amino acid sequence alignment of human
and mouse GAPDH (accession numbers P04406 and
P16858, respectively). Amino acid sequences were aligned

using the AliBee program (http://www.genebee.msu.su/services/

malign_reduced.html). Identical amino acid residues between the

human and mouse proteins are marked by asterisks. Specific

protein domains are underlined.

(TIF)

Figure S2 Amino acid sequence alignment of human
and mouse Tax1BP1 (accession numbers A4D196 and
Q3UKC1, respectively). Amino acid sequences were aligned

using the AliBee program (http://www.genebee.msu.su/services/

malign_reduced.html). Identical amino acid residues between the

human and mouse proteins are marked by asterisks. Specific

protein domains are underlined.

(TIF)

Figure S3 Amino acid sequence alignment of human
and mouse SNX27 (accession numbers Q96 L92 and
Q3UHD6, respectively). Amino acid sequences were aligned

using the AliBee program (http://www.genebee.msu.su/services/

malign_reduced.html). Identical amino acid residues between the

human and mouse proteins are marked by asterisks. Specific

protein domains are underlined.

(TIF)

Figure S4 Amino acid sequence alignment of human
and mouse CycA2 (accession numbers AAI04784.1 and
NP_033958.2, respectively). Amino acid sequences were

aligned using the AliBee program (http://www.genebee.msu.su/

services/malign_reduced.html). Identical amino acid residues

between the human and mouse proteins are marked by asterisks.

(TIF)
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Figure S5 Methanol content in mouse serum 2 h
following direct stomach administration of methanol.
The mice were randomly divided into five groups of ten. Each

mouse in the treatment group received 200 ml methanol

(0.375 mol/L) directly into the stomach, and 10, 30, 60, and

120 min later, blood samples were isolated and analyzed for

methanol content by gas chromatography.

(TIF)

Table S1 Oligonucleotides used for SSH.
(DOC)

Table S2 Oligonucleotides used for qPCR.

(DOC)
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