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Abstract

Background: High utilizers receive great attention in health care research because they have a largely
disproportionate spending. Existing analyses usually identify high utilizers with an empirical threshold on the number
of health care visits or associated expenditures . However, such count-and-cost based criteria might not be best for
identifying impactable high utilizers.

Methods: We propose an approach to identify impactable high utilizers using residuals from regression-based health
care utilization risk adjustment models to analyze the variations in health care expenditures. We develop linear and
tree-based models to best adjust per-member per-month health care cost by clinical and socioeconomic risk factors
using a large administrative claims dataset from a state public insurance program.

Results: The risk adjustment models identify a group of patients with high residuals whose demographics and
categorization of comorbidities are similar to other patients but who have a significant amount of unexplained health
care utilization. Deeper analysis of the essential hypertension cohort and chronic kidney disease cohort shows these
variations in expenditures could be within individual ICD-9-CM codes and from different mixtures of ICD-9-CM codes.
Additionally, correlation analysis with 3M™ Potentially Preventable Events (PPE) software shows that a portion of this
utilization may be preventable. In addition, the high utilizers persist from year to year.

Conclusions: After risk adjustment, patients with higher than expected expenditures (high residuals) are associated
with more potentially preventable events. These residuals are temporally consistent and hence may be useful in
identifying and intervening impactable high utilizers.
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Background
The Agency for Healthcare Research and Quality (AHRQ)
reports that in 2012, the top 10% of the health care-
utilizing population accounted for 66% of overall health
care expenditures in the United States [1]. This highly
disproportionate spending pattern frequently is inter-
preted as a sign of inefficient health care delivery and
partially associated with avoidable, preventable or oth-
erwise unnecessary health care events. Nationally, in
2010, potentially avoidable emergency department (ED)
encounters accounted for $64.4 billion, 19.6% of ED
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episodes, and 2.4% of national health expenditures [2].
In this context, stakeholders have argued the need for
higher efficiency health care for such patients, some-
times referred to as “high utilizers” [3]. For example, the
deployment of managed care organizations (MCOs) and
the capitation payments system [4] in the United States
public health programs provide incentives for health care
providers to deliver services in a more cost-effective way.
The Centers forMedicare andMedicaid Services (CMS)

recommends [5] that state Medicaid programs determine
the extent to which expenditures driven by high utiliz-
ing populations represent “impactable” costs. Therefore,
it seems reasonable to examine the avoidable health care
conditions in this population, as these events may bemore
amenable to prevention and cost reduction strategies [6].
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As an example at the state-level, the Minnesota Depart-
ment of Public Health found that in 2012, nearly 1.3
million visits to hospitals in the state, representing nearly
$2 billion in associated costs, could have been potentially
prevented [7].
Regional disparities [8] is shown to be important for

health care expenditure variations in the United States. At
the individual level, several existing studies [9–11] identify
high utilizers based on the total number of visits or total
expenditures per unit time or some combination thereof.
Existing studies find that historic utilization is indicative
for future utilization [12]. While using such data-driven
methods may be a relatively straightforward starting point
for Medicaid programs with limited analytic resources,
the approach is blunt and may fail to identify patient
populations with health conditions most responsive to
prevention and, by extension, cost reduction. To illustrate
one problem of relying on count-and-cost based crite-
ria alone, consider that during flu season, increased visits
for uncomplicated respiratory illnesses may contribute to
temporary increases in ED overcrowding without nec-
essarily resulting in high-cost medical treatments [13].
Furthermore, patients with serious conditions, such as
cancer or traumatic injuries, may require expensive medi-
cal treatments that seem excessive as financial data points
but that are medically appropriate and necessary.
An alternative strategy may involve more sensitive data-

driven approaches that identify more impactable subpop-
ulations of high utilizers even though they may not incur
the highest absolute expenditures. We assume that this
group of patients is “over-utilizing” the health care sys-
tem because they spend more than their expected costs
based on adjustments for health care-utilizing factors.
Though clinical diagnostic classification tools such as the
New York University ED profiling algorithm [14] and 3M™
Potentially Preventable Events (PPE) [15] software are
designed to improve the ability to identify preventable or
avoidable conditions, they have a number of limitations,
including a limited population scope, lack of transparency
due to commercial considerations, and others.
This paper proposes an approach to address such

limitations. Briefly, using insurance claims data typi-
cally available to state Medicaid programs, our data-
driven approach calculates expenditure expectations for
specific health care conditions and other measurable
factors first; then we identify patients whose expendi-
tures are higher than expected (i.e. presumed overuti-
lization). The magnitude of overutilization is quantified
by the degree to which cost residuals deviate from the
model for each patient. Thus, patients with higher-than-
expected residuals represent a population of health care
utilizers with health care costs that may be inexplica-
bly excessive and potentially associated with a nontriv-
ial fraction of preventable conditions. Additionally, we

compare the performance of two regression approaches,
one standard and one based on decision trees ensem-
bles used more frequently in computer science, to
make recommendations regarding the growing inter-
est in applying data-driven methods in the biomedical
sciences.
Briefly, the key contributions of our paper are as follows:

• We identify a best-fitting linear and tree-based
regression model to account for patients’ acute and
chronic conditions loads and demographic
characteristics using a large administrative claims
dataset spanning 4 years from a public insurance
program with millions of patients.

• We identify populations with the highest deviations
from expected costs after adjustment and examine
their characteristics. Furthermore, we examine
whether the model identifies the same set of patients
consistently through time. The results suggest that
our approach identifies a significant proportion of
health care costs, which persists from year to year.

• We examine the variations of expenditures associated
with two medical diagnoses: hypertension and
chronic kidney disease. We find significant variations
in expenditures within some diagnoses.

• We stratify the model by two health care service
settings, the inpatient acute care hospital and
emergency department. In each setting, we compare
our results identifying potentially preventable
conditions with an existing commercial clinical tool,
the 3M™ PPE software.

The rest of this paper is organized as follows: In
“Methods” section, we introduce the dataset and methods
used for the study. Specifically, we describe the risk adjust-
ment models and define how residuals are used to iden-
tify high utilizers. “Results” section presents the results,
including examining the demographics, clinical charac-
teristics, utilization profiles and temporal consistency of
the high-utilizing population, and comparing the residu-
als approach with the 3M™ PPE tool. “Discussion” section
presents conclusions and discussion. A preliminary ver-
sion of this work has been reported [6].

Methods
Study population
In this study, we use an administrative claims and
encounter dataset from the Medicaid insurance pro-
gram of Texas. We set the inclusion criteria at a
yearly basis. For each year from 2011 through 2014, we
include adult (18–60 years old) Texas Medicaid benefi-
ciaries, excluding pregnant women, with nonzero expen-
ditures. The resulting size of the study population for
2011 to 2014 is 464,572, 530,242, 514,601, and 535,423
respectively.
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Data preprocessing
To preprocess the dependent variable, we normalize the
health care expenditures to a per-member per-month dol-
lar amount (total medical expenditure divided by number
of months enrolled in Medicaid). This measure is com-
monly used for expenditure analyses in Medicaid pro-
grams [16] and, given that individuals may enroll in Med-
icaid for differing lengths of time, adjusts for variation in
time enrolled.
For the independent variables, to more meaningfully

summarize the 21,374 unique diagnosis codes (Interna-
tional Classification of Diseases, Ninth Revision, Clini-
cal Modification, ICD-9-CM) identified from the dataset,
first we group ICD-9-CM codes into 283 categories using
AHRQ’s Clinical Classification Software [17]. Then we
transform all categorical variables to one-hot encoding.
All the variables included in the models are presented in
Table 1.

Model
Two types of statistical models, linear regression and
tree-based model, are adopted to adjust the risk factors
(independent variables) for health care expenditures.

Linear regression
Linear regression based adjustment models [4] have been
used in health care capitation payments as they systemat-
ically account for spending associated with specific health
care conditions. Generally, we can write the model into
the equation below:

y = βx + ε (1)

where y, x, and β represent expenditure, a vector of
exogenous health care utilization factors and their lin-
ear coefficients respectively. If all the factors associated
with health-care expenditures are exogenous, inclusion of
these factors would perfectly explain all the variations in
health care expenditures except for an independent, nor-
mally distributed error ε. If this is the case, the residuals,
which are the observed error term ε in (1), should follow

Table 1 Variables Specification

Dependent Variable Per-member per-month expenditure

Independent Variables Disease categories: ICD-9-CM codes
grouped into Clinical Classification
Software categories (CCS) [17]

Demographics: age, sex, race, and
disabled status

Geographical information: county of
residence

Health insurance programs and
plans: fee-for-service, managed care
organization plans

the normal distribution. This is also an assumption of clas-
sical linear regression. If the residuals have a longer right
tail than the normal distribution, we would expect that the
model does not account for unmeasured factors. We set
up the linear regression as specified in Table 1 to account
for the patients’ health care conditions, demographics and
health insurance plan differences. Note that we adjust
for only the exogenous variables largely considered non-
modifiable, such as health conditions, demographics, res-
idence county, etc., but not for the endogenous variables
like frequency of health care visits.
We use ordinary least squares (OLS) to find the best fit

for the linear regression health care utilization adjustment
model.

Tree-basedmodel
Though linear regression is widely used for risk adjust-
ment because of the relative ease of use, interpretability
and well-established statistical properties, we note that it
cannot easily capture interactions between independent
variables. For example, traditional epidemiologic linear
regression models rarely include more than three inter-
action terms. Given that we have hundreds of disease
categories in our model and the interactions between
them represent complex, potentially non-linearly related
comorbidities that might greatly influence the health care
needs of the patients, we may attempt to include these
interactions in the risk adjustment. However, due to the
high dimensionality of the independent variables, it is
impractical to add all possible interactions to the linear
regression model. Thus, we examine a decision tree-based
model as an alternative to the linear regression model
because tree-based models [18] can capture N-way inter-
actions automatically. Tree-based models have been used
to study hospital readmissions [19] and classification of
epilepsy patients [20].
Gradient boosting machine (GBM) [21] is one of the

most powerful tree-based models to handle high dimen-
sional datasets. The model learns an ensemble of decision
trees ft in an additive manner. In each round, it adds a new
tree ft to the model by optimizing the objective function
of:

min
ft

M∑

i=1
(gift(xi) + 1

2
hif 2t (xi)) + γT + λ

T∑

j=1
w2
j (2)

where gi and hi are the first- and second-order derivatives
(gradient and Hessian) of the loss function. In our case,
the loss function is the squared error between predicted
expenditures ŷ and true expenditures y, i.e., |ŷ − y|2. To
control mode complexity, the last two terms are added as
regularizers, which penalize over-complicated models. T
is the number of decision tree leaves of ft , and wj are the
leaf weights.
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Unlike linear regression, the gradient boosting machine
and other tree-based models are not well established for
statistical properties, such as the expectation of indepen-
dently normally distributed error ε. Thus we are not able
to conduct equivalent statistical tests of normality for the
residuals. However, comparison with linear regression is
addressed.

Fitting the model
In this section, we describe the process to fit the lin-
ear regression model and the gradient boosting machine
model to adjust the risk factors that account for health
care expenditures.

Fitting linear regression
As described, we use the ordinary least squares (OLS)
procedure to fit the linear regression model. The mod-
els are highly significant for each year from 2011 to 2014
(p < 0.001 for the F − test of model fit). However,
our visual diagnostic checks identify significant skewness
and the residuals clearly deviate from normality (Fig. 1).
To address these deviations, we log (10)-transform the
dependent variable. Consequently, normality improves,
as shown in Fig. 1, but deviations remain. Additionally,
the R-squared of the model improves from 0.27 to 0.57
on average. Thus, we use the log-transformed dependent
variable as the default setting for all models, including
the gradient boosting model. As we can see, the log-
transformed model shows deviation on the right-hand
side, identifying patients with higher-than-expected cost

values. In this subpopulation of patients, we hypothesize
that a large proportion of potentially avoidable condi-
tions exist that would be suitable for consideration as a
potentially “impactful” intervention.
Although multi-collinearity is detected among the

independent variables of the model, which is expected
based on the large number of variables present, we
retain all correlated variables in the model for the
following reasons. First, our goal is not to interpret
any individual independent variable or estimate its
effects. Second, from the adjustment point of view,
as long as the independent variables are not com-
pletely linearly correlated, we deem them acceptable for
inclusion.
Heteroscedasticity also could affect the distribution of

residuals. If strong heteroscedasticity exists, the high
residuals could be those with error terms ε of larger
variances. We investigate the residuals versus predicted
plot (Fig. 2) and find that the residuals are distributed
with similar variances. Although the Breuch Pagan test
does suggest that heteroscedasticity exists (p < 0.05),
after we adopt the heteroscedasticity-consistent stan-
dard errors and re-run the model, the model remains
statistically significant. The generalized Gamma model
(GGM) provides unbiased estimates [22] if there is het-
eroscedasticity in the log scale error. However, inter-
preting the estimates is not the focus of this study.
Therefore, we continue with the simpler log transfor-
mation approach to handle the skew distribution of
expenditures.

Fig. 1 Quantile-to-quantile plot (Q-Q plot) of standard normal distribution and residuals obtained from the linear regression model for year 2014. In
the left panel, the dependent variable, per-member per-month expenditures, is not transformed. Due to its strong skewness, the residuals
significantly deviate from normal distribution. In the right panel, we log-transform the dependent variable with base 10 and re-run the model. The
residuals distribution better fits a normal distribution. The right and left ends are heavy-tailed, indicating over/under utilization
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Fig. 2 Predicted versus residuals plot for 2000 observation random sample for 2014. No obvious heteroscedasticity is observed from the plot

Fitting tree-basedmodel
To fit our tree-based model, we use the implementation
of Xgboost [23], which is efficient and widely-used. We
train 1000 decision trees as an ensemble for each model.
To select parameters such as maximum tree depth and
minimumdata samples in the leaf, we adopt a 5-fold cross-
validation and select the model with minimum mean
squared error.
As previously mentioned, the gradient boosting

machine model does not have established statistical tests
to examine model fit characteristics. Instead, we use a
held-out testing dataset to ensure the model does not
overfit, which is a common practice in machine learn-
ing [24]. In summary, each time we train a model, we
randomly hold out 40% of the data as the testing dataset
that will not be included during training. The remaining
60% is the training dataset and is used to fit the model.
After training the model, performance measures such as
R-squared are calculated on both datasets. In our case, if
the R-squared on the training dataset and testing data are
similar, we regard the trained GBM model as an adequate
and robust model for risk adjustment.

Identifying the high residuals population
Visual inspection is clear but we define an empirical
threshold to formally discriminate the point at which the
right long tail of residuals consistently deviates from the
normal distribution. The process is described graphically
on the Q-Q plot in Fig. 3. The size of the high utilizer
population varies from 1% to 7% of the overall population

for different years and model parameter settings. In terms
of population size identified, the proportion is similar to
count-based methods [25].
To examine the population profiles, we compare the

high utilizer group to other patients using demograph-
ics, utilization patterns including expenditures of different
service categories, and overall health condition burden.
Further, to examine the temporal consistency of this
spending, which addresses a debate regarding the longer-
term occurrence of unusually high spending patterns [10],
we use the following two-step process to test the Pearson
product-moment correlation between the percentile rank
in years from 2011 through 2014.
Step 1: Rank order all the patients in the index year and
and subsequent years based on the absolute value of the
residual.
Step 2: Compute the Pearson product-moment corre-
lation coefficient between the rank percentiles for any
year-to-year pairs.

Breakdown residuals
In our models, available disease information is included
using the AQRO’s Clinical Classification Software [17]
which consists of a grouping of the original ICD-9-CM
diagnosis codes. We can break down the residuals to
the ICD-9-CM code-level to see how variations are dis-
tributed across different ICD-9-CM codes. To be specific,
we choose one disease category every time to check the
variations within this disease category. Disease categories
are defined by the first three digits of the ICD-9-CM
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Fig. 3 Decide threshold of high utilizer from Q-Q plot: The red dashed line indicates where the long right tail of residuals consistently deviates from
the normal distribution quantiles

codes, i.e., ICD-9-CM 585xx is chronic kidney disease.
Then we follow a 3-step process to show the variation.
Step 1: For each claim whose principal ICD-9-CM diag-
nosis code is in the selected disease category, we associate
the expenditure of the claim to the principal ICD-9-CM
code.
Step 2: We assign patients to groups of 5000 based on
their residuals from high to low.
Step 3: For each patients group, we show the average
per-member per-month expenditures associated with the
disease category. In addition, for each patient group and
each single ICD-9-CM code in the disease category, we
show the number of patients and average per-member
per-month expenditures associated with the ICD-9-CM
code.

Stratified model
Inpatient acute care hospital and emergency department
(ED) are two important types of health care services.
Because inpatient acute care hospital costs are generally
an order of magnitude higher than ED costs [25], to better
analyze the variations in these two types of services, we
stratify the adjustment model by these settings. For this
purpose, in each setting, the study population is restricted
to those who had nonzero expenditures in the corre-
sponding setting. In addition, we construct dependent
variables based only on the setting in which the expen-
diture occurred. Otherwise, our modeling approaches are

the same as above. We compare our results with 3M™ PPE
[15] software as a quasi-validation tool. To be specific, we
examine if there are differences in PPE measures between
high residuals patients and all others. Also, we compute
the Pearson correlation coefficient between PPEmeasures
and residuals. Additionally, we test whether the residuals
are predictive for future PPEs.

Results
In this section, we first compare the model-fitting results
of the linear regression model and the tree-based model.
Then we look at the characteristics and temporal consis-
tency of high utilizers identified by the models. Break-
down of variations in expenditures is examined at the
ICD-9-CM code level. Finally, we present the stratified
risk adjustment model where we cross-validate the pre-
ventability of identified high utilization with 3M™ Poten-
tially Preventable Events (PPE) software.

Compare linear regression and tree-based model
The linear regression models are highly significant for
each year from 2011 to 2014 (p < 0.001 for the F − test).
The tree-based model (gradient boosting machine, GBM)
also appears to fit well to the data based on the mini-
mal differences between the training and testing models.
R-squared statistics for both models are presented in
Table 2. The GBM model does not appear to overfit, and
increases R-squared relative to the linear model, likely due
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Table 2 The R-squared statistics calculated from linear
regression and gradient boosting machine from 2011 to 2014

R-squared Linear Regression
Gradient Boosting Machine (GBM)

Training Testing Overall

2011 0.559 0.642 0.628 0.636

2012 0.576 0.657 0.646 0.652

2013 0.574 0.657 0.645 0.652

2014 0.569 0.650 0.641 0.646

to increased number of interaction terms entered in the
model.
As our goal is to use the residuals with high variance

produced by the models to identify potentially impactful
populations, therefore we compare themodels in this con-
text. Table 3 shows that the two sets of residuals obtained
from both models are highly correlated. In Fig. 4, both lin-
ear regression and GBM identify a long right tail larger
than a normal distribution. The size of the long right tail
varies depending on the model and year of data. To com-
pare the high utilizers identified from the two models, we
set a top 5% cutoff threshold and examine the overlap.
As shown in Table 4, more than 70% of the top 5% high
residuals population identified from linear regression and
GBM, respectively, overlap with each other. To summa-
rize, though GBM has a better fit than linear regression
does, both models generate highly correlated residuals
and identify similar high utilizers. Given what are arguably
marginal improvements in R-squared for a complexmodel
that would be more difficult to interpret and implement in
practice, we will present results and discussion based on
the linear regression model (the model).

Characterizing the high utilizers
In this section, we take a closer look at the high residuals
population. We first descriptively show their characteris-
tics and then study their temporal consistency.

Demographics, health conditions, and utilization
We summarize the demographics, health conditions, and
health care utilization of high utilizers (top 5% of residu-
als) and other patients for 2014 in Table 5. These results

Table 3 The Pearson correlation coefficient between residuals
obtained from linear regression model and GBMmodel
respectively from 2011 to 2014

Year Correlation Coefficient

2011 0.934

2012 0.932

2013 0.931

2014 0.933

The correlation is very high

do not vary significantly by year. In terms of demograph-
ics, the high-utilizer group has fewer female patients. Age
and race/ethnicity are similar. We use an integrated score,
Charlson Comorbidity Index [26], to represent patients’
overall chronic disease burden. The two populations vary
little on this measure, which means the categorization of
comorbidities is similar. The proportion of mental illness
and substance use patients in high utilizers is slightly less
than the rest of the population. Thus, we argue that there
are no significant differences in demographics and overall
health conditions between the high residuals population
and the rest. This is not surprising because we expect the
model to account for all these factors.
However, the levels of health care utilization in the two

groups are completely different. In general, the high uti-
lizer group has annual expenditures about three times
higher than other patients, and they consistently have
more expenditures in each service category. The only
exception is that high utilizers visit the ED less frequently
than the other patients do. But because ED visits com-
prise a small fraction of high utilizers’ overall costs, ED
expenses have less impact on the overall cost. In a later
section, our stratified models examine costs incurred in
the ED more specifically.
The findings in this section support our hypothesis that

a group of patients whose demographics and comorbidi-
ties look similar to other patients has a significantly higher
amount of unexplained health care utilization.

Temporal consistency of residuals
Next, we examine the extent to which this excessive uti-
lization persists through time. Generally, if high unex-
plained variance occurs at random from year to year, then
preventing such health care events would be extremely
challenging. Otherwise, non-random correlation from
year to year may suggest the persistence of health care-
utilization factors that might be discoverable. To exam-
ine, we compute the Pearson product-moment correlation
coefficient between the rank percentiles of residuals for
any two subsequent years from 2011 to 2014, as shown
in Table 6. Results show significant correlation between
residuals from year to year. As expected, the correlation is
strongest to the immediate subsequent year and decreases
with time. The strong, significant correlation is visually
well-represented as a dense diagonal on the scatter plot
of rank percentiles of residuals of 2013 and 2014 shown
in Fig. 5. We observe an even stronger consistency for
the high utilizers (top 5%) because the upper right area is
denser. To be specific, the high utilizers of 2011, 2012 and
2013 on average rank 72.5%, 76.3% and 77.8% respectively
in residuals percentile for the next year. In comparison,
other patients has an average rank of around 50%.
This correlation structure indicates that residuals do

not vary randomly from year to year and implies that
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Fig. 4 Q-Q plot for the linear regression model (left) and gradient boosting machine model (right) for CY2014. The residuals from both model have
long right tail larger than a normal distribution

unobserved factors drive high utilization. In conclusion,
the subpopulation corresponding to the high residuals
shows an excessive amount of utilization that is temporally
consistent.

Breakdown residuals to ICD-9-CM codes
In this section we analyze the variations in expendi-
tures in more detail, as described in “Breakdown resid-
uals” section. For the essential hypertension cohort
(defined by ICD-9-CM 401xx) and chronic kidney dis-
ease cohort (defined by ICD-9-CM 585xx), we rank the
patients by their residuals from high to low and show the
expenditures associated with each single ICD-9-CM code
in the cohorts across the residuals spectrum.

Essential hypertension
Figure 6 breaks down expenditures associated with essen-
tial hypertension and show how it varies across the
residuals spectrum. It first shows in the hypertension
cohort, patients with higher residuals in 2013 spend much

Table 4 The top 5% population with high residuals identified
from linear regression and GBM respectively overlap more than
70%

Year Top 5%, N Overlap, N Overlap, %

2011 23,228 16,794 72.3%

2012 26,512 19,119 72.1%

2013 25,730 18,483 71.8%

2014 26,771 19,345 72.3%

more on hypertension (primary diagnosis is hyperten-
sion) than other groups. This difference continues to 2014.
After breaking down the hypertension expenditures by
ICD-9-CM codes (using primary diagnosis), we find that
within the diagnosis ICD-9-CM 4019 (Unspecified essen-
tial hypertension) there is significant variation, which is
driving the variation of the overall hypertension expendi-
tures. Finally it is shown that the proportion of the two
types of hypertension ICD-9-CM codes does not change
much across the residuals spectrum. So the proportion
of patients associated with these two ICD-9-CM codes is
not the primary driving factor of the variation of over-
all hypertension expenditures. To conclude, the major
source of variation of essential hypertension expenditures
is within ICD-9-CM code 4019 (Unspecified essential
hypertension).

Chronic kidney disease
The same analysis above is conducted on the chronic kid-
ney disease cohort. The results are presented in Fig. 7. As
hypertension, high residuals groups are higher cost groups
of patients with chronic kidney disease. The variation per-
sists from 2013 to 2014. After breaking down the chronic
kidney disease expenditures by ICD-9-CM codes, we find
that ICD-9-CM 5856 (End-stage renal disease) is the main
driver of the expenditures. However, as shown in Fig. 7,
the variation within this specific diagnosis is not as large
as the variation of overall expenditures of chronic kidney
disease. It shows that the proportion of patients with end-
stage renal disease (ICD-9-CM 5856) and earlier stages
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Table 5 Comparison of demographics, health conditions and
health care utilization of high utilizers (top 5%) with other
patients, 2014

Characteristics High Utilizers (High Residuals) Other Patients

Number of Patients 26,771 508,652

Demographics

Mean age (years) 34.11 35.22

Sex

Female, % 58.49 68.47

Race

White, non-Hispanic,
%

23.22 26.44

Black, non-Hispanic,
%

19.04 21.82

Hispanic, % 40.10 37.39

American Indian or
Alaskan, %

0.18 0.19

Asian, Pacific
Islander, %

2.08 1.57

Unknown/Other, % 15.38 12.60

Disabled, % 51.45 45.32

Health Conditions

Charlson Comorbidity
Index [26]

1.66 1.61

Mental illness [9], % 41.49 48.04

Substance use [9], % 29.15 34.00

Utilization

Average total
medical expenditures,
$

19,531.87 6588.32

Average professional
expenditures† , $

4937.37 2184.88

Average institutional
expenditures‡ , $

7215.62 2450.32

Average pharmacy
expenditures, $

7338.35 1940.62

Average number of
emergency
department visits

0.47 1.03

Average number of
inpatient hospital
visits

0.38 0.20

†Professional expenditures represent paid claims generated for work performed by
physicians, suppliers, and other non-institutional providers for all medical services
‡ Institutional expenditures represent paid claims generated for work performed by
hospitals, skilled nursing facilities, and other institutions for all medical services

of renal disease (ICD9-5851 to ICD9-5855) is very dif-
ferent across the residuals spectrum. The high residuals
end contains more patients with end-stage renal disease
(ICD-9-CM 5856), and the lower end of the spectrum
has fewer of these patients. So the variation of the overall

Table 6 The Pearson correlation coefficient between the rank
percentiles of residuals for any two subsequent years from 2011
to 2014

Year/Correlation 2012 2013 2014

2011 0.396 0.326 0.287

2012 - 0.457 0.380

2013 - - 0.472

expenditures is from different mixtures of patients with
different ICD-9-CM codes of chronic kidney disease.
Overall, the results show that there are variations of

expenditures within individual ICD-9-CM codes. Differ-
ent mixtures of ICD-9-CM codes could drive variations
as well. We might be more interested in the first type of
variation because we could assume the same diagnosis
code should induce similar costs. Further medical records
review could help reveal the source of these types of
variations.

Stratified models by service settings
We have shown that the residuals indicate an unexplained
high amount of health care utilization. Next, we exam-
ine whether this utilization is associated with preventable
costs. The 3M™ PPE software [15] identifies potentially
preventable health care events in the inpatient hospi-
tal and ED settings. The software is proprietary but its
validity has been verified and widely accepted [27]. In
this section, we examine the correlation between the
3M™ PPE approach and our own residuals approach. 3M™
Potentially Preventable Readmissions (PPR) Grouping
Software identifies clinically related and potentially pre-
ventable inpatient hospital readmissions. 3M™ Potentially
Preventable Emergency Visits (PPV) Grouping Software
identifies ED visits that relate to ambulatory-sensitive
conditions and may result from lack of access to pri-
mary care. Thus, we can identify potentially preventable
utilization in two important service settings: inpatient
hospital and ED. We modify the dependent variable to
reflect expenditures incurred only in those settings and
re-run the linear regression risk adjustment model. Inde-
pendent variables are kept the same. By comparing the
PPE statistics and resulting residuals from the stratified
model, we examine our hypothesis that our approach may
show similar performance.

Residuals and Potentially Preventable Readmissions (PPR)
Table 7 presents the PPR statistics for the high utilizer
group versus other patients. High utilizers are identified
using the approach described in “Identifying the high
residuals population” section and comprise usually 3–4%
of the population. The high-utilizer group has a signifi-
cantly (Mann–Whitney U test, p < 0.05) higher amount
of PPR events and PPR expenditures than all others. The
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Fig. 5 Scatter plot of rank percentiles of residuals: 2013 and 2014. On the left is the scatter plot for overall population. We can visually recognize the
temporal correlation as the scatter points are denser on the diagonal from lower left to upper right. On the right is the scatter plot for high utilizers.
The temporal correlation for the high utilizers is even stronger than for other patients. Most patients with high residuals in 2013 (top 5%) remain in
the high residuals population in 2014 (top of the scatter plot)

difference is consistent from 2011 to 2014. This suggests
that the high residuals are associated with a substantial
amount of potentially preventable hospitalizations. The
Pearson correlation coefficients between the residuals
and PPR expenditures tell the same story. PPR expen-
ditures are log-transformed to scale with the residuals.
We compute the correlation coefficient with the residuals
obtained from the stratified model using inpatient hospi-
tal expenditures as the dependent variable, as shown in
Table 8. The correlation is always significant through the
years, suggesting a strong association between residuals
and PPRs.

Residuals and Potentially Preventable Emergency
Department Visits (PPV)
We replicate the analysis for potentially preventable ED
visits. The population is limited to patients with nonzero
ED expenditures. The dependent variable is changed
to per-member per-month ED expenditures and log-
transformed. The identified high utilizers comprise 1–2%
of the population through the years. The statistics of PPVs
of high utilizers versus other patients are presented in
Table 9. The correlation test results are shown in Table 8.
All results imply that the residuals also identify a sig-
nificant amount of preventable ED utilization. However,
comparing the level of differences in mean statistics in
Tables 7 and 9, the relationship for PPVs and residuals is
weaker compared to PPRs and residuals. This generally
makes sense because ED visits are more incidental than
inpatient hospital visits.

Residuals and future potentially preventable events
In Tables 7 and 9, we also show the PPR and PPV statistics
for the year following the year from which we compute

the residuals (index year). Although the differences in PPR
and PPV utilization amounts between high utilizers and
other patients are narrowed from the index year, the high-
utilizers group still has significantly more PPRs and PPVs,
as well as associated costs. The correlation coefficients of
the next year in Table 8 also indicate a decreased but still
sizable temporal correlation. Thus, the residuals are good
predictors for future PPRs and PPVs as well. This find-
ing is consistent with the strong temporal correlation of
residuals we present in the previous section.
To summarize, using the 3M™ PPE software, we have

demonstrated that the residuals from the models, when
stratified to inpatient hospital and ED settings, are
strongly associated with potentially preventable utiliza-
tion of the same year as well as the next year, implying
promising potential to identify impactable high utilizers.

Discussion
In this paper, we propose a novel approach to analyze
variations in Medicaid health care expenditures based on
using higher-than-expected values of the residuals from
health care utilization adjustment models. We conduct
our analyses on a large administrative claims dataset from
a state public insurance program. Our approach identifies
a significant amount of unexplained health care utiliza-
tion. We show that this variation could be within and
between ICD-9-CM codes. Also the variation exists across
the whole spectrum of health expenditures. This differs
from the Medicaid high utilizers in New York City whose
disease burdens were high and usage of all types of care
were frequent [9]. As health care practitioners focused
more on those with complicated conditions, the others
with less disease burden also represents some amount of
preventable health care utilization. We observed strong
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Fig. 6 Row 1: Overall expenditures associated with essential hypertension (ICD-9-CM 401xx) in 2013 (left) and 2014 (right) respectively by 2013
residuals rank; Row 2: Breakdown of essential hypertension expenditures by associating with each single ICD-9-CM code in 2013 (left) and 2014
(right) respectively by 2013 residuals rank; Row 3: Number of patients associated with each single essential hypertension diagnosis ICD-9-CM code
in 2013 (left) and 2014 (right) respectively by 2013 residuals rank

temporal consistency in the utilization identified by high
residuals, though in Denver, Colorado people found the
health care needs for high utilizers are intense but tem-
porary [10]. As opposed to the single provider network
examined in that study, our state-wide analysis provides a
more comprehensive and stable picture of high utilization
because we limit to the population consistently enrolled.
The utilization fraction associated with high residuals is
shown to be largely preventable as it produces results sim-
ilar to the 3M™ PPE software. Since the PPE tools are

widely used for measuring potentially preventable health
care services [7], other state Medicaid programs could
potentially use this approach to identify impactable high
utilizers and possibly reduce inappropriate health care
spending.
We specifically examined two comorbidities, essen-

tial hypertension and chronic kidney disease. In essen-
tial hypertension, a particular ICD-9-CM diagnosis code,
“4019, Unspecified essential hypertension”, exhibited sig-
nificant variation in expenditures. This may imply a
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Fig. 7 Row 1: Overall expenditures associated with chronic kidney disease (ICD-9-CM 585xx) in 2013 (left) and 2014 (right) respectively by 2013
residuals rank; Row 2: Breakdown of chronic kidney disease expenditures by associating with each single ICD-9-CM code in 2013 (left) and 2014
(right) respectively by 2013 residuals rank; Row 3: Number of patients associated with each single chronic kidney disease ICD-9-CM diagnosis code
in 2013 (left) and 2014 (right) respectively by 2013 residuals rank

more granular classification of hypertension is needed
to stratify the health care services rendered within this
diagnosis. On the other hand, patients with different
stages of chronic kidney disease drove the variations in
this diagnosis. Therefore in patient risk adjustment and
stratification, chronic kidney disease severity should be
accounted for. This will lead to more personalized and
better stratified chronic kidney disease management in
Medicaid.

This study is limited in several dimensions. First, though
our models attempt to include a large number of exoge-
nous variables in the administrative claims dataset, it is
not comprehensive. Our models cannot account for fac-
tors (e.g. genetic variations, socioeconomic status) that
are expected to be predictive of health care utilization
but difficult to collect. Other important variables that
contribute to health care expenditures, such as health con-
dition severity measures, are missing. The residuals we
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Table 7 Potentially Preventable Readmissions (PPR) statistics of
index year and next year for high utilizers versus other patients

Index year High Utilizers
(High Residuals)

Other
Patients

Average number of
PPRs in index year

2011 1.24 0.15

2012 1.12 0.20

2013 1.10 0.21

2014 0.86 0.19

Average PPR
expenditures in
index year, $

2011 7793.23 1200.63

2012 6807.52 1259.59

2013 6229.76 1237.03

2014 5241.54 1112.03

Average number of
PPRs in next year

2011 0.70 0.17

2012 0.50 0.18

2013 0.37 0.14

Average PPR
expenditures in
next year, $

2011 3698.67 1113.45

2012 2549.41 1001.92

2013 2072.29 758.82

Residuals and high utilizers are identified from index year. Per-member per-month
inpatient hospital expenditures is the dependent variable of the model

obtain from our current model are likely to be affected
by these unadjusted exogenous variables. Also, our find-
ings are specific to the Texas Medicaid program. Second,
we have not conducted case studies to follow up on
specific clinical details about the high utilizers. Such an
investigation could reveal more information about clin-
ical factors contributing to the variation. Third, though
the residuals prove to be highly associated with potentially
preventable utilization, they do not point to specific path-
ways to inform policy. We recommend stakeholders to
look into factors introducing variations into themodel like
the “unspecified essential hypertension” diagnosis with
the goal of identifying modifiable sources of variation.
Our future work will try to address these limitations.

We will gather additional data, such as social determi-
nants of health and electronic medical record notes, to
adjust as many exogenous factors as possible. We also
plan to conduct medical record reviews with clinical and
health care policy experts to identify components of care
that could be addressed to reduce preventable utilization.
More importantly, we will extend this exclusively data-
driven approach into an iterative process [28] between
health care practitioners and informatics researchers to
better understand impactable health care conditions and

Table 8 The Pearson correlation coefficient between the
residuals from the stratified model (inpatient hospital and
emergency department) with Potentially Preventable
Readmissions (PPR) expenditures and Potentially Preventable
Emergency Department Visits (PPV) expenditures respectively
from 2011 to 2014

Index Year Correlation Coefficient
with Residuals

log10(Per-member
per-month PPR
expenditures of
index year)

2011 0.2974

2012 0.2638

2013 0.2755

2014 0.2664

log10((Per-member
per-month PPV
expenditures of
index year)

2011 0.2452

2012 0.3214

2013 0.3423

2014 0.3165

log10(Per-member
per-month PPR
expenditures of
next year)

2011 0.0990

2012 0.0972

2013 0.0948

log10((Per-member
per-month PPV
expenditures of
next year)

2011 0.0908

2012 0.1051

2013 0.1121

Residuals and high utilizers are identified from index year

progress toward interventions to reduce inappropriate
health care utilization.

Conclusions
To conclude the paper, we identify best-fitting risk adjust-
ment models to account for patients’ health conditions
and demographic characteristics in the Texas Medi-
caid program using administrative claims data. We find
that populations with higher than expected expenditures
are associated with more potentially preventable events.
Deeper dive into the hypertension and chronic kidney
disease cohorts show significant variations in expendi-
tures within and across some diagnoses. Additionally,
strong temporal consistency exists among patients with
high residuals, implying possible intervention chances
to reduce health care costs for this population. Over-
all, we believe this work presents a new way to identify
impactable high utilizers in health care.
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Table 9 Potentially Preventable Emergency Department Visits
(PPV) statistics of index year and next year for high utilizers versus
other patients

Index year High Utilizers
(High
Residuals)

Other Patients

Average number of
PPVs in index year

2011 1.51 1.37

2012 3.10 1.89

2013 3.23 1.95

2014 2.99 1.88

Average PPV
expenditures in
index year, $

2011 1815.21 747.62

2012 3444.05 698.43

2013 3653.24 703.12

2014 3986.26 664.19

Average number of
PPVs in next year

2011 1.87 1.75

2012 2.46 1.71

2013 2.48 1.69

Average PPV
expenditures in
next year, $

2011 1083.07 750.32

2012 1453.91 653.90

2013 1495.37 647.75

Residuals and high utilizers are identified from index year. Per-member per-month
emergency department expenditures is the dependent variable of the model
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