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Abstract

A labeled gene tree topology that disagrees with a labeled species tree topology is said to be anomalous if it is more
probable under a coalescent model for gene lineage evolution than the labeled gene tree topology that matches the
species tree. It has previously been shown that as a consequence of short internal branches of the species tree, for every
labeled species tree topology with five or more taxa, and for asymmetric four-taxon species tree topologies, an assignment
of species tree branch lengths can be made which gives rise to anomalous gene trees (AGTs). Here, | offer an alternative
characterization of this result—a labeled species tree topology produces AGTs if and only if it contains two consecutive
internal branches in an ancestor-descendant relationship—and | provide a proof that follows from the change in
perspective. The reformulation and alternative proof of the existence result for AGTs provide the insight that it is not
merely short internal branches that generate AGTs, but instead, short internal branches that are arranged consecutively.
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For a labeled binary rooted species tree on n species, with one
gene lineage sampled per species, an AGT is a labeled gene
tree topology whose probability under the multispecies coa-
lescent model exceeds the probability of the matching gene
tree topology (Degnan and Rosenberg 2006). Denoting a la-
beled species tree with topology v and branch lengths X by
o = (Y, A), denoting a random labeled gene tree topology
produced under the model by G, and denoting probability
under the model by P,, a labeled gene tree topology g is
anomalous for & if

Ps[G = g] > Po[G = ¥]. (M

A labeled species tree topology ¥ is said to produce anomalies
if there exist g and X such that g is anomalous for o = (, 1).
The set of values of A for which i produces anomalies is the
anomaly zone for .

AGTs represent a surprising feature of gene tree probability
distributions useful for studying the behavior of species tree
inference. They contribute to the challenge of inferring species
trees from gene trees, as they illuminate the possibility of
statistical inconsistency for inference algorithms. Further,
the number of AGTs and the complexity of AGT phenomena
for a given species tree provide intuition regarding the diffi-
culty of inferring the species tree topology (Degnan and
Rosenberg 2006; Rosenberg and Tao 2008; Degnan 2013b).
The mathematics of AGTs can assist in understanding gene-
alogical evolution more generally; because AGTs represent
peculiar consequences of the descent of genetic lineages on
a species tree, the study of AGTs can facilitate assessments of
ways in which evolutionary processes give rise to complex
patterns in gene tree distributions.

Degnan and Rosenberg (2006) characterized the set of
species tree topologies that produce anomalies, showing

that every four-taxon asymmetric species tree topology and
every species tree topology with five or more taxa produces
anomalies, and that three-taxon gene tree topologies and
four-taxon symmetric gene tree topologies do not produce
anomalies. The proof relied on the use of n-maximally prob-
able labeled topologies, the set of n-taxon topologies whose
probabilities under the Yule model of random branching
(Harding 1971) equal or exceed those of all other n-taxon
topologies. For n=3 and n=4, the proof involved a direct
calculation. For n > 5, we first obtained the AGT existence
result for species tree topologies that are not n-maximally
probable, a class that includes most n-taxon topologies. We
then showed that for n =5, 6, 7, and 8, the n-maximally prob-
able species tree topologies also produce anomalies. Finally,
for n-maximally probable species tree topologies with n > 9,
we provided a construction that identifies a subtree whose
branch lengths can be chosen such that the subtree, and in
turn the full species tree, produces anomalies (fig. 1). The
construction relied on the fact that a binary tree with
n > 9 taxa must have a subtree of 5, 6, 7, or 8 taxa.

Although our earlier proof fully characterizes which species
tree topologies produce anomalies, its division of topologies
by whether or not they are n-maximally probable somewhat
artificially generates two distinct scenarios for production of
AGTs. For species tree topologies that are not n-maximally
probable, all branches are made short, so that most coales-
cences occur above the root. For n-maximally probable
species tree topologies, however, particular branches are
made short and others are made long, so that only certain
coalescences occur above the root.

Here | provide a simpler statement and proof of the AGT
existence theorem, relying on a unifying criterion that can
more easily enable diagnosis of situations likely to produce
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Fic. 1. Schematic of the proof of Degnan and Rosenberg (2006) for
n > 9 taxa. Consider n > 9 taxa, with one gene lineage sampled per
taxon. To show that a species tree topology with n taxa has AGTs, first, a
subtree with 5, 6, 7, or 8 taxa is identified (this choice of subtree repre-
sents a minor modification from the original use of the strong induction
principle in choosing the subtree). Branch lengths are chosen so that
AGTs occur for the subtree. Outside the subtree, branches are chosen to
be long, so that each gene tree coalescence is likely to occur on the first
allowable branch. In the figure, the subtree (((A, B), C), (D, E)) shown in
color produces AGTs. Gene lineages from taxa D and E are likely to
coalesce on the long red branch, generating gene lineage (D, E);
however, coalescences are unlikely on the short yellow branches. The
green branches indicate locations where no coalescences can occur.
Gene lineages A, B, G, and (D, E) are likely to coalesce above the root
of the subtree. Because coalescence of four lineages in a population is
more likely to generate a specific symmetric labeled topology than a
specific asymmetric labeled topology, these coalescences are more likely
to generate a specific symmetric subtree for the four lineages—
((A,B), (G, (D, E))), (A, O), (B,(D,E))), or ((B,0), (A, (D, E)))—than
they are to generate the matching subtree (((A, B), C), (D, E)).

AGTs. The approach focuses on pairs of consecutive short
branches. Define the depth of a tree as the maximum over
leaves of the number of branches separating the leaf from the
root. The depth is a topological property, evaluating the
length of the longest path from a leaf to the root by counting
the edges on the path.

Theorem 1
A labeled species tree topology produces anomalies if and
only if its depth is at least 3.

The characterization in Theorem 1 of species tree topolo-
gies that produce anomalies is equivalent to the correspond-
ing characterization in Degnan and Rosenberg (2006), but as
we will see, its emphasis on the tree depth highlights the
importance of consecutive pairs of internal branches. Before
proving the theorem, | recall some notation and some four-
taxon results from Degnan and Rosenberg (2006). Species tree
branch lengths are measured in units of coalescent time,
where one time unit, in the simplest case of a constant pop-
ulation size of N allelic copies, represents N generations.
Consider a four-taxon species tree with topology
(((A,B),C),D), whose root is separated from the node
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indicating the most recent common ancestor of A, B, and C
by branch length x > 0. This latter node is in turn separated
from the most recent common ancestor of A and B by branch
length y > 0. Degnan and Rosenberg (2006) defined by
f(x,y), g(x,y), and h(x,y) the probabilities conditional on
the species tree that a gene tree has topology
(((A,B),C),D), topology ((A,C),(B,D)), and topology
((A, B), (C,D)), respectively; topology ((A,D),(B,C)) also
has probability g(x, y). Given any choice for (x, y), gene tree
topology (((A, B), C), D) has probability greater than all gene
tree topologies other than possibly ((A,B),(C, D)),
((A,0),(B,D)), and ((A,D),(B,C)) (Rosenberg 2002;
Degnan and Rosenberg 2006); the anomaly zone for species
tree topology (((A, B), C), D) is therefore the set of values of
(x,y) for which g(x,y) > f(x,y) or h(x,y) > f(x,y). Degnan
and Rosenberg (2006) noted that h(x,y) > g(x, y) for all al-
lowed (x, y), so that the anomaly zone is the set of (x, y) for
which h(x,y) > f(x,y). Using formulas for f(x, y), g(x, y), and
h(x,y), and solving the inequalities h(x,y) > f(x,y) and
g(x,y) > f(x,y) for (x,y), Degnan and Rosenberg (2006)
computed the anomaly zone for (((A, B), C), D).

Proof of Theorem 1

Consider species tree topologies with depth <3. Degnan and
Rosenberg (2006) showed by direct computation that these
topologies—three-taxon species tree topologies and four-
taxon symmetric species tree topologies—do not produce
anomalies.

Now consider an arbitrary n-taxon labeled species tree
topology v with depth at least 3. Either n=4 and ¥ is a
four-taxon asymmetric species tree topology already shown
to have AGTs by the direct computation of Degnan and
Rosenberg (2006) or n > 5. For n > 5, ¥ must have a par-
ticular structure (fig. 2). Because v has depth 3 or more, it
must have a pair of internal branches immediately descended
from the root and arranged such that one is immediately
ancestral to the other. Denote these branches by e, and e,
with e, ancestral to e, and denote their lengths by x and y.
Denote by A and B the two subtrees of 1 immediately de-
scended from e, and by C the subtree descended from e, but
not e,. Let D be the subtree that is immediately descended
from the root and that does not contain e, and e,. One or
more among A, B, C, and D can be a single leaf.

We make e, and e, short and all branches in subtrees A, B,
G and D long. In particular, we choose lengths x and y such
that h(x,y) > f(x,y). That'is, if A, B, C, and D are treated as
single taxa rather than subtrees, then we choose x and y to
lie in the anomaly zone of (((A,B),C),D), with AGT
((A, B), (C, D)). Choose a constant « > 0, satisfying

< h(x,y) _f(xay)
1+ h(xay) _f(xay) '

We choose the branches in subtrees A, B, C, and D and the
branches above their roots to all be long, so that considering
all these long branches of the species tree, the joint probability
that only one lineage remains at the top of each long branch
equals 1 — o This choice can be made because under the
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Fic. 2. Schematic of the alternative proof. Consider n > 4 taxa, with
one gene lineage sampled per taxon. Consider a species tree topology
that has at least two consecutive internal branches. Such a topology
must have the structure shown, where labels A, B, C, and D represent
subtrees (Degnan 2013b, Lemma 3). The consecutive branches shown in
yellow, with lengths x and y, are set to be short; red branches are set to
be long (including the pink branch that extends infinitely far above the
root). The green trapezoids indicate that all branches in subtrees A, B, C,
and D are set to be long, so that all coalescences in these subtrees are
likely to occur at the first opportunity.

coalescent, as a species tree branch length approaches infinity,
the probability approaches 1 that all gene lineages on the
branch coalesce on the branch. Consequently, each of a
finite set of branches can be chosen long enough that simul-
taneously for all branches in the set, the probability that all
gene lineages entering a branch coalesce on the branch
approaches 1.

Define two labeled topologies, L,, the topology of the spe-
cies tree (((A, B), C), D), and L,, the topology ((A, B), (C, D)),
again treating A, B, G, and D as subtrees. The probability g,
that the gene tree has the matching topology L is bounded
above by f(x,y)(1 — @) + . The first term represents the
probability f(x,y) of producing topology L; conditional on
all coalescences elsewhere other than on branches e, and e,
occurring on their most recent allowed branches, weighted by
the probability 1 — « that all coalescences other than on
branches e, and e, indeed occur on their most recent allowed
branches. The second term is the probability that one or more
of these coalescences does not occur on the most recent
branch, weighted by 1, an upper bound on the probability
that the gene tree has topology L, conditional on one or more
of the coalescences not occurring on the most recent branch.

The probability g, that the gene tree has non-matching
topology L, is bounded below by h(x, y)(1 — «). This quan-
tity is the probability h(x, y) of producing topology L, condi-
tional on all coalescences other than those on branches e, and
e, occurring on the most recent allowed branches, weighted
by the probability 1 — « that all these coalescences do indeed
occur on their most recent branches. Applying equation (2),
g > h(x,y)(1 —a) > f(x,y)(1 —a)+a > gy, and the
non-matching gene tree topology L, has greater probability
than the matching gene tree topology L.

Note that in the proof, we used the fact that in the four-
taxon case, gene tree topology ((A, B), (C, D)), with proba-
bility h(x,y), is anomalous for species tree topology

(((A,B),C),D). We could just as well have used the
fact that gene tree topologies ((A,C),(B,D)) and
((A, D), (B, €)), each with probability g(x, y), are also anom-
alous. The proof would then have proceeded with g(x, y) in
place of h(x, y), and with ((A, C), (B, D)) or ((A, D), (B, C)) as
the AGT in place of ((A, B), (C, D)).

An additional assumption in the proof was that the branch
e, was immediately descended from the root. If ¥ has depth
>3, then the proof proceeds analogously when any pair of
consecutive internal branches is examined; thus, consecutive
short branches need not be descended immediately from the
root in order to give rise to AGTs. Consider figure 3, which
differs from figure 2 in the choice of the consecutive internal
branches e, and e,; as in figure 2, the set of branches chosen to
be long contains all branches other than e, and e,. We sitill
choose branch lengths such that the joint probability that for
all long branches, coalescences occur on the first possible
branch, is 1 — «. The topology L; of the matching gene
tree is ((...(((A,B),C),D), ...),E), and the topology L, of
the AGT is ((...((A,B),(C,D)), ...),E). The probability g-
that the gene tree has matching topology L, is again bounded
above by f(x, y)(1 — &) + &, and the probability g, that the
gene tree has non-matching topology L, is again bounded
below by h(x, y)(1 — «). As before, by equation (2), g, > g.

The main idea of the proof—the use of consecutive short
branches with the assumption that branches in and above
four subtrees are long—appears in Than and Rosenberg
(2011) as a corollary to a proof of the inconsistency of the
minimize-deep-coalescences algorithm for species tree infer-
ence, and in the discussion by Degnan (2013b) of the
unrooted analogue of AGTs, anomalous unrooted gene
trees (AUGTSs). Degnan (2013b) termed by “caterpillarization”
the process of viewing large trees as smaller trees with a cat-
erpillar shape, by grouping the descendants of certain
branches such as in figures 2 and 3. Degnan (2013b) also
provided terms for topological patterns that can give rise to
AGTs and AUGTSs, including the “SS” pattern, with two con-
secutive short internal branches. In the terminology of
Degnan (2013b), Theorem 1 states that a labeled species
tree produces anomalies if and only if it can be caterpillarized
to a four-taxon caterpillar. AGTs are obtained by caterpillar-
izing the tree and choosing branch lengths with an SS pattern.

The formulation here of the result that any species tree
topology with depth three or greater produces anomalies, in
addition to simplifying the proof, has the advantage of pro-
viding new insight into how AGTs are generated. Although
general formulas and software for evaluating gene tree prob-
abilities are now available (Degnan and Salter 2005; Than et al.
2008; Wu 2012), it has been less clear how to intuitively
diagnose features of species trees that are likely to give rise
to such significant discordance. Short branches have been
recognized as key to gene tree discordance, but for five
taxa, Rosenberg and Tao (2008) found that certain combina-
tions of short branches did not necessarily produce AGTs.
The proof here establishes that production of AGTs primarily
reflects consecutive short branches: rapid speciation on the
same species lineage is likely to generate AGTs, with at least
two speciations being required. Indeed, it was the
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consideration here of a single scenario with consecutive short
branches that streamlined the earlier proof based on a series
of cases that were less obviously connected to a unified math-
ematical or biological feature of the species tree.

We can see an example of the value of the new formula-
tion and proof by reexamining the five-taxon anomaly zones
of Rosenberg and Tao (2008). Consider a five-taxon labeled
caterpillar tree v, whose internal branches, arranged from the
root toward the leaves, have lengths x, y, and z, respectively
(fig. 4A). Rosenberg and Tao (2008) computed the anomaly
zone for ¥, the set of values of (x, y,z) for which the most
likely gene tree topology disagrees with . Figure 4B, C, and D
show three views of the three-dimensional anomaly zone, one
for each pair of variables in {x, y, z}. In figure 4B, consecutive
branch lengths x and y are plotted on the axes, and the con-
tours represent values of z in figure 4C, consecutive branch
lengths y and z appear on the axes, with the contours show-
ing x; finally, in figure 4D, the axes plot nonconsecutive
branch lengths x and z, and the contours show values of y.

A BC D E

Fic. 3. Schematic of the alternative proof, using consecutive internal
branches that are not immediately descended from the species tree
root. Labels A, B, G, D, and E represent subtrees. The incomplete
branch indicates that subtree (((A, B), C),D) can be separated from
the root by one or more branches. As in figure 2, the consecutive yellow
branches of lengths x and y are set to be short, red branches are set to be
long (including the pink branch that extends infinitely far above the
root), and green trapezoids indicate that all branches in subtrees A, B, C,
D, and E are set to be long, so that all coalescences in these subtrees are
likely to occur at the first opportunity.

Each axis in each of the panels illustrates the same range of
values, from 0 to 2.4. Recall that 1 time unit represents
N generations; values substantially less than 1 unit typically
represent the level of divergence for populations within a
species or, often, for closely related species.

In figure 4B, when consecutive branch lengths x and y are
small, the third branch z can be relatively large while still
giving rise to AGTs. Similarly, in figure 4C, AGTs can be pro-
duced for relatively large x when consecutive branch lengths y
and z are both small. For the nonconsecutive branch lengths x
and z in figure 4D, however, except in a narrow sliver of the
space with tiny values of x, production of AGTs requires a
small value of the middle branch length y. A pair of consec-
utive small branch lengths—either x and y or y and
z—enables larger values of the third branch length in the
anomaly zone than does a pair of small values for the non-
consecutive branch lengths x and z. Viewed from another
perspective, if branch length x is large, then AGTs can be
produced when y and z are both small (fig. 4C). If z is large,
then AGTs can be produced when x and y are both small
(fig. 4B). However, if y is large, then the region for x and z that
produces AGTs is much smaller than in the other two cases
(fig. 4D). Thus, an understanding of the role of consecutive
branches in AGT production clarifies the interpretation of the
five-taxon anomaly zone.

To date, investigations of AGTs have focused on theoret-
ical and numerical evaluations of situations in which they and
their analogs occur (Degnan and Rosenberg 2006; Rosenberg
and Tao 2008; Degnan et al. 2009; Rosenberg and Degnan
2010; Than and Rosenberg 2011; Wang and Degnan 20171;
Degnan et al. 2012a, 2012b; Degnan 2013b), demonstrations
that certain methods can in theory consistently infer species
trees in the anomaly zone (Steel and Rodrigo 2008; Degnan et
al. 2009; Liu et al. 2009; DeGiorgio and Degnan 2010; Liu, Yu,
and Edwards 2010; Liu, Yu, and Pearl 2010; Mossel and Roch
2010; Liu and Yu 2011; Wang and Degnan 2011; Jewett and
Rosenberg 2012; Allman et al. 2013), and simulation-based
assessments of the performance of particular species tree
methods at parameter settings that produce AGTs
(Kubatko and Degnan 2007; Ewing et al. 2008; Huang and
Knowles 2009; Liu and Edwards 2009; Liu et al. 2009;

B D
2.4 2.4 2.4
y z z
0 0 0
0 x 24 0 y 24 0 x 24
[ l
2.4 14.4/7 12.0/7 9.6/7 7.2/7 4.8/7 2.4/7 0

Fic. 4. An example of the role of consecutive branches in production of AGTs. (A) A five-taxon caterpillar labeled topology \ with internal branches of
length x, y, and z. (B-D) Sections of the anomaly zone. In each panel, for two of the three variables x, y, and z, a point is shaded according to the largest
value of the third variable for which AGTs occur. The color bar indicates the values of this third variable, with the darkest shade corresponding to a value
>2.4. At some points, AGTs can occur when this variable is arbitrarily large. The figure was constructed by evaluating the equations in supplementary
tables 16-18 of Rosenberg and Tao (2008) at a grid of points with x, y, z € [0, 2.4], each examined at intervals of 0.012.
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DeGiorgio and Degnan 2010; Hird et al. 2010; Liu, Yu, and
Edwards 2010; Liu, Yu, and Pearl 2010; O’Meara 2010; Wang
and Degnan 2011; Helmkamp et al. 2012; Jewett and
Rosenberg 2012; Sanchez-Gracia and Castresana 2012;
Degnan 2013a). AGTs represent the basis for inconsistency
of the “democratic vote” method for species tree inference, in
which the most commonly observed gene tree is taken as an
estimate of the species tree; many other methods, including
concatenation (Kubatko and Degnan 2007), greedy consen-
sus (Degnan et al. 2009), matrix representation with parsi-
mony (Wang and Degnan 2011), and the minimize-deep-
coalescences algorithm (Than and Rosenberg 2011), have
analogous regions of the parameter space in which species
tree estimates converge on incorrect estimates as increasingly
large numbers of gene trees are accumulated. By simplifying
our understanding of the anomaly zone, the current work
provides guidance for studies of the consistency of species
tree inference: the most challenging regions of branch-length
space, in which species trees are most likely to be predisposed
to producing AGTs, are those regions with one or more pairs
of consecutive short branches. Simulation studies to date,
which have typically examined a small number of model
trees with relatively few taxa, have not had a particular
focus on the difficulty of complex cases with multiple pairs
of consecutive short branches; the formulation and proof
here indicate that it is in such cases that new analyses can
offer the most complete tests of the robustness of species tree
inference methods to the presence of gene tree discordance.
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