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Abstract. STMC is a statistical model checker that uses antithetic and
stratified sampling techniques to reduce the number of samples and,
hence, the amount of time required before making a decision. The tool
is capable of statistically verifying any black-box probabilistic system
that PRISM can simulate, against probabilistic bounds on any property
that PRISM can evaluate over individual executions of the system. We
have evaluated our tool on many examples and compared it with both
symbolic and statistical algorithms. When the number of strata is large,
our algorithms reduced the number of samples more than 3 times on
average. Furthermore, being a statistical model checker makes STMC able
to verify models that are well beyond the reach of current symbolic model
checkers. On large systems (up to 1014 states) STMC was able to check
100% of benchmark systems, compared to existing symbolic methods in
PRISM, which only succeeded on 13% of systems. The tool, installation
instructions, benchmarks, and scripts for running the benchmarks are all
available online as open source.

1 Introduction

Statistical model checking (SMC) plays an important role in verifying proba-
bilistic temporal logics on cyber-physical systems [1,14,15]. In SMC, we treat
the objective bounded temporal specifications as statistical hypothesis, and infer
their correctness with high confidence from samples of the systems. Compared
to analytic approaches, statistical model checkers rely only on samples from the
systems, and hence are more scalable to large real-world problems with compli-
cated stochastic behavior [3,6,18].

To our knowledge, all existing SMC tools use independent samples. Admit-
tedly, independent sampling is easy to implement, and it is the only option
when the model is completely unknown. However, as shown recently in [24,25],
if the model is partially known, then we can exploit this knowledge to generate
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semantically negatively correlated samples to increase the sample efficiency in
SMC. In [24,25], we present the stratified and antithetic sampling techniques for
discrete-time Markov chains (DTMC). In this work, we extend the technique
to continuous-time Markov chains (CTMC), and implement the corresponding
SMC algorithms in the tool STMC. The tool is evaluated on several case studies
under hundreds of different scenarios, some of which are well beyond the capa-
bilities of current symbolic model checkers. The results show that the sample
efficiency can be significantly improved by using semantically negatively corre-
lated sampling, instead of independent sampling.

This work also provides experimental comparisons between our SMC method
and common symbolic model checking methods. Since we use large values for
parameters in our case studies, it is no surprise that symbolic engines fail on
many of them. However, without our results, the meaning of the word “large” is
unclear. Our results give a good understanding of what is currently beyond the
capabilities of symbolic engines in a popular tool like PRISM. Next, restricting
our attention to the cases in which symbolic engines successfully terminate, our
results give us a helpful comparison between symbolic and statistical verification
times. It is well-known that symbolic algorithms do not scale well, while statisti-
cal ones do. However, that knowledge alone does not give us any insight into how
much more or less time a symbolic method requires compared to a statistical one.
Finally, when a symbolic method terminates, one might argue that its result is
far more valuable than the result of a statistical approach since statistical meth-
ods can produce incorrect results. Unfortunately, that is not entirely true. Since
the complexity of solving a problem is too high in practice, many symbolic algo-
rithms, including those in PRISM, employ an iterative method to approximate
probabilities. This approximation can be far from the actual probability, leading
to incorrect model checking results (e.g., [5]).

Related Work. Among the existing statistical model checkers, PRISM [4,12], MRMC
[10], VESTA [19], YMER [27], and COSMOS [2] only support independent sampling
on DTMC, CTMC, or other more general probabilistic models. PLASMA [9] also
supports importance sampling. In importance sampling, although samples may
have different weights, they are still generated independently. To our knowl-
edge, our tool STMC is the only existing statistical model checker that employs
semantically negatively related sampling on DTMC and CTMC.

2 Stratified and Antithetic Sampling

Stratified and antithetic samplings are two approaches for generating negatively
correlated random samples. When using stratified sampling to draw n samples
from a distribution, we divide the support into sets with equal measure, and
then draw one sample from each partition. When using antithetic sampling, a
random seed is first drawn from x ∈ [0, 1], and then two correlated samples are
generated using x and 1 − x, respectively. Figures 1 and 2 compare independent
and stratified sampling for 625 samples that we drew from the joint distribution
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of two random variables. In Fig. 1, each variable is uniformly distributed in [0, 1],
and in Fig. 2, each variable is exponentially distributed with rate 3 (we only show
samples that are within the unit square). It is clear that the stratified samples
are (visually) better distributed in both figures.

(a) Independent (b) Stratified

Fig. 1. Uniform distribution

(a) Independent (b) Stratified

Fig. 2. Exponential distribution

We have shown in [24] that by choosing a proper representation of a Markov
chain, the stratified sampling technique can be applied to generate semantically
negatively correlated sample paths. This technique reduces the sampling cost for
statistically verifying temporal formulas. In the rest of this section, we list two
algorithms: Stratified sampling of a CTMC, and stratified sequential probability
ratio test for a CTMC. The antithetic variants are simpler and we do not present
them here for the lack of space. Compared to our algorithms in [24], there are
two main differences. First, we present these algorithms for CTMCs instead of
DTMCs, as they are slightly more involved. Second, for the stratified sampling
of a CTMC, our algorithm supports stratification over multiple steps directly.

Algorithm 1 shows the pseudo-code for stratified sampling of a CTMC; to
obtain a stratified sampling algorithm for DTMC, we only need to remove π2,
index2, offset 2, rate, r2, and r3. It takes two inputs: ψ, a temporal formula that
we want to evaluate on every sampled path, and strata sizes , the number of
strata at every step. This is a non-empty list of positive integers. Let K be the
length of this list, and N be the product of its elements. If the ith item of the
list is n then the number of strata at steps i, i + K, i + 2K, i + 3K, . . . must
be n.1 The algorithm simultaneously simulates N paths and terminates after
the value of ψ on all these paths are known. Inside the main loop, simulation
is performed incrementally, K steps at a time. Random permutations π1, π2,
and variables index1, index2 are used to make simulations of every K steps and
random numbers r1 and r2 (defined later in the code) independent of each other.
The number of strata at every step is an input to this algorithm. Using that
number, variables offset 1 and offset 2 determine which strata we should use at
step s. Finally, r2 is a uniformly distributed stratified sample in [0, 1). However,

1 The current version of PRISM only handles one initial state for simulation. Therefore,
there will be no stratification for initializing paths.
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we need an exponentially distributed stratified sample, which is precisely what
−ln(1−r2)/rate gives us.

Algorithm 2 shows pseudo-code for statistical verification of CTMC and
DTMC using stratified samples. The algorithm is quite simple. It keeps sam-
pling using Algorithm 1 and computes the average and variance of the values
it receives until a termination condition is satisfied. Checking the termination
conditions after every step suggests using an online algorithm for computing the
mean and variance of samples. We use Welford’s online algorithm [26] in our
implementation.

Algorithm 1 Stratified Sampling for CTMC
1 // Take stratified samples and return fraction of samples that satisfy ψ.
2 // Param ψ is an LTL formula.
3 // Param strata sizes is a non−empty list of positive integers .
4 function stratified sampling(ψ, strata sizes)
5 val K = strata sizes .length // Length of the list
6 val N = strata sizes .product // Product of elements in the list
7 val paths = initialize N paths // index starts at 0
8 val evals = initialize N evaluators // incrementally evaluate ψ on paths
9 // Evaluation in the condition of the while loop is performed by PRISM

10 while(∃ j∈{0,...,N−1}, evals[j](path[j])=’unknown’)
11 val π1 = random permutation of 0,1,...,N−1
12 val π2 = random permutation of 0,1,...,N−1
13 for(i ← 0,...,N−1)
14 vars index1, index2 = π1[i], π2[i]
15 for(s ← 0,...,K−1)
16 val size = strata sizes [ s ] // number of strata at step s
17 vals offset 1, offset2 = index1%size, index2%size
18 index1, index2 /= size
19 val rate = rate of last state in path[i ] // by PRISM

20 val r1 = rnd(0,1) / size + offset1 / size // rnd(0,1) ∈ [0,1)
21 val r2 = rnd(0,1) / size + offset2 / size
22 val r3 = −ln(1−r2) / rate // stratified exponentially distributed
23 Simulate one step in path[i ] using r1 and r3 // by PRISM

24 return number of paths that satisfy ψ / N

Finally, one can extend the following results from [24] to include CTMC.

Theorem 1. Let ψ be a bounded LTL formula.

1. The output of Algorithm 1 has the same expected value as the probability of
a random path satisfying ψ.

2. If ψ is of the form ψ1UIψ2, such that the set of states satisfying ψ2 is a subset
of the same set for ψ1, then the satisfaction values of different paths simulated
by Algorithm 1 are non-positively correlated.

Theorem 2. The sampling cost of Algorithm 2 is asymptotically no more than
the sampling cost of SPRT [20] using i.i.d. samples.
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3 Tool Architecture

We have implemented our algorithms in Scala and published it under the
GNU General Public License v3.0. The tool can be downloaded from https://
github.com/nima-roohi/STMC/, where installation instructions, benchmarks,
and scripts for running the benchmarks are located. We use PRISM to load models
from files, simulate them, and evaluate simulated paths against non-probabilistic
bounded temporal properties. Therefore, STMC is capable of statistically verify-
ing any model, as long as it can be simulated by PRISM, and bounded temporal
properties can be evaluated on single executions of that model. Figure 3 shows
STMC at a very high level. Boxes marked with ‘P’ are where we directly use PRISM.

Algorithm 2 Stratified Sequential Probability Ratio Test
1 // Verify P≤tψ using stratified sampling.
2 // Param t is the input threshold
3 // Param ψ is an LTL formula (non−probabilistic).
4 // Param strata sizes is a non−empty list of positive integers.
5 // Param min iter is the minimum number of iters. the algorithm should take.
6 // Param α is Type−I error probability (must satisfy 0 < α < 1

2
).

7 // Param β is Type−II error probability (must satisfy 0 < β < 1
2
).

8 // Param δ is half of the size of indifference region.
9 function stratified SPRT(P≤tψ, strata sizes, min iter, α, β, δ)

10 var iter = 1
11 var μ = 0 // average of stratified sampling return values
12 var σ = 0 // standard deviation of stratified sampling return values
13 while(true)
14 iter++
15 val x = stratified sampling(ψ,strata sizes)
16 update μ and σ using x // e.g. Welford’s online algorithm [27]
17 if iter > min iter then

18 if μ − t < − σ2

2δ iter ln 1−α
β

then return true // accept P≤tψ

19 if μ − t > σ2

2δ iter ln 1−β
α

then return false // reject P≤tψ

Executions of STMC are configured through different options/switches. The
most basic options are help, which prints out a list of switches for both STMC
and PRISM, and stmc, which enables the tool (without stmc, everything will
be passed to PRISM, pretty much like STMC was not there in the first place).
Statistical verification is enabled using option sim; it is always required when
stmc is used. The sampling method is specified using option smp method or sm.
Possible values for the sampling method are independent, antithetic, and
stratified. Using option hyp test method or hm, users also have to specify a
hypothesis testing method that they would like to use. Supported values for this
option are currently SPRT, TSPRT, GLRT, and SSPRT. SPRT is used for the sequen-
tial probability ratio test [20]. This algorithm has already been implemented in
PRISM and in our experience it has a very similar performance to our imple-
mentation (SPRT in Sect. 4 refers to the implementation from PRISM). We use
our implementation for the next option, TSPRT. Sequential probability ratio test
assumes that the actual probability is not within the δ-neighborhood of the input

https://github.com/nima-roohi/STMC/
https://github.com/nima-roohi/STMC/
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Fig. 3. Architecture of STMC. Boxes marked with letter ‘P’ use PRISM directly. N is the
number of strata, K is the length of strata-size list (see option strata size below).

threshold. If this assumption is not satisfied, then the algorithm does not guar-
antee any error probability. TSPRT, which stands for Ternary SPRT, solves this
problem by introducing a third possible answer: TOO CLOSE. The algorithm was
introduced in [28]. Without assuming that the actual probability is not within
the δ-neighborhood of the input threshold, TSPRT guarantees Type-I and Type-II
error probabilities are bounded by the input parameters α and β, respectively.
Furthermore, it guarantees that if the actual probability and the input threshold
are not δ-close, then the probability of returning TOO CLOSE is less than another
input parameter γ; we call this Type-III error probability. The sequential prob-
ability ratio test was originally developed for simple hypotheses, and the test is
not necessarily optimal when composite hypotheses are used [13]. To overcome
this problem, the generalized likelihood ratio test (GLRT) was designed in [7].
The algorithm does not require an indifference region as an input parameter
and provides guarantees on Type-I and Type-II error probabilities asymptoti-
cally. The main issue with this test is that since probabilistic error guarantees
are asymptotic, for the test to perform reasonably well in practice (i.e., respect
the input error parameters), a correct minimum number of samples must be
given as an extra input parameter. If this parameter is too large then the num-
ber of samples will be unnecessarily high, and if the parameter is too small then
the actual error probability of the algorithm could be close to 0.5, even though
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the input error parameters are set to, for example, 10−7. The last possible value
for hyp test method is SSPRT, which stands for Stratified SPRT. This option is
used whenever stratified or antithetic samplings are desired.

When stratification is used, the number of strata should be specified using
option strata size or ss. It is a comma-separated list of positive integers. For
example, 4, 4, 4, 4, 4, 4 specifies 4 strata for six consecutive steps (4096 total), and
4096 specifies 4096 strata for every single step. Note that in both of these exam-
ples, stratified sampling simultaneously takes 4096 sample paths, which requires
more memory. However, we saw in our experiments that for non-nested temporal
formulas, at most two states of each path are stored into memory. Therefore,
even larger strata sizes should be possible. This was the most challenging part of
the implementation, because the simulator engine in PRISM is written assuming
that paths are sampled one by one. However, if we followed the same approach
in STMC, we would have to store every random number that was previously gen-
erated, which increased the amount of memory used for simulation from O(1) to
O(N ×L), where N is the number of strata and L is the maximum length of sim-
ulated paths. By simulating the paths simultaneously, we only use O(N) bytes
of memory. Next, Type-I, Type-II, Type-III, and half of the size of the indif-
ference region are specified using alpha, beta,2 gamma and delta, respectively
(not every algorithm uses all of these parameters). Finally, most algorithms that
use variance in their termination condition, require help when sample variance
remains zero after the first few iterations. STMC uses min iter for this purpose,
and PRISM uses simvar.

4 Experimental Results

We evaluated our algorithms on 10 different sets of examples. Each set contains
four variations of the same problem with varying parameters and, hence, various
sizes, and each of those variations includes four symbolic tests as well as 16
statistical ones. Furthermore, we repeat each of the statistical tests 20 times, to
compute 95% confidence intervals for time and number of samples taken by the
statistical algorithms. This gives us a total of 800 tests and 12 960 runs to obtain
results for those tests. Regarding the stratified sampling, for each variation, we
consider 13 settings in 4 groups. Each group uses a different number of strata: 2,
16, 256, and 4096. When the number of strata is more than 2, we also consider
different possibilities for how to divide strata among different steps. For example,
when 256 strata are used, 2561 means every step has 256 strata, but different
steps are independent of each other. On the other hand, 28 means every step has
only two strata, but stratification is performed over every 8 consecutive steps.

For the sake of space, we only present 15% of our results in this paper. Full
experimental results are available at https://nima-roohi.github.io/STMC/#/
benchmarks. Also, all the benchmark source files, along with scripts for run-
ning them, can be obtained from the tool’s repository page https://github.com/
nima-roohi/STMC/. The parameters we chose resulted in large systems, and
2 To the best of our knowledge, PRISM always assumes α = β.

https://nima-roohi.github.io/STMC/#/benchmarks
https://nima-roohi.github.io/STMC/#/benchmarks
https://github.com/nima-roohi/STMC/
https://github.com/nima-roohi/STMC/
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Fig. 4. NAND multiplexing (DTMC - macOS) [17]

significant time has been spent to run and collect the results. To perform our
experiments faster, we ran all of our tests using four processes (using option ‘-mt
4’). We also divided out our 10 sets of examples into two groups and ran each set
on one of two machines. One of them is running Ubuntu 18.04 with an i7-8700
CPU 3.2 GHz and 16 GB memory, and the other one is running macOS Mojave
with an i7 CPU 3.5 GHz and 32 GB memory. STMC’s webpage contains a short
description for each example and a link to another page for the full explanation.
We end this section with a few notes regarding our results.

1. Like any statistical test that is run in a black-box setting, we need to assume
simulation of every path will eventually terminate. In fact, PRISM uses the
parameter simpathlen, with 10 000 as its default value, to restrict the maxi-
mum number of simulation steps in each path. Currently, simpathlen can be
as large as 263 − 1, which is more than enough in most practical applications.
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Fig. 5. Embedded control system (CTMC - Ubuntu) [11,16]

2. To make the configurations less in favor of statistical algorithms, we used
small values for α, β, and δ in our benchmarks (between 0.0001 and 0.001).
Also, we have estimated the actual probabilities using a symbolic model
checker or using a statistical algorithm in PRISM and set the threshold close
to the actual probability. These settings cause the statistical algorithms to
take more samples, which indeed makes it possible for us to observe the effect
of antithetic and stratification on the number of samples. As a side effect, we
did not observe any performance benefits of GLRT over SPRT.

3. In many of our examples, the variance is particularly high when strata size is
4096. This is because in our benchmarks, whenever 4096 strata are used, we
set the minimum number of iterations to 2 (i.e., 8192 samples). This means
that when the average number of samples in our results is, for example, around
20 000, only 5 iterations have been taken on average, and every iteration adds
or removes about 20% of the samples from the test.
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Fig. 6. Tandem queueing network (CTMC - macOS) [8]

4. In general, the more strata we use, the greater reduction in the number of
samples we observe. Also, the performance of antithetic sampling is similar to
the case of using only two strata. Our best results are obtained when 40961 is
used for the number of strata. For example, in Fig. 5a, comparing SPRT and
40961 strata shows almost ten times reduction in the average number of sam-
ples. The tool’s webpage contains an example in which stratification reduces
variance to 0. This results in the termination of the algorithm immediately
after a minimum number of samples have been taken, giving us 3 orders of
magnitude reduction in the number of samples.

5 Conclusion

We presented our new tool called STMC for statistical model checking of dis-
crete and continuous Markov chains. It uses antithetic and stratified sampling
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to improve the performance of a test. We evaluated our tool on hundreds of
examples. Our experimental results show that our techniques can significantly
reduce the number of samples and hence, the amount of time required for a test.
For example, when 40961 strata were used, our algorithms reduced the num-
ber of samples more than 3 times on average. We have implemented our tool
in PRISM, and published it online under GNU General Public License v3.0. We
would like to extend STMC to support other stratification-based algorithms. In
particular, stratified sampling in model checking Markov decision processes, and
temporal properties that are defined on the sequence of distributions generated
by different types of Markov chains (see [21–23] for examples).
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Ingénieurs de l’Automobile (2017)

4. Basu, S., Ghosh, A.P., He, R.: Approximate model checking of PCTL involving
unbounded path properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 326–346. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10373-5 17

5. Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quanti-
tative probabilistic model checking through rational search. In: Proceedings of the
17th Conference on Formal Methods in Computer-Aided Design, FMCAD 2017,
pp. 92–99. FMCAD Inc., Austin (2017)

6. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards,
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