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ABSTRACT

Since the advent of cetuximab, clinical cancer treatment has evolved from the 
standard, relatively nonspecific chemo- and radiotherapy with significant cytotoxic 
side effects towards immunotherapeutic approaches with selective, target-mechanism-
based effects. Antibody therapies as the most successful form of cancer immunotherapy 
led to approved treatments for specific cancer types with increased patient survival. 
Thus, the identification of tumor antigens with high immunogenicity is in central 
focus now. In this study, we applied computational methods to comprehensively 
discover overexpressed molecular targets with high therapeutic relevance for clinical, 
immunotherapeutic cancer treatment in triple-negative breast cancer (TNBC). By 
actively modeling potential negative side effects utilizing expression data of 29 
different, normal human tissues, we were able to develop a highly-specific coverage 
of TNBC patients with RNA targets. We identified here more than 400 potential tumor-
specific antigens suitable for targeted therapy, including several already identified as 
potential targets for TNBC and other solid tumors. A specific cocktail of MAGEB4, CT83, 
TLX3, ACTL8, PRDM13 achieved almost 94% patient coverage in TNBC. Overall, these 
results show that our approach can identify and prioritize TNBC targets suitable for 
targeted therapy. Therefore, our method has the potential to lead to new and more 
effective immunotherapeutic cancer treatment.

INTRODUCTION

In the last decade, immunotherapy has emerged 
as a promising approach for cancer treatment. Immuno-
therapeutic strategies against cancer include various 
approaches. These are ranging from counteracting 
inhibitory and suppressive mechanisms to stimulating 
effector mechanisms [1]. Cancer vaccination with tumor 
antigens as one therapeutic strategy leads to an increase 

of the ability of the patient’s own immune system to 
leverage an immune response against cancerous cells [2, 
3]. Additional strategies encompass adoptive transfer of ex 
vivo activated T or natural killing cells mediating tumor 
cell eradication and the use of monoclonal antibodies 
manipulating tumor-related signaling or stimulating anti-
tumor immune response to supply co-stimulatory signals 
to enhance T cell activity [4–6]. However, substantially 
increasing the effectivity of immunotherapy in clinical 
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routine, will require the use of appropriate target antigens. 
Therefore, the choice of therapeutic targets is a critical 
factor [7].

Ideally, immunotherapeutic strategies specifically 
target tumors while preserving normal tissues. Nevertheless, 
far most identified tumor antigens are, at least to some 
degree, also expressed by normal, healthy tissues leading 
to immune-related adverse events, inducing hyper-activated 
T-cell response directed against normal, healthy tissue [8]. 
Thereby, normal tissue can be differentiated into essential 
normal tissue (e.g. brain, heart and lung) and non-essential 
normal tissues. Especially for essential tissues it is crucial 
to avoid cross-reactivity with the candidate therapeutic 
molecules. Other healthy tissues or cell populations may 
be affected without increased morbidity [9]. Therefore, the 
aim of target selection strategies is to maximize the impact 
on cancerous cells while avoiding toxicities in essential and 
minimizing in non-essential normal tissues [8, 10]. Targets 
fulfilling these requirements are considered highly tumor 
specific [11, 12].

To identify the highest possible amount of suitable 
candidate target antigens and determine the optimal 
balance between sensitivity and specificity, a statistically 
solid data basis is prerequisite. Building a digital cohort 
containing as many samples as possible is beneficial for 
achieving this goal [13]. Particularly important in this 
regard is compensation of unwanted variations caused 
by technical and biological biases [14]. In the last 
decade, several strategies have been proposed to correct 
phenotypic variation within and between samples [14–
16]. Given the homogenized data, meta-analysis across 
multiple data source can result in an increased statistical 
power and a decreased bias [13].

Selection of candidate target antigens, overexpressed 
or expressed exclusively in tumor cells, usually starts 
with large-scale screening of mRNA enabled by next-
generation RNA sequencing [13, 17]. In combination with 
reference-based alignment strategy, RNA sequencing 
(RNA-seq) allows a very high level of sensitivity and 
accuracy leading to revelation of the complex landscape 
and dynamics of the human transcriptome [18]. Typically, 
the analysis of RNA-seq data starts with reads being 
mapped to the genome or transcriptome followed by 
the assembly of mapped reads into gene-level, exon-
level or transcriptome-level expression summaries and 
normalization of summarized data. As mentioned earlier, 
especially normalization has been proven to be essential 
prerequisite in the analysis of RNA-seq data enabling 
accurate comparison of expression levels between and 
within samples. Last step for identification of candidate 
targets is statistical testing of differential expression or 
absolute comparison of expression levels [19]. As the 
number of resulting candidate target antigens often is 
very high and in vitro or in vivo validation is expensive, 
prioritization is urgently needed to determine the most 
promising ones [8]. Various approaches with different 

criteria for ranking cancer antigens are used. These 
approaches include prioritizing based on analysis of 
literature and patents, molecular pathways, cellular 
location of expression, and clinical databases [20–22].

In this study, we applied a multistage process for 
identification and prioritization of candidate antigens 
for targeted therapy in triple-negative breast cancer 
(TNBC). In general, breast cancer is the most common 
cancer in women a heterogeneous disease composed 
of different subtypes [23, 24]. It is categorized in three 
basic groups depending on the expression of estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2) [23]. The 
group of TNBCs are defined by the absence of ER, PR 
and HER2 and constitute 10%-20% of all breast cancers. 
Triple-negative breast cancer patients are associated 
with a higher rate of distant recurrence and a poorer 
prognosis than other subtypes of breast cancer [25, 26]. 
Unlike other subtypes, cytotoxic chemotherapy is the 
only systematic treatment option as TNBC are currently 
lacking any molecular target [23]. Our analysis was 
based on 98 TNBC samples derived from more than 
1000 breast cancer samples by receptor status evaluation 
from immunohistochemistry (IHC) data. For in-silico 
identification of overexpressed candidate target antigens 
in TNBC, cancer gene expression was compared to gene 
expression in 300 normal samples from 29 different 
tissues. To systematically identify tumor-specific 
antigens we developed a multi-stage process generating 
a candidate target pool for various immunotherapeutic 
strategies such as vaccination, antibody therapy 
and adoptive T-cell therapy. Thereby, we prioritized 
candidate target antigens by combining two key factors 
for indicating a promising target: specificity and number 
of patients with antigen-positive cancers.

RESULTS

Our aim was to create a computational strategy 
for systematic identification and prioritization of tumor-
specific antigens (TSAs) for targeted therapy. Therefore, 
we developed a multistage process schematized in Figure 
1. In brief, based on the gene expression matrix including 
normalized expression values for cancer and normal tissue 
samples, we filtered all protein-coding, overexpressed 
genes using the gene type information from the Ensembl 
genome browser in the first step. Next, we identified 
genes with zero or near-zero expression in “essential” 
normal tissues, i.e. brain, heart and lung. It is common 
knowledge that damage to these tissues is life threatening 
and thus, avoidance of adverse events in these tissues is 
a fundamental requirement for potential targets. For this 
goal we classified the expression of all genes of all tissues 
into highly-expressed, low-expressed or non-expressed, 
depending on a quantitative mRNA expression threshold 
determined through multiparametric optimization (see 
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Materials and Methods). Here, we conceptually define a 
predicted potential adverse events (PPAE) as an abstract 
computational concept of an antigen being low or highly 
expressed in any normal tissue. For obtaining suitable, 
cancer-specific antigens, we then limited the number 
of PPAE to a maximum of six. We then prioritized the 
resulting pool of potential cancer-specific antigens 
based on our digital target prioritization factor (DTPF) 
calculation as described in Material and Methods section.

Target identification and prioritization

To select candidate TSAs in the first step, we 
performed gene expression analysis in triple-negative 
breast cancer samples versus 29 of normal organs and 
tissues. By filtering genes with high expression in at least 
one tumor sample, non-expressed in “essential” normal 
tissues, i.e. brain, heart and lung, and a maximum number 
of six PPAEs (low or high expression) in “non-essential” 
normal tissues, we identified 480 candidate TSAs, suitable 
for targeted therapy. Figure 2 shows the distribution 
of those 480 TSAs over different numbers of predicted 
potential adverse events (PPAE). With a total number of 
143 and 103, most of the candidate TSAs have one or 

two PPAEs, respectively. For both of these two values of 
adverse events, 27 candidate TSAs are potentially suitable 
for an antibody therapy, as the genes are classified as 
transmembrane with a possible extracellular epitope.

Although, the displayed distribution of candidate 
antigens over the predicted potential adverse events and 
classes of targets types gives a good overview of the 
identified targets, it does not already lead to a prioritization 
of antigens. Firstly, the “clinical importance” of different 
tissues has to be taken into account. Depending on the 
individual tissue or organ affected, an adverse event could 
have less or more serious implications. Secondly, the 
relative coverage of a cancer entity by a candidate TSA 
plays a key role as an ideal target should address as many 
cancer patients as possible. In order to take both aspects 
into consideration for target prioritization, we introduced 
two indices: a predicted potential adverse events (PPAE) 
index (IPPAE) and a tumor sample coverage ratio (TSCR) 
index (ITSCR).

For prioritization of identified candidate TSAs, 
PPAE index (IPPAE) as well as TSCR index (ITSCR) were 
calculated as described in the Materials and Methods 
section. Figure 3 shows the scatter graph to rank the 
identified cancer-specific antigens based on determined 

Figure 1: Overview of our approach for tumor-specific antigen selection and prioritization.
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ITSCR (x-axis) and 1 - IPPAE (y-axis). The spatial positions in 
the scatter graph was used to roughly classify a candidate 
TSA into one of three classes: high priority, low priority, 
and no priority. Exploratory thresholds for classification 
were set to 0.5 and 0.25 for 1 - IPPAE and ITSCR, respectively. 
An ideal target for immunotherapy has as less adverse 
events as possible and can, at the same time, addresses 
as many patients as possible. Therefore, a TSA was 
considered as high priority if the 1 - IPPAE was higher than 
the defined threshold of 0.5 and ITSCR was higher than the 
defined threshold of 0.25. If the 1 - IPPAE was higher than 
0.5, but ITSCR was less than 0.25 a candidate TSA was 
considered as low priority. Accordingly, a TSA with a 1 - 
IPPAE less or equal than the threshold of 0.5 and either less 
or equal than or greater than the ITSCR threshold 0.25 was 
classified as candidate TSA with no priority. Considering 
these boundaries for classification, 23 candidate TSAs are 
classified as targets with high priority, 408 TSAs as targets 
with low priority and the remaining 49 as targets with no 
priority. Given these numbers, most of the identified TSAs 
were classified as low priority.

Based on the definition of an ideal, high priority 
target – avoidance of adverse events in normal tissues 
and organs and high coverage of cancer patients – Figure 
3 shows 23 candidate TSAs according to that definition. 
Furthermore, 6 of these 23 TSAs are expressed in more 
than 50% of the examined samples, 3 of them even with 
1 - IPPAE greater than 0.7. Additionally, 2 other potentials 
cancer-specific antigens classified as high priority targets 
have a smaller proportion of addressable patients (~30%) 
but have a 1 - IPPAE of 1.0.

The 408 potential TSAs classified as low 
priority targets are likely not the very first choice for 
immunotherapy as they are covering a smaller proportion 
of breast cancer patients but are nevertheless suitable 
as targets. Especially considered in rather personalized 
immunotherapy these TSAs can act as candidate targets as 
they still have a low PPAE index.

Only 49 of the total amount of 480 identified TSAs 
do not get any priority as they violate both criteria of an 
ideal target. Although these genes are not present in the 
essential tissues brain, heart and lung, the probability of 
potential adverse events is too high. For safety reasons, 
the 49 identified TSAs were therefore excluded for further 
analyses.

Depending on chosen thresholds, the number of 
TSAs with high, low, or no priority are varying. In order 
to avoid such a strict categorization, we introduced a 
new qualitative score. By combining IPPAE and ITSCR, we 
developed the digital target prioritization factor (DTPF), 
allowing a fixed order of identified TSAs.

For the 480 potential TSAs identified in the first 
step, genes were ordered according to digital target 
prioritization factor (DTPF). The prioritized top-15 
protein-coding TSAs are listed in Table 1. Each gene is 
listed along with the average expression value in tumor 
samples, the number of TNBC samples in which the gene 
is highly expressed (coverage), the number of PPAEs 
and the DTPF. The calculated DTPF ranges from 1.499 
for tumor-specific antigen CT83 (ranked 1st) to 1.153 for 
DMRT1 (ranked 15th). The coverage for the top-15 TSAs 
range from 17 TNBC samples for C4orf51 (ranked 13th) 

Figure 2: Distribution of tumor-specific antigens (TSAs, y-axis) of predicted potential adverse events (PPAEs, x-axis) 
and classes of target types.
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Figure 3: Prioritization matrix for identified tumor-specific antigens (TSA). Exploratory categorization of tumor-specific 
antigens into high, low and no priority targets based on tumor sample coverage rate index ITSCR (TSCR, x-axis) and 1 - predicted potential 
adverse events index IPPAE (1 - PPAE, y-axis).

Table 1: Top 15 tumor-specific antigens (TSA) prioritized by digital target prioritization factor (DTPF)

Gene Avg. Expression TSCR PPAE DTPF

1 CT83 561 0.66 2 1.499

2 ACTL8 2168 0.57 2 1.440

3 MAGEB4 86 0.32 1 1.316

4 TLX3 88 0.32 0 1.316

5 PRDM13 71 0.30 1 1.296

6 OBP2B 732 0.63 5 1.272

7 CLPSL1 277 0.65 5 1.260

8 C6orf15 787 0.52 2 1.258

9 DMBX1 94 0.31 2 1.224

10 MIA 256 0.64 4 1.200

11 ERVV-2 61 0.29 1 1.187

12 C4orf51 44 0.17 1 1.173

13 MAGEA6 981 0.30 2 1.165

14 DMRT1 53 0.23 2 1.153

15 OR2B6 63 0.31 2 1.142
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up to 65 TNBC samples for CT83 (ranked 1st). The highest 
average expression values, calculated across all cancer 
samples, have candidate tumor-specific antigens ACTL8 
(ranked 2nd), MAGEA6 (ranked 14th) and C6orf15 (ranked 
8th) with a normalized count expression of 2167.8, 981.4 
and 787.0 respectively. Most of the top-15 identified 
TSAs have two PPAEs (7 targets), including the top-2 
ranked genes CT83 and ACTL8 in the list. Five of the 
top-15 candidate TSAs have even less than two PPAEs 
(MAGEB4, TLX3, PRDM13, ERVV-2, and C4orf51). 
Only three of the top-15 list have more than three PPAEs 
(OBP2B (5), CLPSL1 (5), and MIA (4)).

Based on the ranked list of tumor-specific antigens, 
we performed further characterization of top targets by 
evaluating expression profiles. Especially potentially 
appearing adverse events based on the number of PPAE 
were further investigated.

Beside the importance of tumor sample coverage 
rates for single tumor-specific antigens, collective 
coverage of tumor-specific antigen combinations 
was of great interest for us. Analyzing the coverage 
for combinations of tumor-specific antigen allows to 
ascertain the number of tumor patients benefitting from 
a combinatorial immunotherapy comprising multiple 
therapeutic molecules. Therefore, we investigated the 
collective coverage of top 5 ranked tumor-specific 
antigens. Figure 4A shows the multi-coverage of tumor 
samples by the top 5 ranked tumor-specific antigens. Out 
of 98 tumor samples, 24 samples (~24.5%) are covered by 

one, 30 samples (~30.6%) are covered by two, 27 samples 
(~27.6%) are covered by three, 8 samples (~8.2%) are 
covered by four, and 3 samples (~3.1%) are covered by 
all five of the top 5 ranked TSAs. Only 6 out of the 98 
analyzed tumor samples are not covered by the top 5 
ranked TSAs. Therefore, the total coverage for the top 5 
ranked TSAs is 93.9%.

Figure 4B depicts the tumor sample coverage of 
all possible combinations of top 5 ranked tumor-specific 
antigens. CT83 (ranked 1st) already covers 65 out of 98 
tumor samples (~66.3%). In combination with ACTL8 
(ranked 2nd), the collective coverage is increased to 83 out 
of 98 tumor samples (84.7%). Adding MAGEB4 (ranked 
3rd) as third therapeutic molecule increases the collective 
coverage to 87.8%.

Based on the ranked list of tumor-specific antigens 
and the analysis of collective coverage, we performed 
further characterization of top targets by evaluating 
expression profiles. Especially potentially appearing 
adverse events based on the number of PPAE were further 
investigated.

Top target characterization

Expression values of the top-3 TSAs in each normal 
tissue sample and triple-negative breast cancer sample 
are shown in Figure 5. The expression of tumor-specific 
antigens in TNBC samples is very high compared to 
the expression in almost all normal tissue samples. The 

Figure 4: Collective tumor sample coverage for the identified top 5 tumor-specific antigens (TSAs). (A) Multi-coverage of 
tumor samples by identified top 5 tumor-specific antigens. (B) Venn-Diagram showing the possible number of tumor samples covered by a 
single tumor-specific antigen or by a combination of the identified top 5 tumor-specific antigens.
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expression profile of CT83 (Figure 5A) shows high 
average expression values for two normal tissues – salivary 
gland (62.4) and testis (988.8) and an average expression 
in TNBC samples of around 561 counts. Tumor-specific 
antigen ACTL8 (Figure 5B) shows high average 
expression values in testis (848.1) and low expression in 
colon (20.2). The average expression in triple-negative 
breast cancer samples with a value of around 2168 counts 
is the highest average value of all top-15 candidate TSAs. 
The 3rd ranked antigen MAGEB4 (Figure 5C) has only one 

PPAE in testis tissue with an average expression (1252.1). 
The normalized average expression in the TNBC samples 
for MAGEB4 is around 86 counts.

Given that triple-negative breast cancer patients are 
female, we here neglected the predicted potential adverse 
events in testis tissue. Regarding the top-3 tumor-specific 
antigens, remaining PPAEs are salivary gland for targeting 
CT83 and colon for targeting ACTL8.

After identifying and characterizing the ranked list 
of TSAs, we further investigated applicability of top TSAs 

Figure 5: Cancer and normal tissue expression profile of the top-3 tumor-specific antigens (TSA) identified for TNBC 
samples. (A) CT83 (ranked 1st). (B) ACTL8 (ranked 2nd). (C) MAGEB4 (ranked 3rd).
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for vaccination and adoptive T-cell therapies. Therefore, 
we determined 9-mer peptides originating from identified 
TSAs most likely forming peptide-HLA complexes.

Based on the analysis of mRNA expression, we 
furthermore investigated whether the normal tissue 
expression profiles also apply on protein level. The protein 
expression values of the top-3 TSAs in normal tissues are 
shown in Figure 6. The protein expression profile of CT83 
(Figure 6A) confirms the analysis of mRNA expression 
for testis – expression value 5.1 ppm. For salivary gland, 
in contrast, no expression on protein level is specified. 
Protein expression profile for ACTL8 (Figure 6B) shows – 
in accordance with mRNA expression analysis – a protein 
expression value in testis (7.2 ppm). In contrast to mRNA 
expression, ACTL8 is additionally low expressed in heart 
(0.1 ppm) and moderately expressed in female gonad (3.8 
ppm). For the 3rd ranked antigen MAGEB4 (Figure 6C) 
the mRNA expression in testis is also specified on protein 
expression level (6.8 ppm). Additionally, MAGEB4 is – 
in contrast to mRNA expression – also expressed in liver 

(0.5 ppm), heart (7.2 ppm) and female gonad (2.3 ppm) 
on protein level.

The top-15 TSAs that in complex with 
HLA-A*02:01 allele form the top-40 cancer-specific 
9-mer peptide-HLA targets in context of affinity (IC50) 
are listed in Table 2. Each peptide is listed along with the 
gene from which the peptide was identified, the predicted 
binding affinity and the classification of peptides in strong 
and weak binders, derived from the predicted binding 
affinity. 38 of the top-40 peptides have an IC50 values 
of less than 50nM and are therefore classified as strong 
binders, indicating that peptide and HLA molecule are 
binding very tightly together. The IC50 values of top-
11 peptides in the list are even smaller than 10nM. The 
strongest binding affinity we determined was given at 
peptides KMLEILFEL (ATCL8, 2.18 nM), LLAWAISPV 
(MIA, 3.95 nM), and ALPSLNWFV (ERVV-2, 4.43 nM). 
For the candidate gene ERVV-2, the highest number 
within the top-40 of possible 9mer peptides binding with 
high affinity to HLA-A*02:01 was identified. In total 10 

Figure 6: Normal tissue protein expression profiles of the top-3 tumor-specific antigens (TSA) identified for TNBC 
samples. (A) CT83 (ranked 1st). (B) ACTL8 (ranked 2nd). (C) MAGEB4 (ranked 3rd).
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Table 2: Top-40 potential peptide-HLA complexes for top-15 candidate TSAs binding to HLA-A*02

Gene Peptide IC50 (nM) Strong/weak binders

1 ACTL8 KMLEILFEL 2.18 strong binder

2 MIA LLAWAISPV 3.95 strong binder

3 ERVV-2 ALPSLNWFV 4.43 strong binder

4 MAGEB4 KVLEFLAKV 6.26 strong binder

5 ERVV-2 FLFLYLSLL 6.64 strong binder

6 CLPSL1 LLFFFLFLL 8.2 strong binder

7 DMBX1 RLADIILEA 8.34 strong binder

8 ERVV-2 YLSLLPMPL 8.94 strong binder

9 DMRT1 SLFPYYNNL 9.04 strong binder

10 C6orf15 GLFARSIGV 9.14 strong binder

11 CLPSL1 FLLFFFLFL 9.29 strong binder

12 ERVV-2 SLNWFVPLL 10.3 strong binder

13 MAGEB4 LLMPLLSVI 10.69 strong binder

14 DMRT1 MVIQDIPAV 12.04 strong binder

15 CT83 KLVELEHTL 12.24 strong binder

16 CLPSL1 LLFLLFFFL 14.63 strong binder

17 MIA YMAPDCRFL 14.71 strong binder

18 C6orf15 ALPEELSYL 14.79 strong binder

19 CLPSL1 MMLPQWLLL 17.12 strong binder

20 CLPSL1 MLPQWLLLL 17.88 strong binder

21 ERVV-2 YLLAEQGGV 18.37 strong binder

22 MAGEB4 GLLMPLLSV 20.03 strong binder

23 ERVV-2 FLYLSLLPM 20.03 strong binder

24 C6orf15 YLSSAAALA 20.58 strong binder

25 MAGEA6 YIFATCLGL 20.58 strong binder

26 ERVV-2 YILVRNFSL 25.27 strong binder

27 DMBX1 YLGVNMAPL 25.69 strong binder

28 PRDM13 KLYSRKYGL 28.01 strong binder

29 ERVV-2 SLANSAHQV 28.78 strong binder

30 DMBX1 GLAPASATL 32.24 strong binder

31 ERVV-2 KITYSTPPV 32.41 strong binder

32 CT83 ILNNFPHSI 32.94 strong binder

33 MAGEA6 FLWGPRALI 36.31 strong binder

34 CT83 YLLLASSIL 38.12 strong binder
(continued)
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potential peptides for ERVV-2 were predicted. For the 
top-3 candidate targets CT83, ACTL8, and MAGEB4 
described in previous sections, 4, 1 and 3 potential 9mer 
peptides within the top-40 peptides have been predicted.

DISCUSSION

In this paper, we have presented a unique approach 
for selecting and prioritizing tumor-specific antigens 
serving as potential targets in immunotherapeutic 
strategies. The strength of our strategy is the parameterized 
identification and prioritization of candidate targets 
adaptable to different requirements and resulting in a pool 
of tumor-specific antigens usable for various kinds of 
targeted immunotherapy. After a comprehensive analysis 
of 98 triple-negative breast cancer samples together 
with 345 normal tissue samples from 29 different tissue 
types, we were able to identify more than 400 candidate 
targets. All identified candidate targets had zero or near 
zero expression (non-expression category) in defined 
“essential” normal tissues brain, heart and lung and had 
less than six predicted potential adverse events in defined 
“non-essential” normal tissues. Due to our introduced 
digital target prioritization factor, we were able to rank 
the identified candidate targets and to focus further 
investigations on the most promising ones. The top ranked 
candidate targets were characterized by both, minimal 
effect on normal tissues, as well as maximal number of 
patients potentially benefitting of an immunotherapy. 
Further evaluation of top ranked candidates showed that 
38 cancer-specific 9mer peptide-HLA complexes are 
predicted to bind very tightly together and are therefore 
promising targets for either tumor vaccination or adoptive 
T-cell transfer.

Of the identified, cancer-specific antigens in 
our list, the cancer/testis antigen 83 (CT83) had the 
most interesting profiles with high expression in more 
than 65% of triple-negative tumor samples and lower 
expression in almost all normal tissues examined. To our 
knowledge, CT83 is absent from current immunotherapy 
development, but has already been identified as a 
potential target in triple-negative breast cancer [27] and 

lung adenocarcinoma [28]. Like CT83, also Actin like 
8 (ACTL8) is already described as a potential target in 
breast cancer [29, 30] and is, to our knowledge, absent 
from current immunotherapy development as well. 
ACTL8 is highly expressed in 57% of the analyzed triple-
negative breast cancer samples and potential side effects 
on an immunotherapy is only predicted for colon with a 
very low expression level.

The expression of MAGEB4 reported by PaxDB 
contradicts the negative RNA expression as reported 
by the Human Protein Atlas (HPA) [31], the GTEx [32] 
and FANTOM5 dataset [33] and the protein expression 
as reported by HPA. MAGEB4 is a well-known Cancer 
Testis Antigen (CTA) [34]. Its absence of expression in 
heart is also in line with the proposed functional role of 
MAGE proteins in developmental processes and tumor 
emergence [35]. This renders the specific result in heart 
tissue from PaxDB a potential false positive unless further 
evidence is shown.

Although the approach described here is focused on 
triple-negative breast cancer, with some modifications it 
can be used for different cancer types. As it is designed as 
parameterizable framework, adaptions on the expression 
level of “essential” tissues, the number of predicted 
potential adverse events (PPAEs) or the tissue weights for 
the digital target prioritization factor (DTPF) can easily 
be applied.

We are aware that our strategy, in line of the 
proposed thinking, can further be refined, e.g. towards 
the potential cross-reactivity of peptides. A peptide 
that has 5 to 8 identical amino acids can potentially 
lead to off-target effects as it might have a peptide 
that is similar to the identified target. Therefore, it is 
important to not only investigate whether a tumor-
specific antigen is specifically expressed in cancer 
cells and not in normal tissues. Furthermore, also a 
peptide-HLA complex has to meet these conditions. 
Future work could address this issue by identification 
of similar peptides in the human proteome and 
calculation of degree of similarity for each of the 
peptides in the potential cancer-specific complexes 
as described in [36]. Second, we here only studied to 

Gene Peptide IC50 (nM) Strong/weak binders

35 C4orf51 ILLPFSPLT 42.94 strong binder

36 MAGEA6 KIWEELSVL 45.09 strong binder

37 PRDM13 GLLKYPESI 46.57 strong binder

38 ERVV-2 NLYTCINNI 49.16 strong binder

39 DMBX1 HMAATNNLV 52.74 weak binder

40 CT83 LLASSILCA 53.9 weak binder
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9-mer peptides and HLA-A*02:01. This could further 
also be expanded e.g. to variable length of peptides 
and different HLA alleles for peptide-HLA complex 
prediction. Interesting would also be the prediction of 
epitope length for transmembrane candidate targets. 
Another refinement could also address a more detailed 
automatic characterization of the extracellular domain 
of the transmembrane proteins identified.

As a disclaimer, it needs to be emphasized that the 
identified candidate targets are based purely on in-silico 
work and therefore require experimental validation which 
is beyond the scope of this paper. Given the limitations 
described above, a subset of the targets may not be valid.

MATERIALS AND METHODS

RNA-seq data collection and gene expression 
calculation

Raw RNA sequencing data was obtained from the 
TCGA (The Cancer Genome Atlas) (TCGA-BRCA, 
TCGA-PRAD, TCGA-LUAD) and the ArrayExpress 
(E-MTAB-1733, E-MTAB-513) [37]. The data 
corresponded to 443 samples in total. 98 of 443 samples 

were triple-negative breast cancer samples from TCGA-
BRCA identified by TCGA Barcode and corresponding 
clinical data about receptor status of ER, PR and HER2. In 
case of equivocal HER2 receptor status results of FISH test 
were considered. 345 of 443 samples were normal, tumor-
free samples from 29 different tissue types (adipose tissue, 
adrenal gland, appendix, bladder, bone marrow, brain, 
breast, colon, duodenum, endometrium, esophagus, heart, 
kidney, leukocyte, liver, lung, lymph node, ovary, pancreas, 
placenta, prostate, salivary gland, skeletal muscle, skin, 
small intestine, spleen, stomach, testis, thyroid gland). 
To exclude any potential discrepancy, a common data 
processing pipeline was used. Therefore, alignment of the 
raw data against human reference genome GRCh38 from 
Genome Reference Consortium (GRC) was performed 
using STAR version 2.4.0e [38]. The reads mapped to each 
gene were enumerated using HT-Seq count version 0.6.1 
[39]. GENCODE v21 [40] was used for gene annotation. 
Data analysis on the expression values provided by 
HTSeq count was performed using R version 3.3.3 [41] 
and Bioconductor version 3.4 [42]. For data normalization 
the R package DESeq version 1.26.0 [43] was used. 
Afterwards, normalized count expression data was stored 
in a MySQL database and enriched with gene type and 

Table 3: Tissue weight values for predicted potential adverse event index (IPPAE)

Weight Tissue types Clinical relevance

1

Bone marrow
Kidney
Liver

Leukocytes

Immediately life threating

0.8

Colon
Duodenum
Esophagus
Stomach

Adipose tissue
Small intestine

Pancreas

Life threating

0.5

Adrenal gland
Bladder

Skin
Thyroid

Salivary gland
Skeletal muscle
Lymph nodes

Not immediately life threating

0.3

Appendix
Gall bladder

Endometrium
Breast
Ovary
Spleen

Placenta

Not life threating

0 Testis
Prostate No affect
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subcellular localization information from Ensemble [44]. 
In preparation for target identification, the average count 
value of each gene per normal tissue type was derived.

Target identification

Identification of the largest possible tumor-specific 
antigen pool was performed by maximization of three 
targets: absolute number of TSAs, average number of 
TSAs per sample, and average number of samples per 
TSAs. Key determinants for target maximization were 
tumor expression (read counts), expression in “essential” 
normal tissues (read counts), i.e. brain, heart and lung, 
and number of predicted potential adverse events (PPAE) 
in “non-essential” normal tissues (definition above). 
Maximization of the three target figures was done using 
multiparametric optimization based on gradient ascent. 
For this we defined a potential parameter field. In this 
field we assumed PPAEs for a tumor-specific antigen and 
normal tissue to have the average gene expression for that 
antigen of bigger than 10 read counts in the respective 
normal tissue type. The examined value range for tumor 
expression was between 10 and 100 read counts. For 
“essential” normal tissue expression was studied between 
5 and 20 read counts, and for the number of predicted 
potential adverse events “non-essential” normal tissues 
a range between 0 and 8 was studied. Multiparametric 
optimization then showed that potential targets were 
those with more than 50 read counts in at least one TNBC 
sample, less than on average 10 read counts in “essential” 
tissues (brain, heart and lung) and less than six predicted 
potential adverse events in “non-essential” normal tissues.

Target prioritization

For prioritizing the identified tumor-specific 
antigens, two quantitative indices were calculated and 
combined into the digital target prioritization factor 
(DTPF): predicted potential adverse event index (IPPAE) 
and tumor sample coverage ratio index (ITSCR). Inspired 
by the Sequential Organ Failure Assessment (SOFA) score 
used to evaluate the condition of patients in Intensive 
Care Units (ICU), the introduced PPAE index (IPPAE) 
included weighting tissues for quantitatively reflecting a 
generalized clinical importance of different tissue types 
within the human body. For each tumor-specific antigen 
a, the predicted potential adverse event index IPPAE(a) was 
calculated as follows:

∑
∑
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where t is the tissue index in the given amount of T 
tissue types. e(a,t) is the expression indicator for an identified 
tumor-specific antigen a in normal tissue type t, whereby 

e(a,t) ϵ {0,0.5,1}. Based on the results in multi-parametric 
optimization buckets for the expression indicator were 
defined as follows: None expression (0) is defined as a tumor-
specific antigen a that has less or equal than 10 read counts 
in normal tissue type t, low expression (0.5) is defined as a 
tumor-specific antigen a that has more than 10 read counts 
but less or equal than 50 read counts in normal tissue type t, 
and high expression (1) is defined as a tumor-specific antigen 
a that has more than 50 read counts in tumor type t. w(t) is 
the weight for tissue type t. The tissue weight values, ranging 
between 0 and 1, are shown in Table 3.

The tumor sample coverage ratio index ITSCR for a 
tumor-specific antigen a is calculated as:

∑)( = =I a
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where s is the sample index in the given amount of 
M triple-negative breast cancer samples. Furthermore, 
t(a,s) is the target indicator for an identified tumor-
specific antigen a in tumor sample s. The value of t(a,s) is 
0 if the expression is less or equal than the defined tumor 
threshold of 50 counts and 1 if the expression is higher.

The digital target prioritization factor DTPF(a) for 
an identified tumor-specific antigen combined IPPAE and 
ITSCR as follows:

)() )( (= − +DTPF a I a I a1  ( )PPAE TSCR

Protein expression levels

Protein expression values for top ranked tumor-
specific antigens were obtained from PaxDB [45]. PaxDB 
is a comprehensive absolute protein abundance database, 
providing integrated datasets, which aggregate and average 
protein expressions over the various samples, conditions 
and cell-types resulting in high coverage and data quality. 
All protein abundances are given in ppm, which is short 
for parts per million. After identification of tumor-specific 
antigens with highest DTPF, protein expression data for the 
top-3 ranked TSAs were selected and downloaded as.tsv file 
from PaxDB. Afterwards, the downloaded file was filtered 
only for integrated datasets, resulting in average protein 
expression values for 20 different normal tissues (brain, 
colon, esophagus, female gonad, gall bladder, heart, kidney, 
liver, lung, pancreas, placenta, plasma, platelet, prostate 
gland, rectum, saliva, skin, testis, urine, uterus).

Detection of potential peptide-HLA complexes

For tumor-specific antigens with high DTPF, 
potential peptide-HLA complexes are identified using 
NetMHCCons webserver 1.1 [46]. NetMHCcons uses 
an artificial neural network-based (ANN) allele-specific 
method to predict binding of peptides to any known 



Oncotarget2527www.oncotarget.com

MHC class I molecule. For a given peptide sequence and 
an allele name the program predicts the IC50 affinity. 
In general, the predicted binding affinity estimates how 
tightly the peptide and the HLA molecule bind to each 
other. IC50 is defined as a dose of peptides that displaces 
50% of a competitive ligand. A peptide is considered 
a strong binder to a HLA allele, if the IC50 value is 
smaller than 50 nanomolar (nM) and a weak binder if the 
IC50 value is smaller than 500 nanomolar (nM). As the 
HLA-A*02 genes are those with highest allelic frequency 
in European Caucasian population [47], we here evaluated 
peptides of identified tumor-specific antigens for binding 
affinity against this allele.

CONCLUSIONS

Preserving healthy tissue while specifically 
targeting cancerous cells is a primary objective of cancer 
immunotherapy. Therefore, a key feature of an “ideal” 
target is a highest possible expression in cancer cells 
and no or very low expression in all normal tissue types. 
Following this fundamental requirement, our multi-stage 
process provides a unique approach to select and prioritize 
tumor-specific antigens serving as a candidate target pool 
for various immunotherapeutic strategies. We applied our 
strategy to triple-negative breast cancer (TNBC) where 
patients have a generally poorer prognosis as targeted 
therapies are currently unavailable. A first in-silico 
evaluation of prioritized target pool revealed our strategy 
as a promising starting point which will hopefully lead 
to develop better immunotherapies with minimal adverse 
side effects for also all other cancer types.
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