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Both the Pearson correlation and partial correlation methods have been widely used

in the resting-state functional MRI (rs-fMRI) studies. However, they can only measure

linear relationship, although partial correlation excludes some indirect effects. Recent

distance correlation can discover both the linear and non-linear dependencies. Our goal

was to use themultivariate pattern analysis to compare the ability of such three correlation

methods to distinguish between the patients with obsessive-compulsive disorder (OCD)

and healthy control subjects (HCSs), so as to find optimal correlation method. The main

process includes four steps. First, the regions of interest are defined by automated

anatomical labeling (AAL). Second, functional connectivity (FC) matrices are constructed

by the three correlation methods. Third, the best discriminative features are selected by

support vector machine recursive feature elimination (SVM-RFE) with a stratified N-fold

cross-validation strategy. Finally, these discriminative features are used to train a classifier.

We had a total of 128 subjects out of which 61 subjects had OCD and 67 subjects

were normal. All the three correlation methods with SVM have achieved good results,

among which distance correlation is the best [accuracy= 93.01%, specificity= 89.71%,

sensitivity = 95.08%, and area under the receiver-operating characteristic curve (AUC)

= 0.94], followed by Pearson correlation and partial correlation is the last. The most

discriminative regions of the brain for distance correlation are right dorsolateral superior

frontal gyrus, orbital part of left superior frontal gyrus, orbital part of right middle frontal

gyrus, right anterior cingulate and paracingulate gyri, left the supplementary motor area,

and right precuneus, which are the promising biomarkers of OCD.

Keywords: obsessive-compulsive disorder, functional connectivity, distance correlation, classification, rs-fMRI

INTRODUCTION

Obsessive-compulsive disorder (OCD) is a mental disorder that causes repeated and unwanted
thoughts and/or obsessive feelings and compulsive actions and it can limit the ability of the patient
to take part in relationships, the workplace, and in society (Piacentini et al., 2003; Abramowitz
et al., 2009). Its prevalence is about 1–3% lifetime (Ruscio et al., 2010; Rapinesi et al., 2019). In
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clinical practice, no diagnostic biomarkers are available for OCD
and its diagnosis is always based on some symptom-oriented
criteria according to the International Classification of Diseases
(ICD; Stein et al., 2016) and the Diagnostic and Statistical
Manual of Mental Disorders (DSM; Battle, 2013). However, these
criteria may have several problems over the conditions of an
individual. For example, the patients with OCD often co-occur
with depression and anxiety or another psychiatric comorbidity,
which can contribute to misdiagnosis.

With the development of medical imaging, researchers can
explore the pathogenesis of OCD. Currently, the pathogenesis
of OCD has been confirmed to be caused by the cortico-striato-
thalamo-cortical (CSTC) circuit dysfunction, but emerging
evidence indicates that broader brain regions, such as the left
supplementary motor area (SMA) and right precuneus, are
involved in this disorder (Saxena et al., 1998; Rehn et al., 2018;
Thorsen et al., 2018; Hazari et al., 2019). These changes in the
brain are due to the diversity of tasks in the investigation of
OCD. Therefore, task-based functional MRI (task-fMRI) has
been studied for detecting the functional changes in the brain
in patients with OCD and their relatives (Menzies et al., 2008a).
However, task-fMRI studies can only focus on some specific
regions of the brain and may have missed important information
existing in regions of the brain not related to the task. Without
specific design in task-fMRI, resting-state functional MRI (rs-
fMRI) provides an effective and noninvasive approach to assess
the neural activation and functional connectivity (FC) of the
human brain without any hypothesis. It can also provide a
reliable measure of baseline brain activity and may complement
and extend findings from task-based studies (Biswal et al., 1995;
Hou et al., 2014; de Vries et al., 2019; Yang et al., 2019).

Recently, the multivariate pattern analysis based on a machine
learning (ML) algorithm has been introduced for neuroimaging
analysis of a variety of diseases such as autism, depression, and
schizophrenia (Sajda, 2006; Anderson et al., 2011; Zeng et al.,
2012; Liu et al., 2014, 2015a, 2017; Mueller et al., 2015; Rathore
et al., 2017; Lamothe et al., 2018; Zhou et al., 2018; Bu et al.,
2019; Rapinesi et al., 2019). It has the advantage of being able
to inference individual level over the univariate analysis used
at the group level (Orrù et al., 2012; Goodman et al., 2014). In
comparison to other traditional methods of analysis, its ability to
use inter-regional correlations, such as the Pearson correlation,
to detect subtle and spatially distributed effects (Menzies et al.,
2008b; Bruin et al., 2020; Zhan et al., 2021). Therefore, it seems
particularly well-suited for the neuroimaging analyses in OCD, as
abnormalities are typically distributed across the brain (Klöppel
et al., 2008; Arbabshirani et al., 2017).

In this study, we employed the multivariate pattern analysis
via the three correlation methods to distinguish the patients
with OCD from a healthy control subject (HCS). A general
flowchart of rs-fMRI based on the FC matrix for diagnosis is
shown in Figure 1. In this framework, there are four main steps:
(1) defining the region of interests (ROIs) from the rs-fMRI
images or by using the anatomically and functionally defined
reference atlases of the brain, (2) extracting rs-fMRI time series
based on the ROIs and calculating the FC matrices, (3) using

feature selection method to get the optimal features from the FC
matrices, and (4) training a classifier.

Currently, this study mainly focused on the second and
third parts. In the second part, with rs-fMRI time series data,
the FC matrix can be extracted for characterizing the network
structure of the brain. One way is to calculate the Pearson
correlation between rs-fMRI time series over the ROIs predefined
as automated anatomical labeling (AAL) with 116 structural
regions (Tzourio-Mazoyer et al., 2002). For example (Shenas
et al., 2013; Gruner et al., 2014; Sen et al., 2016; Takagi et al., 2017),
the authors use Pearson correlation as the network features. In
addition, the partial correlation was also used for measuring the
FC (Varoquaux et al., 2010; Smith et al., 2011; Dadi et al., 2019).
However, the Pearson correlation and partial correlation only
discover the linear dependency, although the partial correlation
excludes the indirect influence of the correlation structure. To
overcome this limitation, the distance correlation was proposed
to measure both linear and non-linear associations between the
two ROIs (Szekely et al., 2007; Yoo et al., 2019).

In the third part, because of high-dimensional features from
the FC matrix, we need a feature selection algorithm to reduce
the dimensionality. In literature, the recursive feature elimination
(RFE) algorithm is a very excellent feature selection technique
that has been widely used in many fields (Guyon et al., 2002;
Ding et al., 2015; Liu et al., 2015b; Lin et al., 2017; Wang et al.,
2019), but it needs a specific classifier. Currently, studies on the
diagnosis of OCDdisease are usually limited to a small data set, so
the researchers tend to use traditional ML methods to complete
the task. Among them, support vector machine (SVM) provides
excellent performance (Shenas et al., 2013; Gruner et al., 2014;
Sen et al., 2016; Takagi et al., 2017; Wang et al., 2019). Therefore,
we applied the SVM-RFE algorithm to filter the features.

In the fourth part, these selected features were entered
into the seven classifiers. According to the final classification
performance, we can explore the optimal FC method and
classifier and investigate the regions of the brain, which may
be potential biomarkers. Finally, our aims were 2-fold: one
is to investigate which correlation method achieves the best
discrimination betweenOCD andHCS and the other is to explore
some potential biomarkers according to the above results.

MATERIALS AND METHODS

Participants
This study was approved by the Ethics Committee of Shenzhen
Kangning Hospital and the written informed consent was
obtained from each participant. A total of 128 subjects were
enrolled from Shenzhen Kangning Hospital and Guangzhou
Brain Hospital, including 67 HCS and 61 patients with OCD,
aged from 13 to 63 years old. The demographic information
and clinical characteristics information are shown in Table 1.
The independent sample t-test was carried out on the age (p
= 0.45). For the Yale-Brown Obsessive Compulsive Scale (Y-
BOCS) total score, the Y-BOCS obsessions score, and the Y-BCOS
compulsions score (p < 0.001), we used the independent sample
Kruskal–Wallis test.
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FIGURE 1 | Classification of flow chart with four main steps: (1) defining the ROIs from the rs-fMRI images or by using anatomical templates that have been defined,

(2) extracting rs-fMRI time series based on the ROIs and calculating the FC matrices, (3) using feature selection method to define the optimal features from the FC

matrices, and (4) training a classifier. ROIs, region of interests; rs-fMRI, resting-state functional MRI; FC, functional connectivity.

TABLE 1 | Demographic and clinical characteristics of the participants.

Variable OCD HCS p-value

Demographic measure

Number 61 67 -

Sex M43, F18 M 48, F 19 -

Age average 27.7 ± 8.4 28.9 ± 8.5 p = 0.45

Clinical measures

YBOCS total score 26.8 ± 6.1 2.3 ± 3.4 p < 0.001

YBOCS obsessions score 14.6 ± 3.8 1.2 ± 1.7 p < 0.001

YBCOS compulsions score 12.2 ± 5.0 1.2 ± 2.1 p < 0.001

OCD, obsessive-compulsive disorder; HCS, healthy control subject; Y-BOCS, Yale-Brown Obsessive Compulsive Scale.

Imaging Data Acquisition
A 3.0-Tesla MR system (Philips Medical Systems, Best, the
Netherlands) equipped with an eight-channel phased-array head
coil was used for the data acquisition. Functional data were
collected by using gradient echo-planar imaging (EPI) sequences
[time repetition (TR) = 2,000ms, echo time (TE) = 60ms, flip
angle = 90◦, 33 slices, field of view (FOV) = 240 mm2

× 240
mm2, matrix = 64 × 64, slice thickness = 4mm, and voxel size
= 3.75 mm3

× 3.75 mm3
× 4 mm3]. For each participant, the

fMRI scanning lasted for 480 s and 240 volumes were obtained.
For spatial normalization and localization, a high-resolution
T1-weighted anatomical image was also acquired by using a
magnetization prepared gradient echo sequence (TR = 8ms, TE
= 3.7ms, flip angle = 7◦, FOV = 240 mm2

× 240 mm2, matrix
= 256× 256, slice thickness= 1mm, and voxel size= 0.94mm3

× 0.94 mm3
× 1 mm3). During the scanning, the participants

were instructed to relax with their eyes closed and stay awake
without moving.

Data Preprocessing
The data were preprocessed by using the Statistical Parametric
Mapping toolbox (SPM12, https://www.fil.ion.ucl.ac.uk/spm)
and the Data Processing Assistant for Resting-State fMRI
(DPARSF version 4.4, http://rfmri.org/dpabi; Shenas et al.,
2013, 2014). Image preprocessing consisted of: (1) removing
first the 10-time points; (2) slicing timing correction; (3)
realigning the time series of the images for each subject;
(4) T1-weighted individual structural images by coregistered
to the mean functional image; (5) the transformed structural
images by segmented into gray matter, white matter, and

cerebrospinal fluid; (6) based on these segmented images, using
diffeomorphic anatomical registration through exponentiated
lie algebra (DARTEL) (Ashburner, 2007) tool to estimate
the normalization parameters from individual native space
to the Montreal Neurological Institute (MNI) space (Xue
et al., 2020); (7) the functional imaging data normalized to
the MNI space by using these normalization parameters and
resampling at 3 mm3

× 3 mm3
× 3 mm3; (8) nuisance

covariate regression (head motion parameters, white matter
signal, and cerebrospinal fluid signal); (9) spatial smoothing with
a 4-mm full-width half-maximum isotropic Gaussian kernel;
(10) band-pass filtering (0.01–0.08Hz); and (11) micro-head-
motion correction according to framewise displacement (FD)
by replacing the rs-fMRI volume with FD > 0.5mm (nearest
neighbor interpolation).

Definition of ROIs and Calculation of the
FC Matrix
In this study, we employed an AAL atlas to define the ROIs. For
the calculation of the FC matrix, the Pearson correlation, partial
correlation, and distance correlation methods will be used in this
study. For each subject, the mean of time series over all voxels
in each region was extracted. The FC matrices were calculated
between these average time courses with the three correlation
methods implemented with Nilearn software (http://nilearn.
github.io/). Considering that the matrix was symmetric, we only
needed to take the lower triangle of the matrix. Finally, we
flattened the lower trig matrix to get a feature vector with a length
of (116 × 116 – 116)/2 = 6,670. In our following experiment,
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each feature was normalized by Fisher’s z-transformation (Fisher,
1915; Vergun et al., 2013; Kassraian-Fard et al., 2016).

Feature Selection and Classification
In this study, to reduce the dimension of the data and find the
most discriminative subset of feature, we applied SVM-RFE with
a stratified N-fold cross-validation strategy for feature selection
(SVM-RFE-NCV). It is a sequential backward selection algorithm
based on the maximum margin principle of SVM under the N-
fold cross-validation. The process contains five steps: (1) training
the model with the samples, (2) sorting the scores of each feature,
(3) removing the features with the minimum scores, (4) training
the model again with the remaining features and repeating the
process, and (5) selecting the required features (Ding et al., 2015;
Wang et al., 2019). With the selected features, seven classifiers are
compared: SVMwith linear kernel, multilayer perceptron (MLP),
extreme gradient boosting (XGBoost), gradient boosting decision
tree (GBDT), graph convolution network (GCN), and sparse
L1 and non-sparse L2 regularization for the logistic regression
classifiers (LR-L1 and LR-L2; Friedman et al., 2001; Chen and
Guestrin, 2016; Kipf, 2017). The SVM-RFE-NCV process was
embedded in a classification framework with 10-fold cross-
validation (10-CV).

Performance Evaluation
The performance of the proposed classifiers is assessed by
using the four performance measures: specificity, sensitivity,
accuracy, and area under the receiver-operating characteristic
curve (AUC). To test whether these classification scores are
significant, we performed a permutation test: we first randomly
reassigned the subject labels and then performed the 10-CV
classification. This procedure was repeated by 1,000 times. The
p-value was then calculated by dividing the number of times that
showed a higher value than the derived from the non-permuted
model by the total number of permutations (Plitt et al., 2015).

RESULTS

In this study, some qualitative and quantitative comparison
results are provided. At first, we qualitatively compared the three
methods via the scatter plot and correlation visualization. Then,
the classification results of the OCD and HCS are evaluated
according to the pipelines composed of the three correlation
measures, the SVM-RFE-NCV, and the seven classifiers, to
select correlation measure and classifier to obtain the best
discrimination between the OCD and HCS. In addition, we
will use the SVM-RFE-NCV to find the regions of the brain
corresponding to the most discriminative features. The SVM-
RFE-NCV and classification algorithms are implemented by
using Scikit-learn (Pedregosa et al., 2012).

Scatter Plot and Correlation Visualization
To explore the differences among the Pearson, partial, and
distance correlations, we calculated the average functional
matrices of the patients and HCS, respectively. Since the distance
correlation coefficient ranges from 0 to 1 while the other
two range from−1 to 1, we used the unsigned versions of

the Pearson and partial correlation coefficients (for example,
taking the absolute value of them). The results are shown in
Figure 2 and we can see that both the distance and Pearson
correlations give similar structures of the functional matrix, while
the structure of partial correlation is greatly different from them.
To further reflect the similarities and differences among the
Pearson, distance and partial correlations, we draw their scatter
plots as shown in Figure 3. The values of three coefficients mainly
lie in the different intervals: (-0.1, 0.9) for the Pearson correlation
coefficients, (-0.1, 0.1) for the partial correlation coefficients, and
(0.1, 0.8) for the distance correlation coefficients.

Choice of FC Method
To find the optimal correlation method, we proceeded in two
steps. First, for each correlation method, we used the SVM-RFE-
NCV to find the best feature subset that gave the prediction.
Second, we compared the performance of each correlation
method on the best feature subset.

Best Feature Subset

For the SVM-RFE-NCV, the number of optimal features (NOFs)
varies with N. Table 2 summarizes the changes of accuracy
and NOF under the different N conditions. For the Pearson
correlation, partial correlation, and distance correlation, the
performance is the highest when N is equal to 5, 8, and 5,
respectively. Therefore, the best feature subset of the Pearson
correlation and distance correlation was obtained by the SVM-
RFE-5CV algorithm. The best feature subset of partial correlation
was achieved by the SVM-RFE-8CV algorithm.

Best Correlation Method

Three correlation methods produced a good performance in the
classification. Their ROC curves are shown in Figure 4, from
which we can see that they exhibit good performance, with
AUC values range from 0.87 to 0.94 (p < 0.01). The other
classification results of the three correlation methods for the
patients with OCD and HCS are summarized in Table 3. The
distance correlation and Pearson correlation are slightly lower
than partial correlation in sensitivity, but distance correlation
was the best in accuracy, specificity, and AUC followed by
the Pearson correlation and partial correlation. Therefore, in
the classification of the OCD and HCS, distance correlation
comprehensive performance is the best. Its accuracy, sensitivity,
and specificity are 93.01, 89.71, and 95.08% (p < 0.01),
respectively. The second is Pearson correlation (accuracy =

89.74%, sensitivity= 89.71%, and specificity= 86.62%, p< 0.01).
For partial correlation, accuracy is 84.87%, sensitivity is 96.21%,
and specificity is 75.90% (p < 0.01).

Results of Different Classifiers
Through the above analysis, the best discriminative features can
be obtained by using the distance correlation and the SVM-RFE-
5CV. As stated earlier, the seven classifiers including SVM with
linear kernel, MLP, XGBoost, GBDT, GCN, LR-L1, and LR-L2
classifiers were applied to identify these features separately. For
SVM, the penalty parameter was set to 1. For LR-L1 and LR-L2,
the penalty parameter was set to 0.01. For XGBoost, the learning
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FIGURE 2 | The FC matrices for HCS and the patients with OCD. The first row is for HCS and the second row is for the patients with OCD. (A) Pearson correlation,

(B) partial correlation, and (C) distance correlation. FC, functional connectivity; OCD, obsessive-compulsive disorder; HCS, healthy control subject.

FIGURE 3 | Scatter plots of association among the Pearson, partial, and distance correlations for average functional connectivity across the participants. The first row

is for HCS and the second row is for the patients with OCD. (A) Distance correlation vs. Pearson correlation, (B) distance correlation vs. partial correlation, and (C)

pearson correlation vs. partial correlation. OCD, obsessive-compulsive disorder; HCS, healthy control subject.
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TABLE 2 | Results of classification by the different number of the features.

Method N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

Pearson Correlation

Accuracy (%) 85.77 89.68 89.74 88.91 87.31 87.37 85.76 88.89

NOF 108 83 84 233 111 119 101 106

Partial Correlation

Accuracy (%) 80.13 77.82 80.06 79.29 80.71 84.87 81.60 80.83

NOF 896 829 1,489 1,150 971 2,488 1,467 1,531

Distance Correlation

Accuracy (%) 85.06 89.03 93.01 89.87 86.60 88.91 89.80 87.43

NOF 60 91 81 96 107 245 112 412

NOF, number of features.

FIGURE 4 | ROC curves assessing Pearson correlation, partial correlation, and distance correlation performance by using SVM. (A) Pearson correlation, (B) partial

correlation, and (C) distance correlation. ROC, receiver-operating characteristic; SVM, support vector machine.

TABLE 3 | The classification results of the three correlation methods.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC NOF

Pearson correlation 89.74 ± 7.28 89.71 ± 9.22 86.62 ±10.50 0.93 ± 0.09 84 ±46

Partial correlation 84.87 ± 7.09 96.21 ± 5.83 75.90 ± 17.33 0.87 ± 0.13 2488± 1393

Distance correlation 93.01 ± 5.40 89.71 ± 9.22 95.08 ± 7.70 0. 94 ± 0.06 81 ± 31

AUC, area under the receiver-operating characteristic curve; NOF, number of features.

rate was set to 0.01, the number of gradients boosted trees
(n_estimators) to 200, maximum depth of the tree (max_depth)
to 5, subsample ratio of the training instance (subsample) to
0.85, the minimum sum of instance weight needed in a child
to 2, subsample ratio of the columns when constructing each
tree to 0.7, and the other parameters to the default values.
For GBDT, the learning rate was set to 0.01, n_estimators to
600, max_depth to 3, subsample ratio to 0.7, the minimum
number of samples required to be at a leaf node to 10, the
minimum weighted fraction of the total of weights required
to be a leaf node to 0.1, and other parameters to the default
values. For the GCN and MLP, dropout was set to 0.1, weight
decay to 1× 10−3, learning rates to 0.02 and 0.05, number of
epochs to 1,000, number of layers to 2, and the numbers of
neurons per layer to 128 and 256. The results of classification

by 10-CV are given in Table 4. The optimal classification result
is achieved via SVM for accuracy, sensitivity, specificity, and
AUC with values as high as 93.01, 89.71, 95.08%, 0.94 (p <

0.01), respectively.

Potential Biomarkers From Connectivity
Patterns
To find the regions of the brain that strongly contributed
to the discrimination between the patients with OCD and
HCS, we selected the top 10 most discriminative features
according to the SVM-RFE-NCV method. Specific regions of
the brain were then located based on these features. The
spatial maps of the regions of the brain (Xia et al., 2013)
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TABLE 4 | Results of classification for the data of OCD.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC

SVM 93.01 ± 5.40 89.71 ± 9.22 95.08 ± 7.70 0.94 ± 0.06

LR-L1 89.81 ± 6.11 88.46 ± 10.23 91.47 ± 9.25 0.92 ± 0.07

LR-L2 90.58 ± 5.89 89.71 ± 9.22 91.29 ± 7.48 0.94 ± 0.06

GCN 91.41 ± 5.37 89.71 ± 9.22 92.72 ± 7.64 0.95 ± 0.06

MLP 90.64 ± 6.83 89.71 ± 9.22 91.29 ± 7.48 0.94 ± 0.06

XGBoost 85.77 ± 8.85 87.78 ± 11.19 84.84 ± 17.02 0.90 ± 0.12

GBDT 88.97 ± 7.23 86.71 ± 12.72 93.12 ± 9.49 0.94 ± 0.05

OCD, obsessive-compulsive disorder; SVM, support vector machine; LR-L1, sparse L1 for logistic regression; LR-L2, non-sparse L2 regularization for logistic regression; GCN,

graph convolution network; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; GBDT, gradient boosting decision tree; AUC, area under the receiver-operating

characteristic curve.

FIGURE 5 | Brain connectivity patterns for the three correlation methods. (A) Pearson correlation, (B) partial correlation, and (C) distance correlation.

are shown in Figure 5 and the detailed information is listed
in Table 5.

For Pearson correlation, the most discriminative regions
included the right precentral gyrus, orbital part of left superior
frontal, orbital part of right middle frontal gyrus, right olfactory
cortex, the medial part of right superior frontal gyrus, left
calcarine fissure and surrounding cortex, left superior occipital
gyrus, left putamen, left globus pallidus, right middle temporal
gyrus, right middle temporal pole, right crus II of cerebellar
hemisphere, left lobule III of cerebellar hemisphere, right
lobule III of cerebellar hemisphere, left lobule X of cerebellar
hemisphere, lobule III of the vermis, lobule VIII of the vermis,
lobule IX of the vermis, and lobule X of the vermis.

For partial correlation, the most discriminative regions for
OCD were composed of the left globus pallidus, right thalamus,
left middle temporal gyrus, right middle temporal pole, left crus
II of cerebellar hemisphere, right crus II of cerebellar hemisphere,
right lobule III of cerebellar hemisphere, right lobule IV of
cerebellar hemisphere, right lobule V of cerebellar hemisphere,
left lobule VIII of cerebellar hemisphere, right lobule VIII of
cerebellar hemisphere, left lobule VIII of cerebellar hemisphere,

right lobule IX of cerebellar hemisphere, left lobule X of cerebellar
hemisphere, and right lobule X of the cerebellar hemisphere.

For distance correlation, the discriminative regions for OCD
primarily consisted of the right percental gyrus, right dorsolateral
superior frontal gyrus, orbital part of left superior frontal gyrus,
orbital part of right middle frontal gyrus, left SMA, right olfactory
cortex, the medial part of right superior frontal gyrus, right
anterior cingulate and paracingulate gyri, left calcarine fissure
and surrounding cortex, left superior occipital gyrus, left superior
parietal gyrus, right precuneus, right superior temporal pole,
right inferior temporal gyrus, left crus II of cerebellar hemisphere,
left lobule III of cerebellar hemisphere, and right lobule VIII of
the cerebellar hemisphere.

DISCUSSION

The goal of this study is to investigate the potential diagnostic
value of the different correlation methods in patients with OCD.
We systematically compare the FC matrix-based prediction
methods. Our results show that the distance correlation method
is optimally followed by the Pearson correlation and partial
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TABLE 5 | The most discriminative brain regions.

Number Pearson correlation Partial correlation Distance correlation

1 Right precentral gyrus Left globus pallidus Right percental gyrus

2 Orbital part of left superior frontal Right thalamus Right dorsolateral superior frontal gyrus

3 Orbital part of right middle frontal gyrus Left middle temporal gyrus Orbital part of left superior frontal gyrus

4 Right olfactory cortex Right middle temporal pole Orbital part of right middle frontal gyrus

5 Medial part of right superior frontal gyrus Left crus II of cerebellar hemisphere Left supplementary motor area

6 Left calcarine fissure and surrounding cortex Right crus II of cerebellar hemisphere Right olfactory cortex

7 Left superior occipitalgyrus Right Lobule III of cerebellar hemisphere Medial part of right superior frontal gyrus

8 Left putamen Right lobule IV, V of cerebellar hemisphere Right anterior cingulate and paracingulate gyri

9 Left globus pallidus Left lobule VIII of cerebellar hemisphere Left calcarine fissure and surrounding cortex

10 Right middle temporal gyrus Right lobule VIII of cerebellar hemisphere Left superior occipitalgyrus

11 Right middle temporal pole Right lobule VIII of cerebellar hemisphere Left superior parietal gyrus

12 Right crus II of cerebellar hemisphere Right lobule IX of cerebellar hemisphere Right precuneus

13 Left lobule III of cerebellar hemisphere Left lobule X of cerebellar hemisphere Right superior temporal pole

14 Right lobule III of cerebellar hemisphere Right lobule X of cerebellar hemisphere Right inferior temporal gyrus

15 Left lobule X of cerebellar hemisphere Lobule I, II of vermis Left crus II of cerebellar hemisphere

16 Lobule III of vermis Lobule III of vermis Left lobule III of cerebellar hemisphere

17 Lobule VIII of vermis Lobule IV, V of vermis Right lobule VIII of cerebellar hemisphere

18 Lobule IX of vermis Lobule X of vermis

19 Lobule X of vermis

correlation methods. Besides, a suitable classifier can effectively
improve classification performance and it is vital to choose a
suitable one. For this reason, we perform many experiments on
the multiple classifiers (e.g., LR-L1, SVM). By comparing the
different classification results, we found that SVM is the most
suitable one in terms of the quantitative results.

We explored the important nodes and connectivity patterns
in the network of the brain constructed by the three correlation
methods. In these networks, many abnormal areas of the brain
and connectivity mentioned in the previous studies about OCD
were found including areas in and out of the classical CSTC
circuit such as the precentral gyrus and SMA (Ku et al., 2020).
These results provide preliminary support for the use of the
three correlation methods, especially distance correlation, as
promising classification markers for patients with OCD.

Of the three FC methods, distance correlation showed the
greatest diagnostic accuracy for discriminating the patients with
OCD from HCS. It has been shown that distance correlation
directly reflects linear and non-linear correlation in the ROIs.
Therefore, the location of the regions of the brain based on
distance correlation also showed a considerable research value.
For example, the SMA is involved in the planning of the
movement. It has been found to involve the compulsion and
repetitive behavior of OCD (Gillan et al., 2016). This effect
could make the distance correlation method more sensitive
to detect dysfunctional neural activity than the other two FC
methods. In addition, we can find that the FC matrix based on
distance correlation calculation has some intergroup differences.
These intergroup differences for the FC matrix may underlie the
excellent classification achieved in the current study. Therefore,
these ML algorithms were able to identify the patients with OCD

and HCS through the FC matrix based on distance correlation
calculation. This also provides support for the FC matrix
composed of distance correlation calculation as a promising
classification marker for OCD.

Pearson correlation was a widely used correlation method,
which was generally used to measure the linear relationship
between the ROIs. Therefore, its classification performance was
lower than distance correlation. In addition, they showed the
similarities and differences in the regions of the brain of the
Pearson and distance correlation localization. These same regions
of the brain had the right precentral gyrus, orbital part of
the left superior frontal, and medial part of the right superior
frontal gyrus, etc. In this study, they played a critical role in
exploring the pathogenesis of OCD. The medial part of the
right superior frontal gyrus, corresponding to the left ventral
medial prefrontal cortex (vmPFC), has also been found in the
disrupted emotion and cognition induced by the symptoms
of OCD (Becker et al., 2014; Apergis-Schoute et al., 2017).
These different regions of the brain included left putamen, right
anterior cingulate, and paracingulate gyri, etc. Among them,
the regions of brain (e.g., globus pellidus, putamen.) located by
Pearson correlation have great research value (Hibar et al., 2018;
Calzà et al., 2019). However, due to the limitation of Pearson
correlationmeasuring linear dependency, some crucial regions of
the brain will be ignored. The brain regions located (e.g., anterior
cingulate and paracingulate gyri, SMA) by distance correlation
can complement and extend it (Ku et al., 2020).

Partial correlation shows good classification performance,
although it is lower than the Pearson and distance correlations.
It was generally used to exclude the indirect influence of the
correlation structure. In other words, it can measure the degree
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of linear correlation between two regions of the brain without
indirect influence from other regions of the brain. Therefore, we
can infer thatmore consideration should be given to the synergies
between the multiple regions of the brain in OCD. In addition,
we can see that they are mainly distributed in the cerebellum
in the regions of the brain defined by partial correlation. In
previous studies, the cerebellum also played an important role in
the exploration of the pathogenesis of OCD (Zhang et al., 2019).
Therefore, we believe that partial correlation has a high potential
to explore the influence of the cerebellum on OCD.

In this study, the discriminative regions of the brain are in
and out of the CSTC circuit. Previous studies have reported that
the orbitofrontal cortex (OFC) play crucial roles in processing
reward, negative effect, and, specifically, fear and anxiety in OCD
(Kringelbach and Rolls, 2004; Milad and Rauch, 2007). A recent
meta-analysis of the voxel-based morphometry (VBM) studies
showed decreased gray matter in the bilateral OFCs (de Wit
et al., 2014). In fMRI studies, the researchers revealed the white
matter abnormalities in OFC (Piras et al., 2013). Furthermore,
the anterior cingulate cortex (ACC), putamen, and thalamus have
been suggested to play important roles in the previous studies
of OCD (Yoo et al., 2007; Zhu et al., 2015; Fan et al., 2017;
Hazari et al., 2019). The OCD severity associations have been
reported with hypermetabolism in the ACC (Swedo et al., 1989).
In this study, consistent with these findings, the OFC, the ACC,
putamen, and thalamus displayed a high degree of discriminative
ability between the patients with OCD and HCS. These results
provide further support for dysfunction in the CSTC circuit in
patients with OCD.

In addition, some researchers found that OCD is related to
the sensorimotor network (i.e., precentral gyrus/SMA) (Cui et al.,
2020). Morein-Zamir et al. (2016) reported that the activation
from the regions of the brain within the sensorimotor network
in the inhibitory control processes may explain the essence
of inhibitory control deficits of OCD. Meanwhile, one recent
study indicated that OCD was associated with increased activity
in the SMA. With repetitive transcranial magnetic stimulation
(rTMS) treatment in SMA, the researcher can observe a reduction
in the Y-BOCS score at the 4th week. The reduction in
compulsion contributed to the reduction of the global Y-BOCS
(Lee et al., 2017). Therefore, these previous results further
support this study.

Finally, this study also showed that the cerebellum contributed
to distinguish between the patients with OCD and HCS. For
example, Miquel et al. (2019) suggested that inhibiting activity in
the cerebellar cortex would increase impulsive and compulsive
symptomatology. On the other hand, the stimulation of the
cerebellar cortex should improve behavioral inhibitory control.
Meanwhile, other previous studies reported the existence of
disconnectedness in the fronto-striato-limbic community and
connectedness between the cerebellar and visual areas in the
patients with OCD, which was also related to the clinical
symptomatology of OCD (Kashyap et al., 2021).

Despite the encouraging performance achieved, there are
still two major limitations in the current research. First, the
current study is only evaluated in a small database, which will
make the results difficult to generalize. Second, the proposed

method uses only single image modality data. Using a variety of
modalities can obtain comprehensive features and improve the
classification performance of the model. However, the subjects
with themultimodal image data in the database are limited. In the
future, we will explore the multimodal image data to discriminate
the patients with OCD from HCS.

CONCLUSION

To conclude, the current experimental results show that it
is promising to apply distance correlation for measuring the
FC between the ROIs of the brain with contrast to both
the traditional Pearson correlation and partial correlation.
Besides improving the discrimination performance between
the patients with OCD and HCS, the selected biomarkers via
the SVM-RFE-NCV strategy may provide the potential clinical
values for the patients with OCD.
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