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Abstract: The interaction between viral membrane associate proteins and host cellular surface
molecules should facilitate the attachment and entry of OsHV-1 into host cells. Thus, blocking the
putative membrane proteins ORF25 and ORF72 of OsHV-1 with antibodies that have previously
been reported to subdue OsHV-1 replication in host cells, especially ORF25. In this study, prey
proteins in host hemocytes were screened by pull-down assay with recombinant baits ORF25 and
ORF72, respectively. Gene Ontology (GO) analysis of these prey proteins revealed that most of
them were mainly associated with binding, structural molecule activity and transport activity in
the molecular function category. The protein–protein interaction (PPI) network of the prey proteins
was constructed by STRING and clustered via K-means. For both ORF25 and ORF72, three clusters
of these prey proteins were distinguished that were mainly associated with cytoskeleton assembly,
energy metabolism and nucleic acid processing. ORF25 tended to function in synergy with actins,
while ORF72 functioned mainly with tubulins. The above results suggest that these two putative
membrane proteins, ORF25 and ORF72, might serve a role in the transport of viral particles with the
aid of a cytoskeleton inside cells.

Keywords: ostreid herpesvirus 1; membrane proteins; interaction; hemocytes; pull-down

1. Introduction

Herpesviruses can infect a broad range of hosts both on land and in the sea, and
they have evolved successful approaches to infect different cell types, starting with virus
attachment and entry into target cells [1]. In contrast to small enveloped viruses that encode
one or two membrane glycoproteins to mediate their entry into specific cells, herpesviruses
are equipped with more than a dozen membrane glycoproteins, which endows them
with more opportunities and options when ascertaining successful entry according to
cell types [2]. Some of the interactions between herpesvirus glycoproteins and cellular
membrane molecules are believed to concentrate virions on the target cellular membranes
only, such as the charge-based binding between glycoproteins (mainly gC and gB in the case
of alpha-herpesviruses) and heparan sulfate. Conversely, other interactions are believed
to trigger membrane fusion and virus entry [3]. In the majority of herpesviruses, the
regulator heterodimer gH-gL and the viral fusion protein gB represent a core set of entry
glycoproteins. The specific binding between glycoproteins and cell corresponding entry
receptors triggers gB to execute membrane fusion, such as the binding between gD of

Viruses 2021, 13, 2518. https://doi.org/10.3390/v13122518 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-2862-5702
https://orcid.org/0000-0002-4685-1076
https://orcid.org/0000-0001-5476-2455
https://orcid.org/0000-0002-5517-9453
https://doi.org/10.3390/v13122518
https://doi.org/10.3390/v13122518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13122518
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13122518?type=check_update&version=1


Viruses 2021, 13, 2518 2 of 13

HSV-1 (herpes simplex viruse-1) and host cellular membrane nectin-1 [4], and the binding
between gp42 of EBV (Epstein–Barr virus) and human leukocyte antigen (HLA) class II
molecules on B lymphocytes [5].

Alongside direct viral envelope fusion with the host cell membrane, herpesviruses
can also adopt cell-to-cell spread, pH-dependent and pH-independent endocytic entry
routes according to target cell types [6]. Cell-to-cell spread of herpesviruses mainly occurs
in polarized cells, including epithelial cells and neuronal cells. Herpesviruses use cell
junction adhesion proteins as their binding receptors via cell-to-cell spread; this route also
helps herpesviruses to avoid being detected by the host immune system [7]. The core
entry set of glycoproteins (gB, gH-gL) and gD receptors, as well as gK, play important
roles in cell-to-cell spread [8]. Via the pH-dependent endocytic pathway, the virions are
internalized and transported into the host cellular early endosomes. The mild acidic
pH of the endosome triggers conformational changes in gB to fuse the viral envelope
with the vesicular membrane [9]. However, the pH condition does not seem necessary
for all of the endocytic herpesviruses entries. The low acidic pH is not required for the
fusion of the HSV envelope with the endosomal membrane in C10 murine melanoma
cells [10]. In addition, duck HBV (hepatitis B virus) enters cells via a low-pH-independent
endocytic pathway, and EBV can enter cells via an endocytic route that is not affected by
ammonium chloride [11,12]. The low-pH-independent endocytic routes may be explained
by the occurrence of membrane fusion prior to acidification [10]. Once access to the cytosol
is achieved, virions travel toward the nucleus along the cytoskeleton in the cytoplasm.
Microtubules facilitate the long-distance transport of virions, while actin filaments facilitate
short-range movements, especially in areas with a high ratio of actin to microtubule density.
Virions migrate to and dock at nuclear pores, where they subsequently transfer their
genome into the nuclear pore [13].

Herpesviruses are genetically classified into three families: Herpesviridae, Alloher-
pesviridae and Malacoherpesviridae [14]. Ostreid herpesvirus 1 (OsHV-1), as a lethal
epidemic pathogen among bivalves, belongs to the family of Malacoherpesviridae. Mas-
sive global mortality events of cultures of bivalves frequently occurred following OsHV-1
infection. In particular, OsHV-1 infection is expounded to be the trigger of Pacific Oyster
Mortality Syndrome (POMS), which has plagued the oyster industry for years [15]. As
a member of the herpesvirus, the phenotype of OsHV-1 virion resembles that of other
herpesviruses. OsHV-1 virion is spherical and comprises four major components: the core,
the capsid, the tegument and the envelope. The core consists of a linear double-stranded
DNA molecule. The capsid encapsulates the viral genetics, forming an icosahedron with
an external diameter of 125–130 nm. The tegument protein layer surrounds the capsid.
The outermost layer is the lipid envelope embedded with glycoproteins. According to
the sequenced genomes of OsHV-1 or its variants, a total of 15 genes encode proteins that
contain predicted signal or transmembrane domains and may contribute to the entry step
of OsHV-1 or its variants [16–18].

The functions of the OsHV-1 genome encoding proteins are largely unknown; thus,
the mechanism of OsHV-1 entry into cells hangs in doubt. Most OsHV-1 genome encoding
proteins do not share sequential homology with those in the available protein database [19],
and there are no mature bivalve cell lines for modeling OsHV-1 infection, which hinders
the research in this field [20]. ORF25, ORF41 and ORF72 are the three putative membrane
proteins of OsHV-1 that were initially selected for functional evaluation at the individual
level. The ORF25 protein appeared to be involved in the interaction between OsHV-1 and
host cells even if the other two proteins were likely implicated. The viral transcript amount
showed the most significant decrease in hemolymph that had been incubated with viral
suspension blocked by anti-ORF25 antibodies, followed by anti-ORF72 and anti-ORF41
antibodies [21]. With the aim of further investigating the molecular interaction between
OsHV-1 and the host and of clarifying how the putative membrane proteins of OsHV-1
are implicated in virus entry into cells, we have carried out the pull-down assay with baits
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ORF25 and ORF72 to screen potential associate proteins in the lysate of host hemocytes.
The prey proteins were identified by MS/MS and annotated.

2. Materials and Methods
2.1. Recombinant Expression and Purification

Based on the full-length DNA sequences of ORF25 and ORF72, two pairs of primers,
ORF25F/ORF25R and ORF72F/ORF72R, were designed to amplify the ORF25 and ORF72
fragments, respectively (Table 1). For ORF25, the PCR product was digested with two
restriction endonucleases, BamHI and NotI (FastDigest; Thermo Scientific, CA, USA). The
obtained fragment and a pET30a plasmid digested with the same enzymes were ligated
together using T4 DNA ligase to construct the recombinant plasmid pET30a-ORF25. The
recombinant plasmid pET30a-ORF72 was also constructed as per the above description,
with another two restriction endonucleases, EcoRI and NotI. Then the recombinant plasmid
was transformed into competent E. coli transetta (DE3) (TransGen, Peking, China) for
recombinant expression.

Table 1. Primers used in this study.

Primer Name Sequence (5′-3′)

Fragments amplifying primers
ORF25F ATGACTTTAGCTGCTAAGTTAATAGT
ORF25R CTAATGTAAATATACCCTTCTCAG
ORF72F ATGGCAACAGACCAACAAGACC
ORF72R TTACTTAAAGAGGTCTTCATAATTC

ORF primers for prokaryotic expression
ORF25ES CGCGGATCCATGACTTTAGCTGCTAAGTTAATAG
ORF25EA AAGGAAAAAAGCGGCCGCAATGTAAATATACCCTTCTCAG
ORF72ES CGCGAATTCATGGCAACAGACCAACAAGAC
ORF72EA AAGGAAAAAAGCGGCCGCACTTAAAGAGGTCTTCATAATTC

For the large-scale culture of bacteria, 6 mL of overnight-cultured E. coli transetta
(DE3) was added to 300 mL of fresh LB liquid medium and cultured at 37 ◦C for 3~4 h
(OD600 value reaching 0.4–0.6). Next, 0.2 mM isopropyl -D-1-thiogalactopyranoside (IPTG)
was added to the LB medium (final concentration of 0.2 mM) to induce protein expression,
and the bacteria were cultured at 37 ◦C for another 6 h.

These two recombinant proteins, rORF25 and rORF72, were largely expressed in inclu-
sion bodies. The recombinant proteins were purified by a Ni2+ chelating Sepharose column
under denatured conditions, with a final elution using 250 mmol L−1 imidazole (8 mol L−1

urea). The purified proteins were renatured for 12 h under a series of gradient urea-TBS
glycerol buffers (50 mmol L−1 Tris–HCl, 50 mmol L−1 NaCl, 15% glycerol, 2 mmol L−1

reduced glutathione, 0.2 mmol L−1 oxide glutathione, a gradient urea concentration of 6, 4,
3, 2, 1, 0 mol L−1, pH 8.0) at 4 ◦C.

2.2. Pull-Down Assays

To explore the potential interaction molecules with ORF25 and ORF72, pull-down
assays were performed. Hemocytes from ark clams were collected and lysed with cell lysis
buffers (20 mM Tris pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM phenylmethanesulfonyl
fluoride). The supernatants were collected as homogenates after centrifugation for the
following assays. An amount of 100 µg of recombinant ORF25 and ORF72 was incubated,
respectively, with 50 µL Ni-Sepharose beads for 1 h. After the beads were washed with
TBS three times, they were blocked with 5% BSA. After the blocked beads were washed
with TBS another three times, they were incubated with prepared supernatants for 3 h.
After the obtained beads were washed with 10 mM imidazole three times, they were boiled
with 1× SDS protein Loading Buffer. Then, after transient centrifugation, the supernatants
were analyzed by SDS-PAGE. The pull-down protocol using free Ni-Sepharose beads
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without incubation, with ORF25 or ORF72 in hemocytes, was also parallelly performed as
a control. The prey proteins that were pulled down using ORF25 or ORF72 were identified
by MS/MS using the Q-Exactive HF X mass spectrometer (Thermo Fisher Scientific, San
Jose, CA, USA).

2.3. Protein Identification

Raw experimental MS data were converted into a peak list, and then matches were
searched for in the theoretical MS/MS database using Mascot 2.3.02. software (http:
//www.matrixscience.com/, accessed on 12 August 2021). The search results were subject
to strict filtering and quality control by FDR at spectral level (PSM-level FDR ≤ 0.01) to
obtain a significant identified spectrum and peptide list. Gene ontology (GO) analysis
was performed. Dor the GO entries involved in the three ontologies (cellular component,
biological process, molecular function), a statistical chart was made according to the IDs
and the number of all the corresponding proteins; the GO entries without the corresponding
proteins were excluded.

2.4. Protein–Protein Interactions (PPI) Network

The potential pathways among prey molecules were indicated by the PPI network.
The PPI network was built by the online STRING database (https://string-db.org/, version
11.5, accessed on 12 August 2021). The interactions (the default threshold > 0.4 in the
STRING database) were selected to create the PPI network and further clustered by the
K-means method.

3. Results
3.1. The Prey Proteins of the Recombinant ORF25 and ORF72 in Hemocytes

The purified recombinant ORF25 and ORF72 were analyzed by SDS-PAGE. Two
distinct bands with a molecular mass of 30 kDa and 25 kDa were revealed, respectively,
which was consistent with their predicted molecular mass (Figure 1A).

Figure 1. Pull-down assay of rORF25 and rORF72 in hemocyte lysates. (A) SDS-PAGE analyses of
rORF25 and rORF72. Lane M: protein molecular standard (kDa); lane 1, purified rORF25; lane 2,
purified rORF72. (B) rORF25 and rORF72 were used, respectively, to pull down interacting proteins
in the lysates of hemocytes from ark clams, and the proteins were analyzed by SDS-PAGE. Free Ni2+
Sepharose beads were set as the control. Lane M, protein marker; lane 1, free Ni2+ Sepharose beads;
lane 2, Ni2+ Sepharose beads binding with rORF72; lane 3, Ni2+ Sepharose beads binding with
rORF25; lane 4, the input of hemocyte lysates, a–f represents specific bands in lane 2 and 3.

http://www.matrixscience.com/
http://www.matrixscience.com/
https://string-db.org/
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To further elucidate the roles of ORF25 and ORF72 in the interaction between OsHV-
1 and its hosts, we first used rORF25 and rORF72, respectively, to pull down potential
interacting proteins in the hemocytes of ark clams. We obtained two specific bands via
SDS-PAGE analysis in the rORF25 pull-down solution compared to the control (free Ni2+
Sepharose beads) pulldown solution, and we obtained four in the rORF72 pulldown
solution (Figure 1B). The bands were identified by tandem mass spectrometry (MS/MS). A
total of 45 spectra were matched and 36 proteins identified from band a (Supplementary
Table S1). A total of 1347 spectra were matched and 326 proteins identified from band b
(Supplementary Table S2). A total of 96 spectra were matched and 55 proteins identified
from band c (Supplementary Table S3). A total of 224 spectra were matched and 56 proteins
identified from band d (Supplementary Table S4). A total of 81 spectra were matched and
59 proteins identified from band e (Supplementary Table S5). A total of 68 spectra were
matched and 48 proteins were identified from band f (Supplementary Table S6).

3.2. The Functional Annotation of Prey Proteins

The GO functional analysis of the prey proteins for bait ORF72 was applied. A total of
36 prey proteins from band a, 326 prey proteins from band b, 55 prey proteins from band c
and 56 prey proteins from band d were assigned with GO terms (level-two), which were
summarized into three main categories: biological process, molecular function and cellular
component (Figure 2). In the molecular function category, the top three GO terms were
binding (GO: 0005488), catalytic activity (GO: 0003824) and structural molecule activity
(GO: 0005198) for band b, c and d. Conversely, the top three GO terms were catalytic activity
(GO: 0003824), binding (GO: 0005488) and transporter activity (GO: 0005215) for band a
(Figure 2A). In the biology process category, cellular process (GO: 0009987) accounted for
the majority for all bands. The cellular component category mainly consisted of the cell
(GO: 0005623) and cell part (GO: 0044464), then organelle (GO: 0043226), membrane (GO:
0016020) and others for all bands.

For bait ORF72 (Figure 3), the three most abundant prey proteins were two 1,4-alpha-
glucan branching enzymes (protein ID: A0A2C9K4D9_BIOGL, A0A0B6ZR19_9EUPU) and
a tyrosine-protein phosphatase (protein ID: A0A6J8EET7_MYTCO) that were identified
in band a by MS/MS. An ATP-binding cassette (ABC) transmembrane type-1 domain-
containing protein (protein ID: A0A6J8EET7_MYTCO) was also identified in band a. Tubu-
lin subunits (alpha chain protein ID: A0A3S1HFZ4_ELYCH, K7R2W8_9BIVA; beta chain
protein ID: A4D0I1_DORPE, G9K382_HALDV) took the top four spots of abundance in
band b, a galectin (protein ID: A0A0D5BFL9_ANABR) was also found in band b. Tubulin
alpha-1 chain (protein ID: TBA1_APLCA), globin-1(protein ID: GLB1_ANABR) and an
uncharacterized protein (protein ID: A0A0B7AKH2_9EUPU) were the highest three in band
c. Ferritin (protein ID: A0A0D5BG95_ANABR, I0CAM3_MERMC and R4JZS3_MIZYE)
accounted for the majority in band d. A galectin (protein ID: M4PM45_TEGGR) and a
calmodulin (protein ID: A0A210PKR0_MIZYE) were found together in band d.

A total of 59 prey proteins from band e and 48 prey proteins from band f were assigned
with GO terms (level-two) for bait ORF25 (Figure 4). In the molecular function category,
prey proteins were mainly clustered in binding (GO: 0005488), catalytic activity (GO:
0003824), structural molecule activity (GO: 0005198), transporter activity (GO: 0005215),
molecular function regulator (GO: 0098722) and antioxidant activity (GO: 0016209) for
band e and f. In the biology process category, cellular process (GO: 0009987) and metabolic
process (GO: 0008152) accounted for the majority of these two bands. The cellular compo-
nent category mainly consisted of the cell (GO: 0005623) and cell part (GO: 0044464) and
organelle (GO: 0043226) for these two bands.
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Figure 2. Prey proteins’ distribution by GO at level 2 for bait ORF72 (Red: Biological process; Blue: Molecular function;
Green: Cellular component). Numbers shown in the chart represent the number of prey proteins with corresponding GO
terms. Subfigures (A–D) correspond to the results of GO analyses for the identified proteins in bands a, b, c and d.

For bait ORF25 (Figure 5), a urease accessory protein (protein ID: A0A210Q5K3_MIZYE),
an alpha-amylase (protein ID: V4AAC3_LOTGI) and an actin (protein ID: K1R6J7_CRAGI)
were revealed as the three most abundant proteins in band e by MS/MS. a thioredoxin
peroxidase (protein ID: A0A0U3DY62_MACCH), a glyceraldehyde-3-phosphate dehy-
drogenase (protein ID: A8DX85_9MOLL) and an elongation factor 1-alpha (protein ID:
G1CW43_ENTDO) were the most abundant proteins in band f. A galectin (protein ID:
A0A210PKR0_MIZYE) was also found in band f.
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Figure 3. Top 30 most abundant prey proteins for bait ORF72 by MS/MS analysis. Subfigures (A–D) correspond to the
results for the proteins identified in bands a, b, c and d.

Figure 4. Prey proteins’ distribution by GO at level 2 for bait ORF25 (Red: Biological process; Blue: Molecular function;
Green: Cellular component). Numbers shown in the chart represent the number of prey proteins with corresponding GO
terms. Subfigures (A,B) correspond to the results of GO analyses for the identified proteins in bands e and f.
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Figure 5. Top 30 most abundant prey proteins for bait ORF25 by MS/MS analysis. Subfigures (A,B) correspond to the
results for the proteins identified in bands e and f.

3.3. The PPI of Prey Proteins

To evaluate the relationship among all prey proteins by pull-down assay for baits
ORF72 and ORF25, respectively, we performed STRING analysis to construct protein–
protein interaction networks. Most of the prey proteins were interlinked. For bait ORF72
(Figure 6), the interactions of prey proteins mainly included cytoskeleton assembly (with
hub genes tubulins TUBB, TUBA1A, TUBA1B and TUBA8; tubulin folding cofactors
TBCE and TBCD), energy metabolism (with hub genes ATP synthesis units ATP5A1,
ATP5B, ATP5C1 and others; succinate dehydrogenase cytochrome subunits SDHA, SDHB,
SDHC and SDHD), nucleic acid binding (with hub genes centromere protein CENPA, his-
tone HIST1H4F, polyadenylate-binding protein PABPC1, RNA cap-binding EIF4E, EIF4G,
EIF4A1 and others) and regulation of cell adhesion and cytoskeleton organization (with
hub genes parvin units PARVA, PARVB and PARVG, adaptor proteins LIMS1 and LIMS2)
(Figure 6).

Figure 6. Protein–protein interaction (PPI) maps of prey proteins for bait ORF72. Network nodes
represent proteins. Edges represent protein–protein associations, edges between clusters are dotted
lines. Different colors represent three clusters that were distinguished by the K-means method, and
the gene name information was listed in Supplementary Table S7.
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For bait ORF25 (Figure 7), the interaction of the prey proteins mainly included energy
metabolism (with hub genes ATP5A1, ATP5B, ATP5C1 and others), cytoskeleton assembly
(with hub genes actins ACTB and ACTG1; tubulins TUBB and TUBA1B), nuclear transport-
associated proteins (with hub genes exportins XPOT, XPO1 and XPO5; GTP-binding
nuclear protein RAN; regulator of chromosome condensation RCC1; nuclear transport
factor NUTF2) (Figure 7).

Figure 7. Protein–protein interaction (PPI) maps of prey proteins for bait ORF25. Network nodes
represent proteins. Edges represent protein–protein associations, edges between clusters are dotted
lines. Different colors represent three clusters that were distinguished by the K-means method, and
the gene name information was listed in Supplementary Table S7.

4. Discussion

Though the morphological features of OsHV-1 resemble that of other herpesviruses,
the genome sequence of OsHV-1 shares less homology with others, especially sequence
domains encoding membrane proteins. Tens of putative membrane proteins are encoded
in the OsHV-1 genome, which may endow OsHV-1 with multiple tissue tropism. OsHV-1
particles had been observed in the mantle cells and hemocytes of infected ark clams and
oyster spats by transmission electron microscope or in situ hybridization [22,23]. There
should be diverse entry receptors in host cells for OsHV-1 resembling the corresponding
hosts of other herpesviruses. Three viral proteins (ORF25, ORF41 and ORF72) were initially
selected to identify whether they were implicated in OsHV-1 intruding cells by the method
of antibody blocking. The mortality rate of the spat decreased significantly in the group
that had been inoculated with the viral suspension blocked with the three antibodies (anti-
ORF25, anti-ORF41 and anti-ORF72) in comparison to the group inoculated solely with
viral suspension. Significantly lower viral transcripts were also observed in the hemolymph
that had been incubated with the viral suspension containing three viral proteins or their
corresponding antibodies, compared to the hemolymph that had been incubated solely
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with viral suspension. Thus, it was thought that the three viral proteins, mainly the protein
encoded by ORF25, might be implicated in the virus invading oyster cells [21]. In this
study, further investigation into how host cell proteins interacted with ORF25 and ORF72
was carried out by pull-down assay, revealing how these two viral proteins might function
in an OsHV-1 infection.

The majority of the captured prey proteins for both baits ORF25 and ORF72 were
clustered into the binding term in the molecular function category by GO. The binding term
consisted of abundant cytoskeleton assembly associated proteins for both baits. Due to the
sticky cytoplasm, there is a formidable barrier for the free diffusion of virions to nuclei.
The cytoskeleton is commonly usurped by herpesviruses, as it facilitates highly efficient
transport through cytoplasm. Microtubules are essential for long-distance transport, while
actin filaments function in short-range movements [13,24]. ORF25 and ORF72 might serve
in the OsHV-1 transport in synergy with the cytoskeleton. Actins were principally found
paired with ORF25, were in high abundance and served as the hub genes in the prey
proteins of ORF25, while tubulins were principally paired with ORF72. The transport
dependent on cytoskeletons consumes energy. There was a high abundance of energy
metabolism associated proteins in the prey proteins of ORF25 and ORF72, which might
contribute towards the energy requirement of the synergistic effect between these two viral
proteins and cytoskeletons. Alongside intracellular transport, actins are also implicated
in the endocytosis of extracellular virions [25]. Actins are required for HSV-1 to adopt
the pH-dependent endocytic pathway to enter corneal fibroblasts (CF) and CHO cells
because this process was proved to be inhibited by cytochalasin D [26]. In actin-dependent
entry, virions trigger the rearrangement of actins and the formation of protrusions; virions
move along these protrusions for eventual endocytosis [27]. The synergistic effect between
ORF25 and actins might be blocked by antibodies against ORF25, which inhibit the entry
and transport process of OsHV-1, which has resulted in the decreased load of OsHV-1 in
host cells in previous studies.

The ABC transmembrane type-1 domain-containing protein was traced in the prey
proteins of ORF72. Eukaryotic ABC transporters mainly function by expelling solutes
from the cytosol out of the cell or into subcellular organelles, such as the lumen of the ER,
lysosomes and peroxisomes [28]. ORF72 might target this protein along the cytoskeleton
and then serve in the mature and release process of OsHV-1. Alternatively, the ABC
transporter might form the central part of the major histocompatibility complex class I
(MHC I) peptide-loading machinery. ICP47 encoded by the herpes simplex virus (HSV
1 and 2) competes with peptides for the binding pocket on TAP, which prevents antigen
translocation and MHC I loading in virally infected cells [29]. While it seems that the
MHC I in mollusks does not mediate antigen processing, further research is required to
explore whether the synergistic effect between ORF72 and host ABC transport-related
genes would enable OsHV-1 to escape the immune monitor of mollusk hosts. Calmodulin
was also found in the prey proteins of ORF72. Calmodulin, as an intracellular calcium-
binding protein, regulates several key enzymes, some of which directly affect cytoskeletal
elements, although they might also interact nonspecifically with other cellular constituents.
Haloperidol and R24571, as calmodulin inhibitors, were found to be capable of blocking
EBV infection [30]. Calmodulin might play a regulation role in the interaction between
ORF72 and the cytoskeleton. The transcripts of ORF72 were found early, just two hours
after the OsHV-1 infection [31], which further indicated that ORF72 might function at the
early stage of the virion maturation and transport process.

Galectins could be found in the prey proteins of both ORF25 and ORF72. They consti-
tute a lectin family with an affinity for β-galactosides and a wide taxonomic distribution.
As pathogen model molecular receptors (PRRs), galectins have been discovered to bind
glycans on the surface of viruses, bacteria, protista and fungi [32]. Galectin-1 can inhibit
virus attachment and host cell fusion by binding N-linked oligosaccharides from the viral
glycoproteins and promoting their crosslinking and oligomerization. A paramyxovirus,
Nipah virus, can invade the host endothelial cells by attachment and fusion of its envelope
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glycoproteins. While the dimeric galectin-1 specifically crosslinks the N glycans displayed
in the envelope glycoproteins, hampering the interaction between glycoproteins and their
corresponding receptors and blocking membrane fusion [33]. Vertebrate galectins are
known to participate at various levels of antiviral defense, from the initial recognition
and blocking of fusion glycoproteins to the motivation of the host immune system [34].
However, the understanding of whether the interaction between mollusk galectins and
OsHV-1 glycoproteins facilitates or inhibits OsHV-1 replication still needs to be established.

5. Conclusions

In conclusion, host prey proteins associated with baits ORF25 and ORF72 were
screened in the hemocyte lysate by pull-down assay, respectively. Hundreds of prey
proteins were traced for both baits. Gene Ontology (GO) analysis of these prey proteins
revealed that most of them were mainly associated with binding, transport activity and
structural molecule activity in the molecular function category. For both ORF25 and ORF72,
abundant cytoskeleton assembly elements were identified among prey proteins, together
with regulators of cytoskeleton and energy metabolism. Abundant actins could be found
in the prey proteins of ORF25, while tubulins could be found in those of ORF72. The above
results suggested that these two putative envelop proteins, ORF25 and ORF72, might serve
a role in the transport of virions with the aid of cytoskeleton inside cells. ORF25 tended
to function in synergy with actins, while ORF72 mainly functioned with tubulins. Some
other important potential molecules were identified that could synergize with ORF72 and
ORF25, such as the ABC transmembrane type-1 domain-containing protein, calmodulin
and galectin. However, this study was unable to discover whether these prey proteins
interact directly or indirectly with these two baits, and these interactions need to be further
investigated. Overall, our research refreshed the functional cognitions of the two putative
membrane proteins of OsHV-1, aiding further functional studies on these two putative
membrane proteins.
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