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History of Genome‑Editing Systems
Around three decades ago, when 
investigating on the iap gene, which 
is involved in biosynthesis of alkaline 
phosphatase in Escherichia coli, a Japanese 
scientist named Nakata along with his 
colleagues figured out that there were 
repeated sequences of DNA downstream of 
the gene.[1] After a while, further, a Spanish 
scientist named Mojica accidentally came 
across these sequences and began to study 
their function. In 1995, scientists identified 
that other prokaryotes also contained 
these sequences. They first named them as 
short regularly spaced repeats, but it was 
then turned into CRISPR.[2‑4] In 2005, it 
was eventually discovered that CRISPR 
sequences exerted a defensive role in 
bacteria, protecting these microorganisms 
against phages and other external 
pathogens.[5]

On the other hand, after the discovery 
of the homologous recombination  (HR) 
mechanism in 1989, the first step in gene 
editing was taken. Investigators figured 
out that if a fragment of DNA containing 
homologous arms at both sides gets into the 
cell, it can be inserted to the host genome 
through the mechanism of HR and can 
dictate desired changes to the cell.[6] Despite 
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Abstract
Developing a new strategy for an efficient targeted genome editing has always been a great 
perspective in biology. Although different approaches have been suggested in the last three decades, 
each one is confronting with limitations. CRISPR‑Cas complex is a bacterial‑derived system which 
made a breakthrough in the area of genome editing. This paper presents a brief history of CRISPR 
genome editing and discusses thoroughly how it works in bacteria and mammalians. At the end, 
some applications and challenges of this growing research area are also reviewed. In addition to 
moving the boundaries of genetics, CRISPR‑Cas can also provide the ground for fundamental 
advances in other fields of biological sciences.
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the promising results obtained at the 
beginning, the number of cells with inserted 
fragments in their genome was low, making 
it difficult to detect a modified cell among 
millions of cells. It was a tangible need to 
develop a procedure by which scientists can 
promote output.[7]

Scientists have found that if they enter 
DNA restriction enzymes into the cell 
with external oligonucleotide fragments, 
both the HR and nonhomologous end 
joining  (NHEJ) can be promoted.[7,8] 
Meganucleases were the first enzymes used 
for this purpose.[8,9] However, regarding 
their inability to cut the host gene at a 
specific location, they could not be utilized 
in genome editing.

A suitable enzyme for genome editing 
must contain two important characteristics: 
first is to recognize a specific sequence 
in the genome, and second is to act as a 
restriction nuclease. Considering factors 
involved in gene transcription, scientists in 
2001 designed a chimeric nuclease called 
zinc finger nuclease  (ZFN), in which zinc 
finger domains were responsible for DNA 
identification and the restrictor enzymatic 
part was derived from fok1 nucleases.[10]

Although this approach was appealing, it 
suffered from disadvantages for common 

Access this article online

Website: www.advbiores.net

DOI: 10.4103/abr.abr_41_19

Quick Response Code:
This is an open access journal, and articles are 
distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 4.0 License, which 
allows others to remix, tweak, and build upon the work 
non‑commercially, as long as appropriate credit is given and 
the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com



Bozorg Qomi, et al.: An overview of the CRISPR system

2 Advanced Biomedical Research | 2019

applications. The first disadvantage is a time‑consuming 
design which may take months for amateurs to design 
a pair of ZFN against a specific region.[11] The second 
disadvantage is the low number of potential target 
regions in the genome. Actually, for every 50 nucleotides, 
there is only one locus that can be targeted through this 
mechanism.[12] Although the low number of loci does not 
usually make a problem for knocking‑out editing, it faces 
limitation for knocking‑in manipulation.[12]

This limitation provided the ground for the appearance of 
a new generation of nucleases which were able to target 
a specific region in the genome. In 2009, a number of 
scientists figured out that gall‑forming pathogens containing 
transcription activator‑like effectors  (TALEs) were able 
to bind specifically to their targets in plant genomes and 
cause diseases.[13] In the next steps, other investigators 
combined TALEs and nuclease fok1 and created a new 
gene‑editing system named transcription activator‑like 
effector nucleases (TALENs) for better gene targeting.[14]

It is used for DNA double‑strand breaking  (similar to 
ZFN) as well as for knocking out/knocking in. Compared 
to the ZFN, two important advantages for this editing tool 
have been mentioned:  (1) a simple design and  (2) a low 
number of off‑target breaks.[15] However, it is confronting 
with some limitations, such as longer cDNA in comparison 
to ZFN (1 kb) and difficult vector cloning.[16] Furthermore, 
similar to ZFN, it causes off‑target breaks leading to 
unwanted changes and toxicity in the genome.[17] However, 
the number of off‑targets is low in TALENs compared to 
ZFN.[15]

After the discovery of CRISPR as the bacterial required 
immunity system, a few groups of scientists simultaneously 
came to this conclusion that CRISPR could be utilized for 
targeted double‑stranded DNA breaking and thereafter for 
gene editing in mammalians.[18] A benefit of this editing 
tool is to reduce the length of the site‑specific sequence (20 
nucleotides) compared to that of other three ones described 
earlier (500–1000 nucleotides), resulting in a simple gRNA 
design against a specific point in the genome.

CRISPR Is an Adaptive Immune System
There are different types of innate immunity in bacteria, 
including abortive infection, receptor mutation, and 
restriction‑modification.[19] As mentioned above, an acquired 
immune system of CRISPR discovered in bacteria protects 
the microorganism against viruses, plasmids, and other 
external pathogens.[20] At first, investigators demonstrated 
that the bacterial genome is identical at some genomic 
regions with viruses and invasive plasmids. Thereafter, a 
hypothesis appeared indicating that these identical regions 
were thought to be for immunity against viruses and 
external agents.[20,21]

CRISPR protects the bacterium in two phases: immunization 
and immunity  [Figure  1].[22] In the immunization phase, 

Cas proteins  (Cas1 and Cas2) create a complex which 
is capable of breaking the viral genome. Then, this 
external nucleic content inserts the bacterial genome as 
repeat‑spacer units.[22] In the immunity phase, following 
the secondary viral contamination, repeat‑spacer units 
are transcribed into the pre‑CRISPR RNA  (pre‑crRNA). 
Afterward, the Cas9 endonuclease and transactivating 
crRNA are bound to the pre‑crRNA. Transactivating 
crRNA directs Cas9 toward the crRNA.[22] Eventually, a 
complex of crRNA‑Cas9‑tracrRNA is generated, which is 
then broken by RNA polymerase III and utilized to target 
the external DNA.[22]

Mechanism of CRISPR in Genome Editing
CRISPR system is composed of two components:  (1) a 
nuclease such as Cas and Cpf1 which are responsible for 
DNA double‑strand breaking and (2) a ribonucleotide called 
gRNA which is responsible for directing the nuclease to 
the target site in the genome [Figure 2].[18,23] Regarding the 
complexity of the nuclease and its function, two classes of 
CRISPR system have been identified: Class 1 and Class 2. 
Each of these two classes is divided into three subtypes, 
respectively. Class  1 systems consist of types 1, 3, and 4 
in which the effector complex is generated of several Cas 
protein subunits; while class  2 systems consist of types 2, 
5, and 6 in which the effector complex is made of only 
one multidomain protein such as Cas9 protein. In gene 
manipulation studies, CRISPR systems of Class 2 are more 
applicable than Class  1 because the enzymes of Class  1 
need to make a complex for better activity, while the 
enzymes of Class 2 do not.[24]

After binding of the ribonucleotide/endonuclease complex 
to its target in the genome, the nuclease enzyme begins 
to make a double‑  or single‑stranded breaking of DNA.[18] 
Downstream of the target sequence, there is a short motif 
with three nucleotides called protospacer adjacent 
motif  (PAM) which plays a critical role in identification 
and restriction of the target sequence by nuclease.[23] The 
sequence depending on the type of nuclease is different, 
and each enzyme can identify a specific PAM. For instance, 

Figure  1: The bacterial‑acquired immune system through the CRISPR 
mechanism
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spCas9 makes a double‑stranded break (DSB) at three base 
pairs upstream the NGG sequences.[17]

After restriction, the DNA can be repaired through two 
ways: HR repair and NHEJ.[25] NHEJ is an error‑prone 
mechanism in that the chance of randomly addition 
and deletion of the bases is high and causes framework 
mutations.[26] This mechanism can be used for knocking‑out 
studies. On the other hand, the HR way exerts more 
accuracy in comparison to NHEJ and is commonly used for 
knocking‑in studies.[27,28] This mechanism needs a similar 
pattern, which is the homologous chromosome, while 
in gene correction studies, this pattern is manipulatingly 
inserted into the cell to dictate desired changes. One of 
the limitations in this procedure is to be activated only in 
proliferating cells, adding that the level of activity depends 
on cell type and target gene locus.[29]

Application
The ability of mentioned system to target and manipulate 
the genome of living organism has been appealing to many 
scientists worldwide. Their interest in this technology has 
improved its capabilities. Some of the most important 
applications are as follows:

Gene editing

Base editing can be considered as one of the most 
important advances in medicine, which provides the ground 
to treat many types of diseases. In primary experiments, 
the knocking‑in procedure was used for this purpose. 
Due to low output of HDR  (homology directed repair) 
compared to NHEJ, the knocking‑in mechanism cannot be 
freely applied. Therefore, researchers began to investigate 
on another generation of base‑editing tools, which were 
a combination of CRISPR and cytidine deaminase. In 
this approach, there was not any need to break DNA and 
produce oligonucleotide. In addition, in comparison to 
knocking‑in system, it exerted a higher output with lower 
off‑targets.[30,31] initiately, these editing tools were able 
to do nucleotide transitions only from C:G to A:T. The 

next generation of this base‑editing tools were able to do 
nucleotide transitions from A:Tto C:G.[32]

Gene expression regulation

CRISPR system can also be utilized to alter the expression 
of one or several genes.[33] To postulate this, investigators 
first make mutations in the Cas nuclease in its two 
effector domains, HNH and RuvC. Although the resulting 
nuclease is not able to break the DNA  (dead Cas or 
dCas), it can be directed to the specific DNA site by an 
sgRNA. They merge some gene expression activators such 
as VP64 and p65 with the dCas and design new types of 
CRISPR‑based gene activators called CRISPRa, through 
which gene expression can easily be upregulated.[34] On the 
other hand, the combination of dCas9 with a site‑specific 
sgRNA can result in blocking the transcription elongation. 
Furthermore, combining gene expression inhibitors such as 
Krüppel‑associated box with the inactivated Cas9 has led 
to create a specific type of gene inhibitors, which are called 
CRISPR interference  (CRISPRi) and downregulate gene 
expression.[35]

Epigenome editing

Epigenomic mechanisms occur in different cellular 
levels.[36] For instance, DNA methylation and histone 
deacetylation and methylation are two of the most common 
epigenomic changes inside the cell.[36] Investigators have 
been able to alter methylation and acetylation in target 
points through the CRISPR system.[37,38] One way to achieve 
this goal is to combine histone demethylase lys‑specific 
histone demethylase 1  (LSD1) or the catalytic core of the 
human acetyltransferase p300 with dCas9  (dCas9–LSD1 
and dCas9–p300Core). This purpose can also be achieved 
through targeting the regulatory regions  (for example, 
enhancer region), instead of the target gene itself.

Screening on genome level

The ability of CRISPR system to modify any regions 
in the genome has led to the use of this system in 
functional studies on a wide scale. Before the CRISPR 
system was introduced, scientists performed the RNA 
interference  (RNAi) procedure to alter gene expression 
levels in functional studies.[39] An important limitation 
for the RNAi system was to cause off‑targets and also 
incapable in complete inactivation of target genes.[40,41] On 
the one hand, the simple design and cloning of CRISPR 
system have made it possible to knock out the genes of 
interest for genome‑scale loss‑of‑function screens. On the 
other hand, as mentioned above, the dead Cas9 systems 
can also be used for both loss‑of‑function  (through 
CRISPRi) and gain‑of‑function  (through CRISPRa) 
screening studies. For these purposes, a set of different 
types of gRNAs are packed into viral vectors and 
transduced into the cells. Then, using the deep 
sequencing, we can determine which genes to be targeted 
in the cell (each gRNA barcode is different from the other 

Figure  2: Structure and function of CRISPR. After binding of the 
ribonucleotide/nuclease complex to the target region in the genome, 
the nuclease cleavages the DNA at a certain distance from protospacer 
adjacent motif sequence through its HNH and RuvC domains. Then, the 
broken strands are repaired through the homologous recombination or 
nonhomologous end joining mechanisms
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one), and consequently, its effects  (knockouted, activated, 
or repressed) can be studied. According to new studies, 
scientists have been able to do screening successfully and 
conduct functional study on genome levels with the help 
of CRISPR system and next‑generation sequencing (NGS) 
technology.[42]

Gene drive technology

Gene drive technology is a genetic engineering method in 
which, unlike Mandel’s laws, genetic traits are inherited 
from parents to offspring in a high proportion.[43,44] In 
engineered gene drives, the target organism’s germ line 
cells are transformed with a cosset consisting of the 
encoding gene for the Cas9 nucleases and sgRNA and 
desired donor sequence. The sgRNA directs Cas9 to 
produce a DSB in another homologous chromosome target 
site. Then, by activating the HDR cell repair mechanism, 
the entire construct is copied in the DSB site and the 
newly edited chromosome can be inherited to offspring. 
Through this way, the editing changes will happen in 
the next generation. This newfound technology can be 
utilized to eradication of diseases such as malaria  (through 
entering malaria‑resistance gene or females’ sterility 
genes as a desired donor sequence) and Zika as well as 
undesired animal or plant species. However, due to the 
possible abuse of this technology in terrorist attacks against 
plants, animals, and even human beings, it has faced huge 
obstacles.[45]

Visualization of genomic loci

In recent investigations, it has been found possible to 
track and identify gene loci by merging dead nucleases 
with fluorescent proteins. This technique can also be 
employed to track the copy numbers of one specific locus 
in various diseases, disorders, and cancers as well as to 
track the activated and inactivated expression regions 
of the chromatin in the three‑dimensional space of the 
nucleus.[46,47]

Detection

CRISPR system can also be used to detect viruses and 
bacteria inside the cell. A group of scientists from Harvard 
University has recently succeeded to merge CRISPR 
system and fluorescent reporter RNAs and create a 
system called specific high‑sensitivity enzymatic reporter 
unlocking  (CHERLOCK) by which a lowest number of 
pathogens  (attomolar levels) are detected.[48] This system 
benefits from a type of nuclease enzymes which can target 
RNA instead of DNA  (usually Cas13a). After binding of 
gRNA to the viral RNA, the nuclease is activated, and then 
it binds to the fluorescent reporter RNA and breaks it. The 
fluorescent component is then released from the complex 
and the pathogen is detected.[48] These techniques have been 
promising to diagnose different types of cancers in primary 
stages as well as to determine genetic disease‑related 
polymorphisms.

Challenges
Despite the potential application for the treatment of 
many diseases, these systems still confront with some 
limitations. The first of them is to cause off‑target 
breaks in the host genome.[49] For a gRNA, many similar 
sequences depending on the genome size of the species 
can be existed.[50] Regarding that where, in the genome, 
these sequences are located, their breaks could lead to 
malignancies and even death.[50] Various mechanisms have 
been developed to reduce off‑target breaks; among of which 
truncated sgRNA,[51] the use of nickase enzymes instead 
of nucleases,[52] direct delivery of CRISPR constructs, 
molecule‑triggered nucleases,[53] dimer nucleases,[54] 
and binding of ubiquitination signals to Cas9 can be 
mentioned.[55]

The second challenge in the area of gene therapy is the 
low output of HDR in comparison to NHEJ after target 
cleavage. As mentioned before, NHEJ causes unwanted 
mutations in the cleavage site, and it can be problematic 
when purposed to do precise editing of a locus in the 
genome. Therefore, we need mechanisms to increase the 
output of HDR. This purpose can be achieved through 
manipulating the components of cellular repair machinery 
and optimizing the procedures and delivery times of 
CRISPR constructs.[27] Scientists can also promote the 
output of HDR by manipulating cell cycle proteins.[27,56,57] 
In addition, a new nuclease called Cpf1 has recently been 
discovered which exerts higher HDR output compared to 
the previously‑introduced nucleases.[54]

Another challenge for this gene‑editing tool is to require to 
PAM.[58] Dependence of this approach on PAM limits the 
number of target loci, and on the other hand, it can reduce 
off‑target breaks.[50] This technique requires specific PAM 
sequences to act functionally. For this purpose, another type 
of specific PAM‑containing nucleases has been developed 
which compensate this limitation. Genetic engineering 
and enzyme changing have also been able to resolve the 
limitation.[59]

The host immune response to Cas protein is regarded as 
one of the most important challenges in the clinical trials 
of CRISPR. Since almost half of the human population 
has been immunologically resistant to nuclease‑positive 
bacteria such as Staphylococcus aureus and Staphylococcus 
pyrogenes and are not sensitive to nuclease, it is difficult 
to push this technique from in vitro to in vivo.[60] To handle 
this problem, scientists have been seeking for new types of 
nucleases.[61]

The last challenge of the mentioned system is to choose 
the right method to transfer the constructs of gRNA 
and nuclease into the cell. Although the direct transfer 
of construct plasmids sounds easy, it is not considered 
as an appropriate procedure. To be more elaborated, 
the probability of random plasmid insertion to the host 
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genome increases, and consequently, the transfection 
output decreases.[62] The next choice is to use viruses. 
For this purpose, the AAVs  (adeno associated viruses) are 
more suitable because their effect on the immune system 
is less than other viruses, making them able to target 
nonproliferating cells.[63] However, with regard to the 
problem in carrying DNA fragments, these vectors also 
sound inappropriate. The large size of spCas9  (around 
4.2 kb) has been found to be a problem for cloning in viral 
vectors.[64]

The discussing problem was solved after the discovery of 
nmCas9 and saCas9 (3.2 kb) (the Cas9 enzymes derived from 
Neisseria meningitides and Staphylococcus  aureus bacteria, 
respectively).[65] In addition to plasmid and viral transfer, the 
direct delivery of gRNA and already‑expressed nucleases to 
cell targets are other strategies proposed for this purpose.[66] 
To deliver these fragments to target cells, nonviral techniques 
such as lipofection, microinjection, and electroporation can 
also be utilized.[67] In addition, these techniques can reduce 
off‑target cleavages. Despite all the limitations, this newfound 
technology is still on its way to progress.

Future Perspectives
As discussed above, CRISPR gene‑editing system is 
still buckling up with problems. Finding a suitable way 
to transfer the system into the body in addition to those 
mentioned in the text is among the problems. Along with the 
growing advances of this technology and related sciences, 
ethical concerns about it are still increasing. Despite all 
these limitations, CRISPR is relatively applicable and 
has evidently proved to correct the mutations which are 
associated with different diseases such as thalassemia, 
cystic fibrosis, and Duchenne muscular dystrophy.[68] 
CRISPR has also demonstrated promising results in treating 
lethal diseases such as AIDS and cancer.[69,70] Resurrecting 
extinct creatures, manufacturing engineered products, 
and eradicating human diseases are not too far to happen 
through the CRISPR system.
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