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Abstract Engagement in extra-pair copulations is an
example of the abundant conflicting interests between
males and females over reproduction. Potential benefits
for females and the risk of cuckoldry for males are expected
to have important implications on the evolution of parental
care. However, whether parents adjust parental care in
response to parentage remains unclear. In Eurasian pendu-
line tits Remiz pendulinus, which are small polygamous
songbirds, parental care is carried out either by the male or
by the female. In addition, one third of clutches is deserted
by both male and female. Desertion takes place during the

egg-laying phase. Using genotypes of nine microsatellite
loci of 443 offspring and 211 adults, we test whether extra-
pair paternity predicts parental care. We expect males to be
more likely to desert cuckolded broods, whereas we expect
females, if they obtain benefits from having multiple sires,
to be more likely to care for broods with multiple paternity.
Our results suggest that parental care is not adjusted to
parentage on an ecological timescale. Furthermore, we
found that male attractiveness does not predict cuckoldry,
and we found no evidence for indirect benefits for females
(i.e., increased growth rates or heterozygosity of extra-pair
offspring). We argue that male Eurasian penduline tits may
not be able to assess the risk of cuckoldry; thus, a direct
association with parental care is unlikely to evolve.
However, timing of desertion (i.e., when to desert during
the egg-laying phase) may be influenced by the risk of
cuckoldry. Future work applying extensive gene sequencing
and quantitative genetics is likely to further our under-
standing of how selection may influence the association
between parentage and parental care.
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Introduction

In many species, parental care is crucial for the develop-
ment and survival of offspring (Lack 1968; Clutton-Brock
1991; Reguera and Gomendio 1999; Gubernick and Teferi
2000; McGraw et al. 2010). Yet the costs of parental care
may impair the reproductive output and survival of the
parents, underlying a conflict between current investment in
care and future reproduction (Williams 1966; Reguera and
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Gomendio 1999). As a result, the optimal amount of care
provided is different between offspring and parents (parent–
offspring conflict; Trivers 1974; Parker and Macnair 1979)
and between male and female parents (sexual conflict;
Trivers 1972; Parker 1979). Sexual conflict about parental
care often results in parents trying to shift the workload of
parental care towards each other (Houston et al. 2005; van
Dijk and Székely 2008). This may ultimately lead to one of
the parents deserting the mate and offspring (Houston and
Davies 1985; McNamara et al. 1999). How such conflict is
resolved depends on the costs and benefits of caring or
deserting. One important variable influencing these costs
and benefits is the proportion of offspring sired by the
social parents providing parental care (i.e., the genetic share
that the parents hold in their offspring). In internally
fertilizing organisms, males may be cuckolded (i.e., lose
in their genetic share). In that case, males are likely better
off investing less in the offspring and saving resources for
future reproduction. Females, on the other hand, may
benefit from having multiple sires and may thus benefit
from investing more in the offspring (Trivers 1972;
Queller 1997; Magrath and Komdeur 2003; Kokko and
Jennions 2008).

The occurrence of extra-pair offspring has been shown
to be an abundant phenomenon among various taxa: in
birds, extra-pair paternity (EPP) was reported in 90% of
species investigated (Griffith et al. 2004); in nonavian
reptiles, EPP was reported in 100% of species investigated
(Uller and Olsson 2008); in fish, about one third of nests
cuckolded to some extent (DeWoody and Avise 2000); and
in mammals, extra-pair offspring was relatively common,
with multimale mating occurring in at least 133 species
(Wolff and Macdonald 2004). The costs and benefits of
cuckoldry have been investigated extensively. Neverthe-
less, the question on whether parents should, or are able
to, adjust their parental effort with the genetic share they
hold in the offspring remains largely unanswered (Sheldon
2002; Eliassen and Kokko 2008). Although some studies
find support for adjustment of parental care as a response
to parentage (Dixon et al. 1994; Lifjeld et al. 1998;
Sheldon and Ellegren 1998; Neff and Gross 2001),
including studies in humans (Alvergne et al. 2009), such
a response may be different between species or popula-
tions (Wagner et al. 1996; Dickinson 2003). In the reed
bunting Emberiza schoeniclus, for instance, it was found
that paternal care was negatively associated with the
degree of EPP (Dixon et al. 1994; Suter et al. 2009). A
different study investigating the same species in a different
population, however, found no significant association
(Bouwman et al. 2005). Local conditions may influence
the ability to assess the risk of cuckoldry and may drive
the costs and benefits of parental care (Whittingham and
Dunn 2001; Bouwman et al. 2005).

The assessed risk of being cuckolded is possibly more
likely to influence subsequent paternal care than the actual
occurrence of extra-pair young (EPY) because, at least in
some taxa such as birds, the offspring (eggs for instance)
may not provide sufficient information for recognition
(Davies 1992; Osorio-Beristain and Drummond 2001;
Komdeur et al. 2007; Griffith et al. 2009). Perhaps the
most direct example of that is provided by interspecific
brood parasites such as cuckoos. Although the hosts of
these brood parasites will care for the nonrelated offspring
when parasitic offspring cannot be recognized, the hosts are
more likely to reject the parasitic offspring when parasitism
has been recognized. Hosts are also more likely to reject
parasitic offspring when the risk is too high (Stokke et al.
2008; Langmore et al. 2009). Similarly, male dunnocks
Prunella modularis are less likely to provide paternal care
as mate guarding becomes more difficult and, therefore, the
risk of cuckoldry increases (Davies 1992). Male blue-
footed boobies Sula nebouxii expelled the eggs from their
nest when the risk of cuckoldry was experimentally
elevated (Osorio-Beristain and Drummond 2001).

Here we combined detailed field data with paternity
analysis using polymorphic microsatellite markers and
address whether parents adjust parental care in response
to certainty over parentage in Eurasian penduline tits,
Remiz pendulinus. Penduline tits are uniquely suitable for
investigating this question given that either the male
parent, the female parent, or both parents may desert the
nest in the egg-laying phase, leaving the partner to provide
all parental care. Once the female has deserted, the male
may start caring for the offspring (in 7–18% of nests).
Likewise, once the male has deserted (in 45–65% of
nests), the female often starts caring, but only after she has
laid two to three more eggs (Persson and Öhrström 1989;
van Dijk et al. 2007). Additionally, no less than 28–44%
of nests is deserted by both parents (n=16–140 clutches
studied in different populations in Europe; Persson and
Öhrström 1989; Franz 1991; van Dijk et al., Behaviour, in
press). Both males and females may mate multiply and
obtain up to six mates in a given breeding season
(Szentirmai et al. 2007; van Dijk 2009), while pairs rarely
produce multiple clutches together at different nests (van
Dijk 2009; van Dijk et al. 2007). Females are known to
care for up to two clutches per season, whereas males,
once they have cared for one brood, will not care for a
second brood in the same breeding season. More attractive
males are more likely to desert (van Dijk 2009), and the
time for males to find a new mate decreases with
attractiveness (Kingma et al. 2008). The total number of
offspring produced in a given breeding season largely
depends on the parental care strategy adopted at an
individual's first nest in a breeding season (van Dijk
2009). The sex difference in desertion rates in penduline
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tits may partly be due to the risk for males to be
cuckolded, so that the best interest of males is to secure
and fertilize many females instead of investing on parental
care (Trivers 1972; Queller 1997; Westneat and Stewart
2003; Kokko and Jennions 2008; also Pogány Á, van Dijk
RE, Horváth P, Székely T, Sex differences in care
provisioning do not explain female-biased uniparental
care in the penduline tit Remiz pendulinus, in preparation).

Firstly, we investigated how frequently EPP (the genetic
father is different from the social father), quasi-parasitism
(the genetic mother is different from the social mother;
Wrege and Emlen 1987), and egg dumping or intraspecific
brood parasitism (both parents are different from the social
pair) occur in our population of penduline tits. Both quasi-
parasitism and egg dumping are relatively rare phenomena
and have been reported in only 12 of 130 (Griffith et al. 2004)
and 20 of 69 (Arnold and Owens 2002) bird species studied,
respectively, including penduline tits (Schleicher et al. 1997).

Secondly, if the degree of cuckoldry is influenced by a
male's mate-guarding behavior (Parker 1974; Davies 1992;
Olsson et al. 1996; Osorio-Beristain and Drummond 2001),
then a male that deserts too early, and hence performs no
mate guarding, would risk losing paternity in the eggs that
the female will lay after he has deserted (Arnqvist and
Rowe 2005). We would thus expect that nests deserted by
males, but not by females, would contain a larger
proportion of EPP than male-care nests or biparentally
deserted nests. We would predict the same if males can
somehow, for instance through mate guarding or the density
of potential extra-pair mates for the female, assess the risk
of being cuckolded: with an increased risk of cuckoldry for
males, they are less likely to provide care, in which case the
percentage of EPP should be lower for male-care nests than
for female-care nests. We acknowledge that we are not able
to reveal the causality of male desertion for which the egg-
laying order needs to be known. The higher levels of EPP
in female-care nests compared to male-care nests may be a
consequence of female infidelity or the risk for males of
being cuckolded before desertion, or it may result from the
absence of mate guarding after male desertion. However,
we note that we tested for an association of parental care
strategy with the occurrence of EPP, for which the
prediction in either case is the same: higher levels of EPP in
female-care nests. From a female's perspective, we hypoth-
esized that females obtain genetic benefits from obtaining
extra-pair fertilizations, such as increased heterozygosity by
mating with genetically dissimilar mates (Tregenza and
Wedell 2002; Hansson et al. 2004; Richardson et al. 2004)
and/or attractiveness of offspring by mating with attractive
mates (‘good genes’ or ‘sexy sons’; Weatherhead and
Robertson 1979; Hamilton and Zuk 1982; O'Brien and
Dawson 2007; Suter et al. 2007; Schmoll et al. 2009).
Heterozygosity reflects the individual level of genetic

diversity and is often associated with reproductive success
(reviewed by Hansson and Westerberg 2002). We predicted
therefore that female care will be positively associated with
the degree of EPP in the nest.

Finally, with regards to the latter prediction, we note that it
is still largely unclear which benefits females may obtain from
gaining extra-pair fertilizations (Kempenaers 2007; Mays et
al. 2008; Magrath et al. 2009; Schmoll et al. 2009). Here we
investigate whether females may benefit by obtaining
indirect (genetic) benefits from extra-pair fertilizations (cf.
‘good-genes’ models) by investigating whether EPY grow
faster and/or are more heterozygous than within-pair young
(WPY) (Bouwman et al. 2007; Cohas et al. 2007; Suter et al.
2007; Fossøy et al. 2008). Increased heterozygosity is
expected to be associated with, for instance, better immune
defense (through the major histocompatibility complex–gene
complex; Richardson et al. 2005; Kempenaers 2007) and
success of mating (genetic compatibility; Kempenaers 2007).
Various studies have pointed out that EPY may grow faster,
may survive better, or are more heterozygous than WPY
(Ilmonen et al. 2009; Mulard et al. 2009), yet no consistent
pattern exists in the literature (Kempenaers 2007; Mays et al.
2008; Magrath et al. 2009) and, currently, no unambiguous
evidence in support of ‘good-genes’ models exists. In line
with this, we also investigate whether more attractive males
(i.e., those that have a larger black facial mask; Pogány and
Székely 2007; Kingma et al. 2008) are less likely to be
cuckolded than less attractive fathers. If females seek extra-
pair copulations to obtain indirect benefits through the
offspring, one would expect females to be less likely to do
so when mated to attractive males. We note, however, that
the indirect benefits will have to be substantial to compen-
sate for reduced male care if the likelihood of male care is
associated with the occurrence of cuckoldry (Arnqvist and
Kirkpatrick 2005; Szentirmai et al. 2007; but see Eliassen
and Kokko 2008). In penduline tits, the costs of male
desertion to a female are substantial in terms of reproductive
output (Szentirmai et al. 2007; van Dijk 2009).

Methods

Field data were collected during the breeding seasons of
2002–2007 at a 1,321-ha fishpond system (Fehértó) in
southern Hungary (46º19′N 20º6′E), where approximately
60–90 males and 45–50 females are known to breed each
year (these are the number of banded individuals, biased
towards males because females are more difficult to trap
than males; Szentirmai et al. 2007). We searched the study
area for nest-building males and visited each nest approx-
imately every other day for at least 15 min. We determined
which parent attended the nest, the date of nest desertion,
the number of eggs (approximately on the eighth day after
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incubation had commenced), and the number of nestlings
(approximately on the tenth day after hatching of the first
egg). The latter is highly correlated to the number of
fledglings (van Dijk et al. 2007; Kingma et al. 2008). If a
parent was not observed for two consecutive nest checks
(in which case the final check lasted for at least 30 min),
it was classified as ‘deserted.’ Fifteen minutes appears to
be sufficient to confidentially record the presence of each
parent (van Dijk 2009; van Dijk et al. 2007), and none of
the parents classified as deserted was resighted at the nest
afterwards. We refer to nests only cared for by females as
‘female-care’ nests and to nests only cared for by males as
‘male-care’ nests. Standard biometrics of both adults and
10-day-old nestlings were taken (see detailed field meth-
ods in our field protocol at http://www.bath.ac.uk/bio-sci/
biodiversity-lab/pdfs/PT_%20Field%20Guide_1_2.pdf
and in Bleeker et al. 2005; van Dijk et al. 2007; Kingma et
al. 2008). All trapped individuals were banded with a
numbered metal band from the Hungarian Ornithological
Institute, and adults were marked using a unique combi-
nation of three colorbands (A.C. Hughes, UK). We also
took digital photographs of both sides of the mask of
adults (for details, see Kingma et al. 2008).

A small blood sample (about 10 µl) was taken by
puncturing the brachial vein of adults and nestlings, which
we then stored in an Eppendorf tube containing 1 ml of
Queen's lysis buffer (Seutin et al. 1991) at 5°C. Clutches
that were deserted by both parents were collected and
artificially incubated at 37.5°C for 5 days. If embryo
development had started, we collected the embryos.

Molecular analyses

DNA was isolated from the blood and embryo samples
using the phenol–chloroform–isoamyl alcohol method
(Krokene et al. 1996). Penduline tits were genotyped
using nine polymorphic microsatellite markers and their
47 alleles (Mészáros et al. 2008). The combined total
exclusionary power of the marker set was 0.967 for the
first parent (i.e., exclusion probability of the social father,
given that he is not the father and the genotype of the
mother is unknown) and 0.998 for the second parent (i.e.,
exclusion probability of the social father when the
genotype of the mother is known; CERVUS version 3.0;
Kalinowski et al. 2007). For technical details on polymer-
ase chain reaction and DNA fragment analyses, see
Mészáros et al. (2008).

Only individuals with at least five successfully geno-
typed loci were included in subsequent analyses. The
number of loci used varied between individuals; however,
for the vast majority (536 of 654 individuals; i.e., 82%), we
used nine loci, and for only eight individuals, we used five
loci [8.6±0.91 (mean±SD) successfully genotyped loci per

individual included in the analyses]. The range of exclusion
probabilities for five loci, depending on the variability of
loci used, was 0.780–0.894 for the first parent and 0.939–
0.979 for the second parent. Exclusion of parentage for the
male parent, female parent, or both parents was carried out
manually by comparing the genotyped microsatellite loci of
the offspring with that of its social parents. Both paternity
and maternity were excluded if there were at least three
mismatches between the genotypes of the putative father
and that of the offspring, and between the genotypes of the
social mother and that of the offspring, respectively. Egg
dumping was assigned when the genotypes of at least three
loci did not match that of either the social father or the
social mother (for similar methods, see Magrath et al. 2009;
Muck et al. 2009).

Statistical analyses

We used binary logistic regression models to investigate
whether the proportion of EPP (i.e., the offspring was not
sired by the putative father, but the genotype matched that
of the social mother) predicted the parental care strategy
(i.e., care or desert) by the male parent, the female
parent, or both parents. In addition, we repeated these
analyses for the occurrence of EPY (i.e., either the
genetic father, the genetic mother, or both are different
from the social parents). The latter did not qualitatively
change our results (see “Results”). In the analyses with
EPY, for males, we pooled EPP and egg dumping,
whereas female care was expected to be negatively
affected by the occurrence of quasi-parasitism and egg
dumping and, hence, these were pooled in the analyses
of female-care strategy. In these models, mating date was
included to control for a change in parental care strategy
over the course of the breeding season. Our data provided
an adequate fit to all models (Hosmer–Lemeshow
goodness-of-fit: P>0.331).

We used linear mixed models (LMMs) with restricted
maximum likelihood (LMM) and 10,000 iterations to test
for differences in tarsus length, body mass, and heterozy-
gosity between offspring sired by extra-pair males and
WPY. Year, parental care strategy (male care, female care,
and biparental desertion), sex of the offspring, and level of
EPP (‘paternity’) were included in these models as fixed
effects, and brood ID was included as a random effect. The
sex of the offspring was, however, only known for the years
2002–2004 (van Dijk et al. 2008). To improve sample sizes,
we therefore also present the same LMM, excluding the sex
of the offspring. Including a seasonal covariate (mating
date) resulted in the convergence not being achieved; thus,
this term was not entered into the final LMMs (Table 1).
However, brood ID also accounts for potential seasonal
variation (e.g., food abundance). We kept the year, parental
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care strategy, and mating date in the final general linear
model (GLM) (Table 2; see “Results”).

We analyzed and presented five different indices of
heterozygosity, all of which have been previously related to
measures of fitness in other species: (1) observed hetero-
zygosity (Ho): the number of heterozygous loci divided by
the total number of loci; (2) mean heterozygosity of typed
loci (mean H): mean difference in allele length; (3)
standardized individual heterozygosity (SIH): observed
heterozygosity divided by the mean heterozygosity; (4)
mean d2: the mean squared difference in allele length per
locus; (5) standardized mean d2 (st mean d2): the mean of
the squared difference in allele length divided by the
maximum difference per locus, thus weighting for the allele
size ranges of the different loci (Coulson et al. 1998;
Coltman et al. 1999; Amos et al. 2001; Hansson et al. 2001;
Foerster et al. 2003; Bouwman et al. 2007; see Table 3). All
indices of heterozygosity were significantly correlated
to each other (r>0.376, P<0.001), apart from SIH with
Ho, which only showed a significant but weak correlation
(r>0.081, P<0.038). We provide the results of all indices
here given the variation between the indices and allowing
for comparison with previous studies (Foerster et al. 2003;
Bouwman et al. 2007). To test for an association between
the size of the mask of a male and heterozygosity, we used
Pearson product moment correlation for mean H, st mean
d2, and square-root-transformed mean d2, whereas we used
Spearman rank correlation for Ho and SIH. All analyses of
heterozygosity were restricted to mixed broods only.

All analyses were also run using a subsample of those nests
where the genotype of both social parents was known. None
of those results was qualitatively different from the ones we
report here. All statistical analyses were performed in SPSS
17.0 (SPSS, Inc., Chicago, IL, USA). Nonsignificant terms
were excluded from the models using stepwise elimination,
and we give statistics for excluded variables before their
exclusion from the model. Two-tailed probabilities are given,
and we rejected the null hypothesis at the P<0.05 level.

Results

We successfully genotyped a total of 443 offspring, 128
adult males, and 83 adult females from a total of 118
nests. Both social parents of 166 (38%) offspring were
genotyped, whereas we only genotyped the social father
of 199 (45%) offspring and only the social mother of 78
(18%) offspring.

Frequency of EPP, quasi-parasitism, and egg dumping

Of those nests where the genotype of both social parents
was known (ntotal=55 nests), 60.0% of nests (n=33 nests)
contained at least one EPY, either through EPP, through
quasi-parasitism, or through egg dumping. Among the
nests, 52.7% (n=29 nests) contained at least one EPY sired
by an extra-pair male, 16.4% (n=9 nests) contained at least
one EPY as a result of quasi-parasitism, and 7.3% (n=4
nests) contained at least one EPY as a result of egg dumping.

Out of 166 genotyped offspring where the genotype of
both social parents was known, 30.1% (n=50 offspring)
was extra-pair: 23.5% (n=39 offspring) was sired by an
extra-pair male, 4.2% (n=7) originated from quasi-
parasitic females, and genotype did not match with that
of either the social mother or the social father for 2.4%
(n=4) of offspring. Out of those offspring where we either
knew the genotype of both parents or knew only the genotype
of the social father (n=365 offspring), 17.0% (n=62) was
sired by an extra-pair male. Of those offspring where we
only knew the genotype of the social mother, the
genotype did not match that of the putative mother in
15.4% (n=12). The latter may be due to either egg dumping
or quasi-parasitism.

Extra-pair parentage and parental care

Out of a total of 154 broods included in this study where
parental care strategy was known, 18.8% was cared for by
the male only, 70.8% was cared for by the female only, and
10.4% was deserted by both parents. The proportion of the
young sired by an extra-pair male only (EPP) in a nest did
not predict whether the male would care or desert, whether

Table 1 LMMs comparing the tarsus length and body mass of
offspring sired by extra-pair males versus WPY (n=135 broods)

df F P

Tarsus length

Year 5 5.394 < 0.001

Parental care strategy 1 6.974 0.009

Paternity 1 0.048 0.826

Body mass

Year 5 5.725 < 0.001

Parental care strategy 1 4.529 0.035

Paternity 1 0.121 0.728

Table 2 GLM testing for the association of percentage of EPP in a
brood with brood size (n=113 broods)

Number of nestlings df F P

Year 5 2.745 0.023

Parental care strategy 2 33.121 < 0.001

Mating date 1 11.152 0.001

Paternity 1 1.097 0.297

Behav Ecol Sociobiol (2010) 64:1425–1435 1429



the female would care or desert, or whether either the male
or the female would care or desert (Table 4, Fig. 1). These
results remained unchanged when we replaced EPP with
EPY (i.e., EPP, quasi-parasitism, or egg dumping), so that
males would be expected to care less frequently when the
levels of EPP and egg dumping increased (P=0.746),
whereas female care was expected to be negatively affected
by the occurrence of quasi-parasitism and egg dumping
(P=0.998). The initial models included year as a categor-
ical covariate, but this was excluded from the final binary
logistic regression (Table 4) as it did not contribute
significantly to these models (P>0.043).

Indirect benefits for females

We found no evidence that offspring sired by extra-pair
males grew faster than WPY: there was no difference in
tarsus length or body mass between offspring sired by
extra-pair males [15.57±1.28 mm and 8.17±1.81 g (n=63
offspring), respectively] and WPY [15.66±1.09 mm (n=
342) and 8.33±1.50 g (n=344); Table 1]. Both body mass
and tarsus length of the offspring were significantly
different across years (Table 1). The sex of the offspring
did not contribute significantly to these models (P=0.563
and P=0.314, respectively; n=92 broods) and was thus

Table 3 LMMs predicting five different indices of the heterozygosity of offspring sired by extra-pair males versus WPY, restricted to mixed broods
only, including and excluding the sex of the offspring as a fixed effect [n=35 broods (119 offspring) and n=45 broods (151 offspring), respectively]

Including sex of offspring as fixed effect Excluding sex of offspring as fixed effect

df F P df F P

Ho Year 2 1.084 0.350 4 1.342 0.272

Paternity 1 0.372 0.543 1 0.042 0.837

Sex 1 2.836 0.095

Mean H Year 2 0.758 0.477 4 1.623 0.185

Paternity 1 1.217 0.272 1 2.495 0.117

Sex 1 8.403 0.004

SIH Year 2 0.162 0.851 4 0.420 0.793

Paternity 1 3.459 0.066 1 5.625 0.019

Sex 1 4.353 0.039

Mean d2 Year 2 0.495 0.614 4 1.289 0.288

Paternity 1 2.939 0.089 1 3.443 0.066

Sex 1 4.422 0.038

St mean d2 Year 2 1.062 0.357 4 1.880 0.129

Paternity 1 1.142 0.288 1 1.191 0.277

Sex 1 6.894 0.010

Ho, observed heterozygosity; mean H, mean heterozygosity; SIH, absolute SIH; mean d2 , mean squared difference in allele length per locus as a
measure of the evolutionary similarity of alleles; st mean d2 , standardized mean d2 (i.e., the mean d2 divided by the maximum d2 for a given locus)

Table 4 Binary logistic regression models of male-care and female-care strategies in response to the proportion of EPP (n=114 nests; i.e., all
nests where parental care strategy and mating date were known; df=1)

Parental care Model effect estimate±SE Wald P

Male behavior [care (n=22) vs. desert (n=92)] Mating date 0.027±0.015 3.245 0.072

Proportion EPP 0.004±0.008 0.280 0.596

Female behavior [care (n=82) vs. desert (n=32)] Mating date − 0.006±0.010 0.278 0.598

Proportion EPP 0.005±0.008 0.397 0.529

Parent's behavior [care (n=104) vs. desert (n=10)] Mating date 0.024±0.014 2.867 0.090

Proportion EPP 0.707±154.719 0.000 0.996

Under ‘parent's behavior,’ proportion EPP is compared between male-care or female-care nests and those that are biparentally deserted. Separate
models were constructed for the parental care behavior (i.e., care or desert) of the male parent, the female parent, and both parents. Sample size n
(nests) is given between parentheses for each care strategy. Predicted effect sizes and standard errors are provided.

1430 Behav Ecol Sociobiol (2010) 64:1425–1435



excluded from the final models presented in Table 1. These
results remained unchanged when we restricted the analyses
to mixed broods containing both offspring sired by extra-
pair males and WPY only (P>0.079). Additionally, parental
care strategy was significantly associated with tarsus length
(Table 1), so that offspring cared for by females had shorter
tarsi than those cared for by males.

The occurrence of EPP was not associated with brood
size (i.e., the number of 10-day-old nestlings) (Table 2).
Brood size differed significantly across years and declined
over the season (Table 2). Parental care strategy predicted
the number of nestlings (Table 2), so that brood size at
male-care nests or biparentally deserted nests was smaller
than brood size at female-care nests.

Parental care strategy did not significantly contribute
(P>0.381) to our LMMs testing for a difference in
heterozygosity between offspring sired by extra-pair males
and WPY, and was thus excluded from the final models.
SIH was significantly different between offspring sired by
extra-pair males and WPY, so that WPY were more
heterozygous than offspring sired by extra-pair males
(Table 3). However, none of the other heterozygosity
indices was significantly different between offspring sired
by extra-pair males and WPY. The nine genotyped loci
differed significantly in the length of both alleles (Kruskal–
Wallis; χ2=773.09, P<0.001, n=5,731 differences in allele
length), and the standardized mean d2 did not differ
significantly between offspring sired by extra-pair males
and WPY (Table 3). Male offspring were significantly more
heterozygous than female offspring for mean d2 and
standardized mean d2, whereas female offspring had a higher
mean and SIH (Table 3). None of the sex differences in
heterozygosity was significant for the adults (Mann–Whitney

U; P>0.076, n=211 adults). Although the sex of the
offspring contributed significantly to some of the models in
Table 3, it did not qualitatively change the results. None of
the heterozygosity indices correlated with the size of the
male's mask (P>0.235, n=55 males).

The size of the mask, and hence attractiveness, of a male
was not associated with the risk of cuckoldry for a male (i.e.,
the percentage of EPP in its nest) (GLM; F=0.044, P=0.835,
n=62 nests). This GLM included year as a fixed factor (P=
0.003), whereas parental care strategy and mating date did
not significantly contribute to this model (P>0.149) and
were thus excluded from the final model.

Discussion

Consistent with a previous study (Schleicher et al. 1997),
we showed that EPP, quasi-parasitism, and egg dumping all
occur in the polygamous Eurasian penduline tit, with quasi-
parasitism and egg dumping occurring at low frequencies.
Yet, the frequency of EPP in our population seems
substantially higher: Schleicher et al. (1997) showed that
6.9% of offspring in their study were sired by an extra-pair
male, whereas our study suggests an EPP rate of 23.5%. A
possible explanation for this discrepancy is the use of
different genotyping methods. An alternative explanation is
that the frequency of extra-pair copulations may be
population specific, with populations possibly varying in,
for instance, mate availability, population density, or
density of vegetation, which may influence the rate of
extra-pair copulations (Davies 1992). However, although
the two populations may differ in mate availability, mate
guarding appears to be low in both populations (Schleicher

Fig. 1 The association between a male-care strategy and b female-
care strategy and the level of EPP (n=47 broods). Nests containing
0% EPP are excluded from these figures for graphic purposes. See

Table 4 for statistics. Box plots show the median, interquartile range,
outliers, and extreme cases
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et al. 1997; van Dijk 2009). Additionally, other studies tend
to find little difference in the rate of EPP across populations
despite various densities, predations rates, or differences in
potential female benefits (Krokene and Lifjeld 2000;
Conrad et al. 2001; Neff et al. 2008).

Parentage and parental care

The moderate levels of EPP may influence why males
would be more likely to desert than females on an
evolutionary timescale (Trivers 1972; Queller 1997). Given
that the majority (80–95%) of males (Szentirmai et al.
2007; van Dijk et al., Behaviour, in press) desert the
offspring, it might seem unlikely that the occurrence of EPP
will confound the likelihood of male desertion. However,
given that the clutch size of male-care nests is, on average,
only about three eggs (van Dijk et al. 2007), the occurrence
of only one extra-pair offspring makes up a substantial
proportion of the total number of offspring, thus making a
male response to cuckoldry potentially adaptive. Our
results, however, suggest that parental care in Eurasian
penduline tits is not adjusted to parentage on an ecological
timescale. This is in contrast with the predicted negative
relation between cuckoldry and parental care on an
evolutionary timescale (Trivers 1972; Queller 1997), which
may partly explain why females desert the nest less
frequently than males. This not only furthers our knowl-
edge as to what extent parents should or are able to adjust
parental care in response to parentage (Sheldon 2002; van
Dijk and Székely 2008) but also has implications for the
understanding of which risks parents might face when
deciding whether to care for the offspring or to desert.
There appears to be little risk for a male by deserting too
early after the first eggs have been laid, which may be the
reason that males often desert after only three eggs have
been laid, leaving the female to finish the nest and clutch.
The female often lays two or three more eggs after male
desertion. The amount of sperm that can be stored by the
female to successfully fertilize those eggs may set the
minimum amount of time that a male is ‘forced’ to stay
with its partner to ensure paternity. This remains to be
investigated in detail experimentally, yet previous studies
have suggested that frequent copulations only act effectively
as a paternity assurance prior to or during the early phases of
clutch initiation (Crowe et al. 2009; see also ‘paternity
assurance hypothesis’ in Birkhead et al. 1987; Møller 1987).
Sperm ejection, however, may pose an important challenge
to such paternity assurance (see Peretti and Eberhard 2010).

Given the low levels of mate guarding in this species
(Schleicher et al. 1997; van Dijk 2009), the male may not
be able to assess the risk of being cuckolded (Davies 1992;
Osorio-Beristain and Drummond 2001). Nor does it seem
likely that a parent will be able to distinguish between EPY

and WPY at the moment that a decision about parental care
(i.e., care or desert) is made, which is during the egg-laying
phase (Griffith et al. 2009). These may explain why there is
no association between the occurrence of EPY in a nest and
parental care strategy. Kin recognition may be an important
mechanism driving parents to adjust parental care in
response to parentage (Alvergne et al. 2009). Yet, the
likelihood that this mechanism will work will vary across
species and will depend on the developmental stage of the
offspring during which parental care is provided (for
instance, eggs versus fledged or weaned offspring). Addi-
tionally, parental care also often depends on the phenotype
of the individual (Lessells 1991). Attractive males may be
better at gaining extra-pair copulations (Rhodes et al. 2005;
Bouwman et al. 2007; Albrecht et al. 2009) and would thus
be better off investing in mating rather than in parental
effort, whereas it may pay for less attractive males to invest
in parental care (Magrath and Komdeur 2003; Mitchell et
al. 2007). This may confound an association between
parentage and parental care. However, although attractive
males among Eurasian penduline tits are more likely to
desert (while females are not more likely to care for the
offspring of those males; van Dijk 2009), the risk of being
cuckolded was not associated with attractiveness. This also
suggests that females may not seek to obtain indirect
benefits after male desertion. From a female's perspective,
although females mated to less attractive males may seek to
obtain indirect benefits through extra-pair fertilizations and
are thus more likely to care for the offspring, females mated
to attractive males may not need to obtain extra-pair
fertilizations. These females are also likely to care for their
WPY. This may also obscure an association between the
occurrence of EPY and the parental care strategy adopted.
Finally, as to whether a male should reduce parental
investment in a current brood in relation to the paternity
share, the best strategy depends on his future perspectives:
if a male is unlikely to enhance its paternity share in future
reproduction, he may not be better off reducing investment
in the current brood (Houston and McNamara 2002).

Our results are in contrast with the pattern of EPP as
observed in blue tits Cyanistes caeruleus, where EPP
declined markedly with laying order (Magrath et al.
2009). If this would have been true for Eurasian penduline
tits as well, then we would expect to find that male-care
clutches and biparentally deserted clutches contain a higher
proportion of EPY than female-care clutches, given the
difference in clutch size between the two. Although this
would be counterintuitive given the costs of cuckoldry for
males and the potential benefits for females, it would be
possible if males would have no cues to detect cuckoldry,
such as would be the case with limited mate guarding
(Schleicher et al. 1997) or with dense surrounding
vegetation (Davies 1992). Alternatively, it is also possible
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that the association between the progress of egg laying and
paternity differs between species and between clutches. The
first eggs laid in clutches later on cared for by females
might contain eggs sired by extra-pair males, while this
may not be the case for male-care clutches. This possibility
deserves further investigation as it may shed light on the
causality of nest desertion in relation to EPP. Consistent
with our results, Magrath et al. (2009) also suggested that
the females' benefits from engaging in extra-pair copulation
may need careful reconsideration.

Do females obtain indirect benefits from extra-pair
fertilizations?

We did not find strong evidence for indirect benefits that
females may gain from obtaining extra-pair copulations:
EPY did not grow faster than WPY, nor did EPY appear to
survive better from egg to nestling than WPY, as brood size
was not predicted by the proportion of EPY in a nest. Also,
overall, no difference in heterozygosity existed between
EPY and WPY. The current evidence for indirect benefits
that females might accrue from obtaining EPP is not
unambiguous. Recently, Magrath et al. (2009) showed that
the apparent indirect benefits of extra-pair offspring over
WPY in blue tits disappeared after controlling for hatching
order (see also Arnqvist and Kirkpatrick 2005; Akcay and
Roughgarden 2007). Alternatively, fitness benefits for males
are often very strong, implying a strong selection pressure for
mating multiply, with possible consequences for mating rates
in both sexes (Halliday and Arnold 1987; Uller and Olsson
2008; W. Forstmeier, personal communication). In future
studies, empirical quantitative genetic data for alternative
explanations, but also improved methodology such as more
loci or more specifically selected loci, are likely to advance
our insight into what the benefits of extra-pair copulations
may be for females.

The apparent lack of, or at least limited, indirect benefits
from having EPY for female penduline tits may addition-
ally also constrain their interest to obtain extra-pair
copulations: if the risk of male desertion increases with
increasing proportions of EPY, then the direct costs of male
desertion (i.e., lowered reproductive output; Szentirmai et
al. 2007) may counterbalance the potential but weak
genetic benefits (Arnqvist and Kirkpatrick 2005). As such,
selection would be expected to moderate the occurrence of
EPY, and an association with the likelihood of caring for or
deserting the offspring is then expected to be absent or
weak. Nevertheless, although the levels of EPP in Eurasian
penduline tits are only moderately high, considering the fact
that the pair bond only lasts for about 5 days (van Dijk et al.
2007), it emphasizes the polygamous nature of the species:
they enhance their fitness not only by deserting and
remating but also through extra-pair copulations during

the period that they are together, without incurring the
increased risk of being deserted by their partner.

In conclusion, we show that parental care in Eurasian
penduline tits is not predicted by moderate levels of cuckoldry
and suggest that further studies remain necessary to under-
stand why females engage in extra-pair copulations. For the
former, we require more experiments in which (1) the risk of
cuckoldry can be assessed (see, for instance, Osorio-Beristain
and Drummond 2001), and (2) the extent to which
recognition mechanisms may play a role in how parental
care depends on the genetic relatedness between parents and
offspring can be assessed. Further observational studies
investigating to what extent incubation or brood-rearing
behavior may be influenced by the occurrence of EPP remain
useful for understanding the potential costs to females of
reduced male care in response to cuckoldry (see, for instance,
Bouwman et al. 2005). To further our understanding of why
females obtain extra-pair copulations, we need new
approaches, for instance using rapidly advancing molecular
techniques. This may include more extensive gene sequenc-
ing and application of quantitative genetics to avoid
ambiguous results due to loci-specific effects (Masters et al.
2009) and will help to better understand how selection may
drive multiple mating in both sexes (Uller and Olsson 2008).
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